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POSITIVE SOLUTIONS FOR A CLASS OF NONRESONANT
BOUNDARY-VALUE PROBLEMS

XUEMEI ZHANG

Abstract. This paper concerns the existence and multiplicity of positive so-

lutions to the nonresonant second-order boundary-value problem

Lx = λw(t)f(t, x).

We are interested in the operator Lx := −x′′ + ρqx when w is in Lp for

1 ≤ p ≤ +∞. Our arguments are based on fixed point theorems in a cone and
Hölder’s inequality. The nonexistence of positive solutions is also studied.

1. Introduction

Consider the second-order boundary-value problem (BVP)

Lx = λw(t)f(t, x), 0 < t < 1,

x(0) = x(1) = 0,
(1.1)

where λ is a positive parameter and L denotes the linear operator

Lx := −x′′ + ρqx,

where q ∈ C([0, 1], [0,∞)) and ρ > 0 such that

Lx = 0, 0 < t < 1,

x(0) = x(1) = 0,

has only the trivial solution. For the classical case Lx = −x′′ and f(t, x) = f(x),
several results are available in the literature. Bandle [1] and Lin [12] established
the existence of positive solutions under the assumption that f is superlinear, i.e.,
f0 = limx→0

f(x)
x = 0, f∞ = limx→∞

f(x)
x = ∞. Wang [14] established the existence

of positive solutions under the assumption that f is sublinear, i.e., f0 = ∞ and
f∞ = 0. Eloe and Henderson [3] and Henderson and Wang [7] obtained the existence
of positive solutions under the assumption that f0 and f∞ exist.

In the case Lx = |x′|p−2x′, p > 1, i.e., the one-dimensional p-Laplacian, Jiang
[9] obtained existence and multiplicity results under the assumption that f may be
semilinear or superlinear at x = ∞ and change sign. Wang and Gao [16] established
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the existence of positive solutions under the assumption that f(t, x) = f(x) is
positive, right continuous, nonincreasing in (0,+∞) and f0 = ∞.

In recent papers, when Lx = |x′|p−2x′, p > 1 and Lx = −x′′, f(t, x) = f(x),
where x = (x1, . . . , xn). If 0 < f0 <∞ and 0 < f∞ <∞, Henderson and Wang [8]
established the existence of positive solutions. Wang [15] showed that appropriate
combinations of superlinearity and sublinearity of f(x) guarantee the existence,
multiplicity, and nonexistence of positive solutions.

However, the existence, multiplicity, and nonexistence of positive solutions of
(1.1) is not available for the case when Lx := −x′′+ ρqx and w is Lp-integrable for
some 1 ≤ p ≤ +∞. This paper fills this gap in the literature. The purpose of this
paper is to improve and generalize the results in the above mentioned references.
we will show that the number of positive solutions of BVP (1.1) is determined by
the parameter λ. The arguments are based upon fixed point theorems in a cone
and Hölder’s inequality.

The following lemmas are crucial to prove our main results. This is a fixed point
theorem of cone expansion and compression of norm type [2,4,5,6].

Lemma 1.1. Let Ω1 and Ω2 be two bounded open sets in Banach space E, such that
θ ∈ Ω1 and Ω̄1 ⊂ Ω2. Let operator A : P ∩ (Ω̄2\Ω1) → P be completely continuous,
where θ denotes the zero element of E and P is a cone in E. Suppose that one of
the following two conditions is satisfied:

(i) ‖Ax‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω2;
(ii) ‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω̄2\Ω1).

Lemma 1.2 ([5]). Let Ω1, Ω2 and Ω3 be three bounded open sets in Banach space
E, such that θ ∈ Ω1 and Ω̄1 ⊂ Ω2, Ω̄2 ⊂ Ω3. Let operator A : P ∩ (Ω̄3\Ω1) → P be
completely continuous, where θ denotes the zero element of E, and P is a cone in
E. Suppose the following conditions are satisfied:

(i) ‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω1;
(ii) ‖Ax‖ ≤ ‖x‖, Ax 6= x, for all x ∈ P ∩ ∂Ω2;
(iii) ‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω3.

Then A has at least two fixed points x∗, x∗∗ in P ∩ (Ω̄3\Ω1), and x∗ ∈ P ∩ (Ω2\Ω1),
x∗∗ ∈ P ∩ (Ω̄3\Ω̄2).

To obtain some of the norm inequalities in Theorems 3.1,3.2 and 3.5, we employ
Hölder’s inequality:

Lemma 1.3. Let f ∈ Lp[a, b] with p > 1, g ∈ Lq[a, b] with q > 1, and 1
p + 1

q = 1.
Then fg ∈ L1[a, b] and ‖fg‖1 ≤ ‖f‖p‖g‖q.

Let f ∈ L1[a, b], g ∈ L∞[a, b]. Then fg ∈ L1[a, b] and ‖fg‖1 ≤ ‖f‖1‖g‖∞.

This paper is organized as follows: In Section 2, we provide some necessary back-
ground. In particular, we state some properties of the Green’s function associated
with BVP (1.1). In Section 3, the main result will be stated and proved. Finally
some examples illustrate our main results.

2. Preliminaries

Let J = [0, 1]. The basic space used in this paper is E = C[0, 1]. It is well known
that E is a real Banach space with the norm ‖ · ‖ defined by ‖x‖ = maxt∈J |x(t)|.
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Let K be a cone of E, Kr = {x ∈ K : ‖x‖ ≤ r}, ∂Kr = {x ∈ K : ‖x‖ = r},
K̄r,R = {x ∈ K : r ≤ ‖x‖ ≤ R}, where 0 < r < R.

The following assumptions will stand throughout this paper:
(H1) w ∈ Lp[0, 1] for some 1 ≤ p ≤ +∞ and there exists m > 0 such that

w(t) ≥ m a.e. on [0, 1];
(H2) f ∈ C([0, 1]× [0,+∞), [0,+∞)).

In this paper, the Green’s function of the corresponding homogeneous BVP is

G(t, s) =
1
∆

{
φ(s)ψ(t) if 0 ≤ s ≤ t ≤ 1,
φ(t)ψ(s) if 0 ≤ t ≤ s ≤ 1.

(2.1)

Where φ and ψ satisfy

Lφ = 0, φ(0) = 0, φ′(0) = 1, (2.2)

Lψ = 0, ψ(1) = 0, ψ′(1) = −1. (2.3)

From [17,18], it is not difficult to show that ∆ = −(φ(t)ψ′(t)− φ′(t)ψ(t)) > 0 and
φ′(t) > 0 on (0, 1] and ψ′(t) < 0 on [0, 1). It is easy to prove that G(t, s) has the
following properties;

• For t, s ∈ (0, 1), we have

G(t, s) > 0. (2.4)

• For t, s ∈ J , we have

0 ≤ G(t, s) ≤ G(s, s). (2.5)

• Let θ ∈ (0, 1
2 ) and define Jθ = [θ, 1− θ]. Then for all t ∈ Jθ, s ∈ J we have

G(t, s) ≥ σG(s, s), (2.6)

where

σ(= σ(θ)) = min
{ψ(1− θ)

ψ(0)
,
φ(θ)
φ(1)

}
. (2.7)

In fact, for t ∈ [θ, 1− θ], we have

G(t, s)
G(s, s)

≥ min
{ψ(1− θ)

ψ(s)
,
φ(θ)
φ(s)

}
≥ min

{ψ(1− θ)
ψ(0)

,
φ(θ)
φ(1)

}
=: σ.

It is easy to see that 0 < σ < 1.
For the sake of applying Lemma 1.1 and Lemma 1.2, we construct a cone in

E = C[0, 1] by

K = {x ∈ C[0, 1] : x ≥ 0, min
t∈Jθ

x(t) ≥ σ‖x‖}. (2.8)

It is easy to see K is a closed convex cone of E and K̄r,R ⊂ K.
Define an operator Tλ : K̄r,R → K by

Tλx(t) = λ

∫ 1

0

G(t, s)w(s)f(s, x(s))ds, (2.9)

From the above equality, it is well known that (1.1) has a positive solution x if and
only if x ∈ K̄r,R is a fixed point of Tλ.

Lemma 2.1. Let (H1) and (H2) hold. Then TλK̄r,R ⊂ K and Tλ : K̄r,R → K is
completely continuous.
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Proof. For x ∈ K, by (2.9), we have Tλx(t) ≥ 0 and

‖Tλx‖ ≤ λ

∫ 1

0

G(s, s)w(s)f(s, x(s))ds, (2.10)

On the other hand, by (2.9), (2.10) and (2.6), we obtain

min
t∈Jθ

Tλx(t) = min
t∈Jθ

λ

∫ 1

0

G(t, s)w(s)f(s, x(s))ds

≥ λσ

∫ 1

0

G(s, s)w(s)f(s, x(s))ds

≥ σ‖Tλx‖.

Therefore Tλx ∈ K, i.e., TλK ⊂ K. Also we have TλK̄r,R ⊂ K by K̄r,R ⊂ K.
Hence we have Tλ : K̄r,R → K.

Next by standard methods and Ascoli-Arzela theorem one can prove Tλ : K̄r,R →
K is completely continuous. So it is omitted. �

3. Main results

Write

fβ = lim sup
x→β

max
t∈J

f(t, x)
x

, fβ = lim inf
x→β

min
t∈J

f(t, x)
x

,

where β denotes 0 or ∞. In this section, we apply the Lemmas 1.1-1.3 to establish
the existence of positive solutions for BVP (1.1). We consider the following three
cases for w ∈ Lp[0, 1]; p > 1, p = 1 and p = ∞. Case p > 1 is treated in the
following theorem.

Theorem 3.1. Assume that (H1) and (H2) hold. In addition, letting f0 = ∞ and
f∞ = 0 be satisfied, then, for all λ > 0, BVP (1.1) has at least one positive solution
x∗(t).

Proof. Let Tλ be cone preserving, completely continuous operator that was defined
by (2.9). Considering f0 = ∞, there exists r1 > 0 such that f(t, x) ≥ ε1x, for
0 < x ≤ r1, t ∈ J , where ε1 > 0 satisfies λσ2 1

∆mφ(θ)ψ(1 − θ)ε1 ≥ 1. So, for
x ∈ ∂Kr1 , t ∈ J , from (2.6), we have

(Tλx)(t) = λ

∫ 1

0

G(t, s)w(s)f(s, x(s))ds

≥ λε1

∫ 1

0

G(t, s)w(s)x(s)ds

≥ λmε1 min
t∈Jθ

∫ 1

0

G(t, s)x(s)ds

≥ λmσε1

∫ 1

0

G(s, s)x(s)ds

≥ λmσ2ε1‖x‖
∫ 1−θ

θ

G(s, s)ds

≥ λσ2 1
∆
mφ(θ)ψ(1− θ)ε1‖x‖

≥ ‖x‖.

(3.1)
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Consequently, for x ∈ ∂Kr1 , we have

‖Tλx‖ ≥ ‖x‖. (3.2)

Next, turning to f∞ = 0, there exists r̄2 > 0 such that f(t, x) ≤ ε2x, for x ≥
r̄2, t ∈ J , where ε2 > 0 satisfies ε2λ‖G‖q‖w‖p ≤ 1

2 . Let

M = λ sup
x∈∂Kr̄2,t∈J

f(t, x)
∫ 1

0

G(t, t)w(t)dt.

It is not difficult to see that M < +∞.
Choosing r2 > max{r1, r̄2, 2M}, we get M < 1

2r2. Now, we choose x ∈ ∂Kr2

arbitrary. Letting x̄(t) = min{x(t), r̄2}, we have x̄ ∈ ∂Kr̄2 . In addition, writing
e(x) = {t ∈ J : x(t) > r̄2}, for t ∈ e(x), we get r̄2 < x(t) ≤ ‖x‖ = r2. By the
choosing r̄2, for t ∈ e(x), we have f(t, x(t)) ≤ ε2r2. Thus for x ∈ ∂Kr2 , from (2.5),
we have

(Tλx)(t) ≤ λ

∫ 1

0

G(s, s)w(s)f(s, x(s))ds

= λ

∫
e(x)

G(s, s)w(s)f(s, x(s))ds+ λ

∫
[0,1]\e(x)

G(s, s)w(s)f(s, x(s))ds

≤ λε2r2

∫ 1

0

G(s, s)w(s)ds+ λ

∫ 1

0

G(s, s)w(s)f(s, x̄(s))ds

≤ λε2r2‖G‖q‖w‖p +M

<
1
2
r2 +

1
2
r2

= r2 = ‖x‖.
(3.3)

Consequently, from (3.3), for x ∈ ∂Kr2 , we have

‖Tλx‖ < ‖x‖. (3.4)

Applying (ii) of Lemma 1.1 to (3.2) and (3.4) yields that Tλ has a fixed point
x∗ ∈ K̄r1,r2 , r1 ≤ ‖x∗‖ ≤ r2 and x∗(t) ≥ σ‖x∗‖ > 0, t ∈ Jθ. Thus it follows that
(1.1) has a positive solution x∗ for all λ > 0. The proof is complete. �

The following theorem studies the case p = ∞.

Theorem 3.2. Suppose the conditions of Theorem 3.1 hold. Then, for all λ > 0,
BVP (1.1) has at least one positive solution x∗(t).

To prove the above theorem, let ‖G‖1‖w‖∞ replace ‖G‖p‖w‖q and repeat the
argument above. Finally we consider the case of p = 1.

Theorem 3.3. Suppose the conditions of Theorem 3.1 hold. Then, for all λ > 0,
(1.1) has at least one positive solution x∗(t).



6 X. ZHANG EJDE-2007/20

Proof. As in the proof of Theorem 3.1, choose r2 = max{r1, r̄2, 2M}. For x ∈ ∂Kr2 ,
from (2.5) we have

(Tλx)(t) ≤ λ

∫ 1

0

G(s, s)w(s)f(s, x(s))ds

= λ

∫
e(x)

G(s, s)w(s)f(s, x(s))ds+ λ

∫
[0,1]\e(x)

G(s, s)w(s)f(s, x(s))ds

≤ λε2r2

∫ 1

0

G(s, s)w(s)ds+ λ

∫ 1

0

G(s, s)w(s)f(s, x̄(s))ds

≤ λε2r2
1
∆
φ(1)ψ(0)‖w‖1 +M

<
1
2
r2 +

1
2
r2

= r2 = ‖x‖,
(3.5)

where ε2 > 0 satisfies ε2λ 1
∆φ(1)ψ(0)‖w‖1 ≤ 1. Consequently, from (3.5), for x ∈

∂Kr2 , we have ‖Tλx‖ < ‖x‖. This and (3.2) complete the proof. �

Corollary 3.4. Let f0 = 0 replace f∞ = 0 and f∞ = ∞ replace f0 = ∞ in
Theorems 3.1-3.3. Then the results still hold.

In the following theorems we only consider the case of p > 1. The existence
theorems corresponding to the cases of p = 1 and p = ∞ are similar and are
omitted.

Theorem 3.5. Assume (H1), (H2) and the following two conditions:
(i) f0 = ∞ or f∞ = ∞;
(ii) There exist ρ > 0 and δ > 0, for 0 < x ≤ ρ and t ∈ J , such that f(t, x) ≤ δ.

Then there exists λ0 > 0 such that for all 0 < λ < λ0, BVP (1.1) has at least one
positive solution x∗(t).

Proof. Considering f0 = ∞, there exists 0 < r3 < ρ such that f(t, x) ≥ ε3x, for
0 < x ≤ r3, t ∈ J , where ε3 > 0 satisfies ε3λσ2 1

∆mφ(θ)ψ(1 − θ) ≥ 1. So, for
x ∈ ∂Kr3 , from (2.6), we have

(Tλx)(t) = λ

∫ 1

0

G(t, s)w(s)f(s, x(s))ds

≥ λε3

∫ 1

0

G(t, s)w(s)x(s)ds

≥ λmε3 min
t∈Jθ

∫ 1

0

G(t, s)x(s)ds

≥ λmσε3

∫ 1

0

G(s, s)x(s)ds

≥ λmσε3

∫ 1−θ

θ

G(s, s)x(s)ds

≥ λσ2 1
∆
mφ(θ)ψ(1− θ)ε1‖x‖

≥ ‖x‖.

(3.6)
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Consequently, for x ∈ ∂Kr3 , we have

‖Tλx‖ ≥ ‖x‖. (3.7)

If f∞ = ∞, similar to the proof of (3.7), there exists r4 > ρ such that f(t, x) ≥ ε4x,
for x ≥ r4, t ∈ J , where ε4 > 0 satisfies ε4λσ2 1

∆mφ(θ)ψ(1 − θ) ≥ 1, and, for
x ∈ ∂Kr4 , we have

‖Tλx‖ ≥ ‖x‖. (3.8)
On the other hand, from (ii), when a ρ > 0 is fixed, then there exists a λ0 > 0
such that f(t, x) ≤ δ < 1

λ [‖G‖q‖w‖p]−1ρ for 0 < λ < λ0, x ∈ ∂Kρ. Therefore for
x ∈ ∂Kρ and t ∈ J we have

(Tλx)(t) = λ

∫ 1

0

G(t, s)w(s)f(s, x(s))ds

≤ δλ

∫ 1

0

G(t, s)w(s)ds

≤ δλ‖G‖q‖w‖p

< ρ = ‖x‖.
Consequently, for x ∈ ∂Kρ, we have

‖Tλx‖ < ‖x‖. (3.9)

By Lemma 1.1, for all 0 < λ < λ0, (3.7) and (3.9), (3.8) and (3.9), respectively, yield
that Tλ has a fixed point x∗ ∈ K̄r3,ρ, r3 ≤ ‖x∗‖ < ρ and x∗(t) ≥ σ‖x∗‖ > 0, t ∈ Jθ

or x∗ ∈ K̄ρ,r4 , ρ1 < ‖x∗‖ ≤ r4 and x∗(t) ≥ σ‖x∗‖ > 0, t ∈ Jθ. Thus it follows that
BVP (1.1) has at least one positive solution x∗ for all 0 < λ < λ0. �

Theorem 3.6. Assume (H1), (H2) and the following two conditions:
(i) f0 = ∞ and f∞ = ∞;
(ii) There exist ρ > 0, δ > 0, for 0 < x ≤ ρ and t ∈ J such that f(t, x) ≤ δ.

Then there exists λ0 > 0 such that for all 0 < λ < λ0, BVP (1.1) has at least two
positive solutions x∗(t), x∗∗(t).

Proof. The proof is similar to that of Theorem 3.5. Lemma 1.2, (3.7)-(3.9) yield
that Tλ has at least two fixed points x∗, x∗∗, where x∗ ∈ K̄r3,ρ, r3 ≤ ‖x∗‖ < ρ and
x∗(t) ≥ σ‖x∗‖ > 0, t ∈ Jθ, x∗∗ ∈ K̄ρ,r4 , ρ < ‖x∗‖ ≤ r4 and x∗∗(t) ≥ σ‖x∗∗‖ > 0,
t ∈ Jθ. Thus it follows that BVP 1.1 has at least two positive solutions x∗, x∗∗ for
all 0 < λ < λ0. �

Corollary 3.7. Assume (H1), (H2) and the following two conditions:
(i) f0 = 0 or f∞ = 0;
(ii) There exist ρ > 0, δ > 0, such that f(t, x) ≥ δ for x ≥ ρ and t ∈ J .

Then there exists λ0 > 0 such that for all λ > λ0, BVP (1.1) has at least one
positive solution x∗(t).

Corollary 3.8. Assume (H1), (H2) and the following two conditions:
(i) f0 = 0 and f∞ = 0;
(ii) There exist ρ > 0 and δ > 0, such that f(t, x) ≥ δ for x ≥ ρ and t ∈ J .

Then there exists λ0 > 0 such that for all λ > λ0, BVP (1.1) has at least two
positive solutions x∗(t), x∗∗(t).

Our last result corresponds to the case when (1.1) has no positive solution.
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Theorem 3.9. Assume (H1), (H2), f0 > 0 and f∞ > 0. Then there exists λ0 > 0
such that for all λ > λ0, BVP (1.1) has no positive solution.

Proof. Since f0 > 0 and f∞ > 0, then there exist η1 > 0, η2 > 0, h1 > 0 and h2 > 0
such that h1 < h2 and for t ∈ J , 0 < x ≤ h1, we have

f(t, x) ≥ η1x, (3.10)

and for t ∈ J , x ≥ h2, we have

f(t, x) ≥ η2x. (3.11)

Let

η = min{η1, η2, min{f(t, x)
x

: t ∈ J, σh1 ≤ x ≤ h2}} > 0.

Thus, for t ∈ J , x ≥ σh1, we have

f(t, x) ≥ ηx, (3.12)

and for t ∈ J , x ≤ h1, we have

f(t, x) ≥ ηx. (3.13)

Assume y is a positive solution of (1.1). We will show that this leads to a contra-
diction for λ > λ0 = [ησ2

∫ 1−θ

θ
G(s, s)w(s)ds]−1. In fact, if ‖y‖ ≤ h1, (3.13) implies

that
f(t, y) ≥ ηy, for t ∈ J.

On the other hand, if ‖y‖ > h1, then mint∈Jθ
y(t) ≥ σ‖y‖ > σh1, which, together

with (3.12), implies that, for t ∈ Jθ, we get f(t, y) ≥ ηy. Since (Ty)(t) = y(t), it
follows that, for λ > λ0, t ∈ J ,

‖y‖ = ‖(Tλy)‖

= max
t∈J

λ

∫ 1

0

G(t, s)w(s)f(s, y(s))ds

≥ min
t∈Jθ

λ

∫ 1−θ

θ

G(t, s)w(s)ηy(s)ds

≥ λησ‖y‖σ
∫ 1−θ

θ

G(s, s)w(s)ds

≥ λη‖y‖σ2

∫ 1−θ

θ

G(s, s)w(s)ds

> ‖y‖,

which is a contradiction. The proof is complete. �

Corollary 3.10. Let f0 <∞ and f∞ <∞ replace f0 > 0 and f∞ > 0 in Theorem
3.9. Then the results are still valid.

Remark 3.11. We did not use Hölder’s inequality in the proof of Theorem 3.3
and Theorem 3.9.

It is clear that the results obtained here improve the results of [2,3,11,12,13,14,15].
To illustrate how our main results can be used in practice we present two examples.
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Example 3.12. We set ω(t) = |2t − 1
8 |
−1/15. Then w ∈ Lp for 1 < p < 15. For

this function, m = ( 8
15 )1/15. In addition, we define f(t, x(t)) = 3

√
t2 + 1x1/n, n > 1.

It is not difficult to see that

f0 = lim inf
x→0

min
t∈[0,1]

f(t, x)
x

= ∞, f∞ = lim sup
x→∞

max
0≤t≤1

f(t, x)
x

= 0.

Hence the conditions of the Theorem 3.1 are satisfied.

Example 3.13. We set ω(t) = |t − 1
8 |
−1/8. Then w ∈ Lp for 1 < p < 8. For

this function, m = (8
7 )1/8. In addition, we define f(t, x(t)) = (1 + t2)xn + 3+t

16 x
1/n,

n > 1. It is not difficult to see that

f0 = lim inf
x→0

min
t∈J

f(t, x)
x

= ∞, f∞ = lim inf
x→∞

min
t∈J

f(t, x)
x

= ∞.

Therefore, conditions (H1), (H2) and (i) of the Theorem 3.6 are satisfied. Finally we
verify (ii) of the Theorem 3.6. Choosing q(t) = 0, then we get φ(t) = t, ψ(t) = 1−t,
φ(0) = 0, ψ(1) = 0, φ′(0) = 1 = a, ψ′(1) = −1 = −c, ∆ = −(−t− (1− t)) = 1 > 0
and

G(t, s) =

{
s(1− t) if 0 ≤ s ≤ t ≤ 1,
t(1− s) if 0 ≤ t ≤ s ≤ 1.

Clearly, for ρ = 1, δ = 9/4, we obtain

f(t, x) ≤ 2x2 +
1
4
x1/2 ≤ 2 +

1
4

=
9
4

= δ

for 0 < x ≤ ρ, which implies the condition (ii) of the Theorem 3.6 also holds.
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