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PERIODICITY AND STABILITY IN NEUTRAL NONLINEAR
DYNAMIC EQUATIONS WITH FUNCTIONAL DELAY ON A

TIME SCALE

ERIC R. KAUFMANN, YOUSSEF N. RAFFOUL

Abstract. Let T be a periodic time scale. We use a fixed point theorem due

to Krasnosel’skĭı to show that the nonlinear neutral dynamic equation with

delay

x∆(t) = −a(t)xσ(t) + (Q(t, x(t), x(t− g(t)))))∆ + G
`
t, x(t), x(t− g(t))

´
, t ∈ T,

has a periodic solution. Under a slightly more stringent inequality we show

that the periodic solution is unique using the contraction mapping principle.

Also, by the aid of the contraction mapping principle we study the asymptotic
stability of the zero solution provided that Q(t, 0, 0) = G(t, 0, 0) = 0.

1. Introduction

We assume the reader is familiar with the notation and basic results for dynamic
equations on time scales. For a review of this topic we direct the reader to the
monographs [2, 3]. We begin with a few definitions.

Definition 1.1. We say that a time scale T is periodic if there exist a p > 0 such
that if t ∈ T then t± p ∈ T. For T 6= R, the smallest positive p is called the period
of the time scale.

The above definition is due to Atici et. al [1] and Kaufmann and Raffoul [5].

Example 1.2. The following time scales are periodic.
(1) T =

⋃∞
i=−∞[2(i− 1)h, 2ih], h > 0 has period p = 2h.

(2) T = hZ has period p = h.
(3) T = R.
(4) T = {t = k − qm : k ∈ Z,m ∈ N0} where,, 0 < q < 1 has period p = 1.

Remark: All periodic time scales are unbounded above and below.

Definition 1.3. Let T 6= R be a periodic time scale with period p. We say that
the function f : T → R is periodic with period T if there exists a natural number n
such that T = np, f(t± T ) = f(t) for all t ∈ T and T is the smallest number such
that f(t± T ) = f(t).
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If T = R, we say that f is periodic with period T > 0 if T is the smallest positive
number such that f(t± T ) = f(t) for all t ∈ T.

Remark: If T is a periodic time scale with period p, then σ(t ± np) = σ(t) ± np.
Consequently, the graininess function µ satisfies µ(t±np) = σ(t±np)− (t±np) =
σ(t)− t = µ(t) and so, is a periodic function with period p.

Let T be a periodic time scale such that 0 ∈ T. We will show the existence of
periodic solutions for the nonlinear neutral dynamic equation with delay

x∆(t) = −a(t)xσ(t)+(Q(t, x(t), x(t− g(t)))))∆+G
(
t, x(t), x(t−g(t))

)
, t ∈ T, (1.1)

In order for the function x(t − g(t)) to be well-defined over T, we assume that
g : T → R and that id− g : T → T is strictly increasing.

In the case T = R, the second author in [6] used Krasnosel’skĭı’s fixed point
theorem to show the existence of a periodic solution of (1.1) when the delay is some
positive continuous and periodic function g(t). Also, the existence of a unique peri-
odic solution of (1.1) was obtained by the aid of the contraction mapping principle.
For T = R and assuming x = 0 is a solution of (1.1), in [7], Raffoul used the no-
tion of fixed point theory and obtained conditions that guaranteed the asymptotic
stability of a zero solution.

In Section 2, we present some preliminary material that we will need through
the remainder of the paper. We will sate some facts about the exponential function
on a time scale as well as the Krasnosel’skĭı fixed point theorem. We present our
main results on periodicity in Section 3 and provide an example. In Section 4 we
state and prove a theorem concerning the stability of the zero solution of (1.1) for
a general time scale.

2. Preliminaries

We begin this section by considering some advanced topics in the theory of
dynamic equations on time scales. Most of the following definitions, lemmas and
theorems can be found in [2, 3]. Our first two theorems concern the composition of
two functions. The first theorem is the chain rule on time scales [2, Theorem 1.93].

Theorem 2.1 (Chain Rule). Assume ν : T → R is strictly increasing and T̃ :=
ν(T) is a time scale. Let w : T̃ → R. If ν∆(t) and w∆̃(ν(t)) exist for t ∈ Tκ, then

(w ◦ ν)∆ = (w∆̃ ◦ ν)ν∆.

In the sequel we will need to differentiate and integrate functions of the form
f(t−g(t)) = f(ν(t)) where, ν(t) := t−g(t). Our second theorem is the substitution
rule [2, Theorem 1.98].

Theorem 2.2 (Substitution). Assume ν : T → R is strictly increasing and T̃ :=
ν(T) is a time scale. If f : T → R is an rd-continuous function and ν is differen-
tiable with rd-continuous derivative, then for a, b ∈ T,∫ b

a

f(t)ν∆(t) ∆t =
∫ ν(b)

ν(a)

(f ◦ ν−1)(s) ∆̃s.

A function p : T → R is said to be regressive provided 1 + µ(t)p(t) 6= 0 for all
t ∈ Tκ. The set of all regressive rd-continuous functions f : T → R is denoted by
R while the set R+ is given by R+ = {f ∈ R : 1 + µ(t)f(t) > 0 for all t ∈ T}.
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Let p ∈ R and µ(t) 6= 0 for all t ∈ T. The exponential function on T is defined
by

ep(t, s) = exp
( ∫ t

s

1
µ(z)

Log(1 + µ(z)p(z))∆z
)
,

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the
exponential function y(t) = ep(t, s) is the solution to the initial value problem
y∆ = p(t)y, y(s) = 1. Other properties of the exponential function are given in the
following lemma, [2, Theorem 2.36].

Lemma 2.3. Let p, q ∈ R. Then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) 1

ep(t,s) = e	p(t, s) where, 	p(t) = − p(t)
1+µ(t)p(t) ;

(iv) ep(t, s) = 1
ep(s,t) = e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);
(vi)

(
1

ep(·,s)
)∆ = − p(t)

eσ
p (·,s) .

Lastly in this section, we state Krasnosel’skĭı’s fixed point theorem which enables
us to prove the existence of a periodic solution. For its proof we refer the reader to
[8].

Theorem 2.4 (Krasnosel’skĭı). Let M be a closed convex nonempty subset of a
Banach space

(
B, ‖ · ‖

)
. Suppose that A and B map M into B such that

(i) x, y ∈ M, implies Ax+By ∈ M,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ M with z = Az +Bz.

3. Existence Of Periodic Solutions

We will state and prove our main result in this section as well as provide an
example. Let T > 0, T ∈ T be fixed and if T 6= R, T = np for some n ∈ N. By the
notation [a, b] we mean

[a, b] = {t ∈ T : a ≤ t ≤ b}
unless otherwise specified. The intervals [a, b), (a, b], and (a, b) are defined similarly.
Define PT = {ϕ ∈ C(T, R) : ϕ(t+T ) = ϕ(t)} where, C(T, R) is the space of all real
valued continuous functions on T. Then PT is a Banach space when it is endowed
with the supremum norm

‖x‖ = sup
t∈[0,T ]

|x(t)|.

We will need the following lemma whose proof can be found in [5].

Lemma 3.1. Let x ∈ PT . Then ‖xσ‖ exists and ‖xσ‖ = ‖x‖.

In this paper we assume that a ∈ R+ is continuous, a(t) > 0 for all t ∈ T and

a(t+ T ) = a(t),
(
id− g

)
(t+ T ) =

(
id− g

)
(t), (3.1)

where, id is the identity function on T. We also require that Q(t, x) and G(t, x, y)
are continuous and periodic in t and Lipschitz continuous in x and y. That is,

Q(t+ T, x) = Q(t, x), G(t+ T, x, y) = G(t, x, y), (3.2)



4 E. R. KAUFMANN, Y. N. RAFFOUL EJDE-2007/27

and there are positive constants E1, E2, E3 such that

|Q(t, x)−Q(t, y)| ≤ E1‖x− y‖, for x, y ∈ R, (3.3)

and

|G(t, x, y)−G(t, z, w)| ≤ E2‖x− z‖+ E3‖y − w‖, for x, y, z, w ∈ R. (3.4)

Lemma 3.2. Suppose (3.1), (3.2) hold. If x ∈ PT , then x is a solution of equation
(1.1) if, and only if,

x(t) = Q
(
t, x(t− g(t))

)
+

(
1− e	a(t, t− T )

)−1

×
∫ t

t−T

[
− a(s)Qσ

(
s, x(s− g(s))

)
+G

(
s, x(s), x(s− g(s))

)]
e	a(t, s) ∆s.

(3.5)

Proof. Let x ∈ PT be a solution of (1.1). First we write (1.1) as

{x(t)−Q
(
t, x(t− g(t))

)
}∆ = −a(t){xσ(t)−Qσ

(
t, x(t− g(t))

)
}

− a(t)Qσ
(
t, x(t− g(t))

)
+G

(
t, x(t), x(t− g(t))

)
.

Multiply both sides by ea(t, 0) and then integrate from t− T to t to obtain∫ t

t−T

[
ea(s, 0){x(s)−Q

(
s, x(s− g(s))

)
}
]∆ ∆s

=
∫ t

t−T

[
− a(s)Qσ

(
s, x(s− g(s))

)
+G

(
s, x(s), x(s− g(s))

)]
ea(s, 0) ∆s.

Consequently, we have

ea(t, 0)
(
x(t)− a(t)Q

(
t, x(t− g(t))

))
− ea(t− T, 0)

(
x(t− T )− a(t− T )Q

(
t− T, x(t− T − g(t− T ))

))
=

∫ t

t−T

[
− a(s)Qσ

(
s, x(s− g(s))

)
+G

(
s, x(s), x(s− g(s))

)]
ea(s, 0) ∆s.

After making use of (3.1), (3.2) and x ∈ PT , we divide both sides of the above
equation by ea(t, 0) to obtain

x(t) = Q
(
t, x(t− g(t))

)
+

(
1− e	a(t, t− T )

)−1

×
∫ t

t−T

[
− a(s)Qσ

(
s, x(s− g(s))

)
+G

(
s, x(s), x(s− g(s))

)]
e	a(t, s) ∆s

where, we have used Lemma 2.3 to simplify the exponentials. Since each step is
reversible, the converse follows. This completes the proof. �

Define the mapping H : PT → PT by

(Hϕ)(t)

= Q
(
t, ϕ(t− g(t))

)
+

(
1− e	a(t, t− T )

)−1

×
∫ t

t−T

[
− a(s)Qσ

(
s, ϕ(s− g(s))

)
+G

(
s, ϕ(s), ϕ(s− g(s))

)]
e	a(t, s) ∆s.

(3.6)



EJDE-2007/27 PERIODIC SOLUTIONS ON TIME SCALES 5

To apply Theorem 2.4 we need to construct two mappings; one map is a contraction
and the other map is compact. We express equation (3.6) as

(Hϕ)(t) = (Bϕ)(t) + (Aϕ)(t)

where, A,B are given by

(Bϕ)(t) = Q
(
t, ϕ(t− g(t))

)
(3.7)

and
(Aϕ)(t)

=
(
1− e	a(t, t− T )

)−1

×
∫ t

t−T

[
− a(s)Qσ

(
s, ϕ(s− g(s))

)
+G

(
s, ϕ(s), ϕ(s− g(s))

)]
e	a(t, s) ∆s.

(3.8)

Lemma 3.3. Suppose (3.1)–(3.4) hold. Then A : PT → PT , as defined by (3.8), is
compact.

Proof. We first show that A : PT → PT . Evaluate (3.8) at t+ T .

(Aϕ)(t+ T ) =
(
1− e	a(t+ T, t)

)−1 ×
∫ t+T

t

[
− a(s)Qσ

(
s, ϕ(s− g(s))

)
+G

(
s, ϕ(s), ϕ(s− g(s))

)]
e	a(t+ T, s) ∆s.

(3.9)

Use Theorem 2.2 with u = s− T and conditions (3.1) – (3.2) to get

(Aϕ)(t+ T ) =
(
1− e	a(t+ T, t)

)−1

×
∫ t

t−T

[
− a(u+ T )Qσ

(
u− T, ϕ(u− T − g(u− T ))

)
+G

(
s, ϕ(u− T ), ϕ(u− T − g(u− T ))

)]
e	a(t+ T, u+ T )∆u.

From (2) and Theorem 2.2, we have e	a(t+T, u+T ) = e	a(t, u) and e	a(t+T, t) =
e	a(t, t− T ). Thus (3.9) becomes

(Aϕ)(t+ T ) =
(
1− e	a(t, t− T )

)−1 ×
∫ t

t−T

[
− a(u)Qσ

(
u, ϕ(u− g(u))

)
+G

(
u, ϕ(u), ϕ(u− g(u))

)]
e	a(t+ T, u)∆u

= (Aϕ)(t).

That is, A : PT → PT .
To see that A is continuous, we let ϕ,ψ ∈ PT with ‖ϕ‖ ≤ C and ‖ψ‖ ≤ C and

define

η := max
t∈[0,T ]

∣∣(1− e	a(t, t− T )
)−1∣∣, ρ := max

t∈[0,T ]
|a(t)|, γ := max

u∈[t−T,t]
e	a(t, u).

(3.10)
Given ε > 0, take δ = ε/M with M = η γ T (ρ E1 + E2 + E3) where, E1, E2 and
E3 are given by (3.3) and (3.4) such that ‖ϕ− ψ‖ < δ. Using (3.8) we get∥∥Aϕ−Aψ

∥∥ ≤ ηγ

∫ T

0

[
ρ E1‖ϕ− ψ‖+ (E2 + E3)‖ϕ− ψ‖

]
∆u

≤M‖ϕ− ψ‖ < ε.



6 E. R. KAUFMANN, Y. N. RAFFOUL EJDE-2007/27

This proves that A is continuous.
We need to show that A is compact. Consider the sequence of periodic functions{
ϕn

}
⊂ PT and assume that the sequence is uniformly bounded. Let R > 0 be

such that ‖ϕn‖ ≤ R, for all n ∈ N. In view of (3.3) and (3.4) we arrive at

|Q(t, x)| = |Q(t, x)−Q(t, 0) +Q(t, 0)|
≤ |Q(t, x)−Q(t, 0)|+ |Q(t, 0)|
≤ E1‖x‖+ α.

Similarly,

|G(t, x, y)| = |G(t, x, y)−G(t, 0, 0) +G(t, 0, 0)|
≤ |G(t, x, y)−G(t, 0, 0)|+ |G(t, 0, 0)|
≤ E2‖x‖+ E3‖y‖+ β,

where, α = supt∈[0,T ] |Q(t, 0)| and β = supt∈[0,T ] |G(t, 0, 0)|.

|(Aϕn)(t)| =
∣∣∣(1− e	a(t, t− T )

)−1 ×
∫ t

t−T

[
− a(s)Qσ

(
s, ϕ(s− g(s))

)
+G

(
s, ϕ(s), ϕ(s− g(s))

)]
e	a(t, s) ∆s

∣∣∣
≤ ηγ

∫ t

t−T

∣∣− a(s)
∣∣ ∣∣Qσ

(
s, ϕ(s− g(s))

)∣∣ +
∣∣G(

s, ϕ(s), ϕ(s− g(s))
)∣∣ ∆s

≤ ηγT
[
ρ(E1R+ α) + (E2 + E3)R+ β

]
≡ D.

Thus the sequence {Aϕn} is uniformly bounded. Now, it can be easily checked that

(Aϕn)∆(t) = −a(t)(Aϕn)σ(t)− a(t)Qσ
(
t, ϕ(t− g(t))

)
+G

(
t, ϕ(t), ϕ(t− g(t))

)
.

Consequently,

|(Aϕn)∆(t)| ≤ Dρ+ ρ(E1R+ α) + (E2 + E3)R+ β

for all n. That is ‖(Aϕn)∆‖ ≤ F , for some positive constant F . Thus the sequence
{Aϕn} is uniformly bounded and equi-continuous. The Arzelà-Ascoli theorem im-
plies that there is a subsequence {Aϕnk

} which converges uniformly to a continuous
T -periodic function ϕ∗. Thus A is compact. �

Lemma 3.4. Let B be defined by (3.7) and

E1 ≤ ζ < 1. (3.11)

Then B : PT → PT is a contraction.

Proof. Trivially, B : PT → PT . For ϕ,ψ ∈ PT , we have

‖Bϕ−Bψ‖ = sup
t∈[0,T ]

|Bϕ(t)−Bψ(t)|

≤ E1 sup
t∈[0,T ]

|ϕ(t− g(t))− ψ(t− g(t))|

≤ ζ‖ϕ− ψ‖.

Hence B defines a contraction mapping with contraction constant ζ. �
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Theorem 3.5. Suppose the hypothesis of Lemma 3.2 hold. Suppose (3.1)–(3.4)
hold. Let α = supt∈[0,T ] |Q(t, 0)| and β = supt∈[0,T ] |G(t, 0, 0)|. Let J be a positive
constant satisfying the inequality

α+ E1J + ηTγ
[
ρ (E1J + α) + (E2 + E3)J + β

]
≤ J. (3.12)

Let M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. Then (1.1) has a solution in M .

Proof. Define M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. By Lemma 3.3, A is continuous and
AM is contained in a compact set. Also, from Lemma 3.4, the mapping B is a
contraction and it is clear that B : PT → PT . Next, we show that if ϕ,ψ ∈ M, we
have ‖Aϕ+Bψ‖ ≤ J . Let ϕ,ψ ∈ M with ‖ϕ‖, ‖ψ‖ ≤ J . Then

‖Aϕ+Bψ‖

≤ E1‖ψ‖+ α+ η γ

∫ T

0

[
|a(u)|(α+ E1‖ϕ‖) + E2‖ϕ‖+ E3‖ϕ‖+ β

]
∆u

≤ α+ E1J + ηTγ
[
ρ(E1J + α) + (E2 + E3)J + β

]
≤ J.

We now see that all the conditions of Krasnosel’skĭı’s theorem are satisfied. Thus
there exists a fixed point z in M such that z = Az+Bz. By Lemma 3.2, this fixed
point is a solution of (1.1). Hence (1.1) has a T -periodic solution. �

Theorem 3.6. Suppose (3.1)–(3.4) hold. If

E1 + η γ T (ρ E1 + E2 + E3) < 1,

then (1.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (3.6). For ϕ,ψ ∈ PT , we have

‖Hϕ−Hψ‖ ≤
(
E1 + η γ T (ρ E1 + E2 + E3)

)
‖ϕ− ψ‖.

This completes the proof by invoking the contraction mapping principle. �

It is worth noting that Theorems 3.5 and 3.6 are not applicable to functions such
as

G
(
t, ϕ(t), ϕ(t− g(t))

)
= f1(t)ϕ2(t) + f2(t)ϕ2(t− g(t)),

where, f1(t), f2(t) and g(t) > 0 are continuous and periodic on some applicable
time scale. To accommodate such functions, we state the following corollary, in
which the functions G and Q are required to satisfy local Lipschitz conditions. We
note that conditions (3.2) and (3.4) require that the functions G and Q be globally
Lipschitz.

Corollary 3.7. Suppose (3.1)–(3.4) hold and let α and β be the constants defined
in Theorem 3.5. Let J be a positive constant and define M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}.
Suppose there are positive constants E∗

1 , E
∗
2 and E∗

3 so that for x, y, z and w ∈ M
we have

|Q(t, x)−Q(t, y)| ≤ E∗
1‖x− y‖,

|G(t, x, y)−G(t, z, w)| ≤ E∗
2‖x− z‖+ E∗

3‖y − w‖,

and
α+ E∗

1J + ηTγ
[
ρ (E∗

1J + α) + (E∗
2 + E∗

3 )J + β
]
≤ J. (3.13)
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Then (1.1) has a solution in M. If in addition,

E∗
1 + η γ T (ρ E∗

1 + E∗
2 + E∗

3 ) < 1,

then the solution in M is unique.

Proof. Let M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. Let the mapping H be given by (3.6). Then
the results follow immediately from Theorem 3.5 and Theorem 3.6. �

Now we give an example.

Example 3.8. Let T be a periodic time scale. For small positive ε1 and ε2, we
consider the perturbed van der Pol equation

x∆ = −2xσ(t) +
(
ε1b(t)x2(t− g(t))

)∆

+ ε2

(
c(t) + x2(t)

)
, (3.14)

where

b(t+ T ) = b(t),
(
id− g

)
(t+ T ) =

(
id− g

)
(t), and c(t+ T ) = c(t). (3.15)

Also, we assume that the functions b, c and g are continuous with id − g : T → T
strictly increasing. So we have

a(t) = 2, Q(t, x(t− g(t))) = ε1 b(t)x2(t− g(t))

and

G(t, x(t), x(t− g(t))) = ε2

(
c(t) + x2(t)

)
.

Define M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}, where J is a positive constant. Then for ϕ,ψ ∈ M
we have

η =
(
1− e	2(t, t− T )

)−1

, ρ = 3, γ ≤ 1.

Let

ι = sup
t∈[0,T ]

|b(t)|, κ = sup
t∈[0,T ]

|c(t)|.

Then

α = 0, β = ε2κ, E∗
1 = ε1ιJ, E∗

3 = 0, E∗
2 = ε2J.

Thus, inequality (3.13) becomes

ε1ιJ
2 + ηT

[
3ε1J2 + ε2J

2 + ε2κ
]
≤ J

which is satisfied for small ε1 and ε2. Hence, (3.14) has a T -periodic solution, by
Corollary 3.7. Moreover, if

ε1ιJ + ηγT
[
3ε1ιJ + ε2J

]
< 1

is satisfied for small ε1 and ε2, then (3.14) has a unique T -periodic solution.
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4. Stability

Lyapunov functions and functionals have been successfully used to obtain bound-
edness, stability and the existence of periodic solutions of differential equations,
differential equations with functional delays and functional differential equations.
When studying differential equations with functional delays using Lyapunov func-
tionals, many difficulties arise if the delay is unbounded or if the differential equation
in question has unbounded terms. In [7], the second author studied, via fixed point
theory, the asymptotic stability of the zero solution of the scalar neutral differential
equation

x′(t) = −a(t)x(t) + c(t)x′(t− g(t)) + q
(
t, x(t), x(t− g(t)

)
, (4.1)

where, a(t), b(t), g(t) and q are continuous in their respective arguments. It is clear
that (1.1) is more general than (4.1).

This section is mainly concerned with the asymptotic stability of the zero solution
of (1.1). We assume that the functions Q and G are continuous, as before. Also,
we assume that g(t) is continuous and g(t) ≥ g∗ > 0, for all t ∈ T such that t ≥ t0
for some t0 ∈ T and that Q(t, 0) = G(t, 0, 0) = 0 and Q and G obey the Lipschitz
conditions (3.3) and (3.4). The techniques used in this section are adapted from
the paper [7].

As before, we assume a time scale, T, that is unbounded above and below and
that 0 ∈ T. Also, we assume that g : T → R and that id − g : T → T is strictly
increasing.

To arrive at the correct mapping, we rewrite (1.1) as in the proof of Lemma 3.2,
multiply both sides by ea(t, 0) and then integrate from 0 to t to obtain

x(t) = Q(t, x(t− g(t))) +
[
x(0)−Q

(
0, x(−g(0))

)]
e	a(0, t)

+
∫ t

0

[
− a(u)Qσ

(
u, x(u− g(u))

)
+G

(
u, x(u), x(u− g(u))

)]
e	a(t, u) ∆u.

(4.2)
Thus, we see that x is a solution of (1.1) if and only if it satisfies (4.2).

Let ψ : (−∞, 0]T → R be a given ∆-differentiable bounded initial function. We
say x(t) := x(t, 0, ψ) is a solution of (1.1) if x(t) = ψ(t) for t ≤ 0 and satisfies (1.1)
for t ≥ 0. We say the zero solution of (1.1) is stable at t0 if for each ε > 0, there is
a δ = δ(ε) > 0 such that

[
ψ : (−∞, t0]T → R with ‖ψ‖ < δ

]
implies |x(t, t0, ψ)| < ε.

Let Crd = Crd(T,R) be the space of all rd-continuous functions from T → R and
define the set S by

S = {ϕ ∈ Crd : ϕ(t) = ψ(t) if t ≤ 0, ϕ(t) → 0 as t→∞, and ϕ is bounded} .
Then,

(
S, ‖ · ‖

)
is a complete metric space where, ‖ · ‖ is the supremum norm. For

the next theorem we impose the following conditions.

e	a(t, 0) → 0, as t→∞, (4.3)

there is an α > 0 such that

E1 +
∫ t

0

[
|a(u)|E1 + E2 + E3

]
e	a(t, u) ∆u ≤ α < 1, t ≥ 0, (4.4)

t− g(t) →∞, as t→∞, (4.5)

Q(t, 0) → 0, as t→∞. (4.6)
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Theorem 4.1. If (3.3)–(3.4) and (4.3)–(4.6) hold, then every solution x(t, 0, ψ)
of (1.1) with small continuous initial function ψ(t), is bounded and goes to zero as
t→∞. Moreover, the zero solution is stable at t0 = 0.

Proof. Define the mapping P : S → S by(
Pϕ

)
(t) = ψ(t) if t ≤ 0

and (
Pϕ

)
(t) = Q(t, ϕ(t− g(t))) +

(
ψ(0)−Q(0, ψ(−g(0)))

)
e	a(t, 0)

+
∫ t

0

[
− a(u)Qσ(u, ϕ(u− g(u)))

+G(u, ϕ(u), ϕ(u− g(u)))
]
e	a(t, u)∆u, if t ≥ 0.

It is clear that for ϕ ∈ S, Pϕ is continuous. Let ϕ ∈ S with ‖ϕ‖ ≤ K, for some
positive constant K. Let ψ(t) be a small given continuous initial function with
‖ψ‖ < δ, δ > 0. Then,

‖Pϕ‖ ≤ E1K +
∣∣∣(ψ(0)−Q

(
0, ψ(−g(0))

))∣∣∣e	a(t, 0)

+
∫ t

0

[
|a(u)|E1 + E2 + E3

]
e	a(t, u) ∆u K

≤
(
1 + E1

)
δ + E1K +

∫ t

0

[
|a(u)|E1 + E2 + E3

]
e	a(t, u) ∆u K

≤
(
1 + E1

)
δ + αK,

(4.7)

which implies that, ‖Pϕ‖ ≤ K, for the right δ. Thus, (4.7) implies that (Pϕ)(t)
is bounded. Next we show that

(
Pϕ

)
(t) → 0 as t → ∞. The second term on the

right side of
(
Pϕ

)
(t) tends to zero, by condition (4.3). Also, the first term on the

right side tends to zero, because of (4.5), (4.6) and the fact that ϕ ∈ S. It is left
to show that the integral term goes to zero as t→∞.

Let ε > 0 be given and ϕ ∈ S with ‖ϕ‖ ≤ K, K > 0. Then, there exists a t1 > 0
so that for t > t1, |ϕ(t − g(t))| < ε. Due to condition (4.3), there exists a t2 > t1
such that for t > t2 implies that e	a(t, t1) < ε

αK .
Thus for t > t2, we have∣∣∣ ∫ t

0

[
− a(u)Qσ

(
u, ϕ(u− g(u))

)
+G

(
u, ϕ(u), ϕ(u− g(u))

)]
e	a(t, u) ∆u

∣∣∣
≤ K

∫ t1

0

[
|a(u)|E1 + E2 + E3

]
e	a(t, u) ∆u

+ ε

∫ t

t1

[
|a(u)|E1 + E2 + E3

]
e	a(t, u) ∆u

≤ Ke	a(t, t1)
∫ t1

0

[
|a(u)|E1 + E2 + E3

]
e	a(t1, u) ∆u+ αε

≤ αKe	a(t, t1) + αε

≤ ε+ αε.
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Hence,
(
Pϕ

)
(t) → 0 as t → ∞. It remains to show that P is a contraction under

the supremum norm. Let ζ, η ∈ S. Then∣∣∣(Pζ)(t)− (Pη)(t)
∣∣∣ ≤ {

E1 +
∫ t

0

[
|a(u)|E1 + E2 + E3

]
e	a(t, u)∆u

}
‖ζ − η‖

≤ α‖ζ − η‖.
Thus, by the contraction mapping principle, P has a unique fixed point in S which
solves (1.1), is bounded and tends to zero as t tends to infinity. The stability of
the zero solution at t0 = 0 follows from the above work by simply replacing K by
ε. This completes the proof. �

Example 4.2. Let

T = −2Z ∪ 2Z ∪ {0} = {. . . ,−2,−1,−1
2
, . . . , 0, . . . ,

1
2
, 1, 2, . . . }.

and let ψ be a continuous initial function, ψ : −2Z∪{0} → R with ‖ψ‖ ≤ δ for small
δ > 0. For small ε1 and ε2, we consider the nonlinear neutral dynamic equation

x∆(t) = −2xσ(t) + ε1
[
x2(t− (t/2))

]∆ + ε2
(
x2(t) + x2(t− (t/2))

)
. (4.8)

The function g is given by g(t) = t
2 and satisfies g : T → R and id − g : T → T is

strictly increasing.
Suppose

0 < 4(2ε1 + ε2)δ(1 + ε1δ) < 1. (4.9)
Let S be defined by

S =
{
ϕ : T → R| ϕ(t) = ψ(t) if t ≤ 0, ϕ(t) → 0 as t→∞, ϕ ∈ C and ‖ϕ‖ ≤ K

}
,

for some positive constant K satisfying the inequality

1−
√

1− 4(2ε1 + ε2)δ(1 + ε1 δ)
2(2ε1 + ε2)

< K <
1

2(2ε1 + ε2)
. (4.10)

Then every solution x(t, 0, ψ) of (4.8) is bounded and goes to 0 as t→∞.

Proof. It is clear from (4.9) that inequality (4.10) is well defined. Define(
Pϕ

)
(t) = ψ(t), t ≤ 0,

and for t ≥ 0,(
Pϕ

)
(t) = ε1ϕ

2(t/2) +
(
ψ(0)− ε1ψ

2(0)
)
e	2(t, 0)

+
∫ t

0

(
− 2ε1ϕ2

(
σ(u)/2

)
+ ε2

(
ϕ2(u) + ϕ2(u/2)

))
e	2(t, u) ∆u .

Let ϕ ∈ S. Then ‖ϕ‖ ≤ K and for t ≥ 0,

|
(
Pϕ

)
(t)| ≤ ε1|ϕ(t/2)|2 +

(
|ψ(0)|+ ε1|ψ(t/2)|2

)
e	2(t, 0)

+
∫ t

0

(
2ε1

∣∣ϕ(
σ(u)/2

)∣∣2 + ε2
(
|ϕ(u)|2 + |ϕ(u/2)|2

))
e	2(t, u) ∆u.

Hence

‖Pϕ‖ ≤ ε1K
2 + (1 + ε1δ)δ + 2(ε1 + ε2)K2

∫ t

0

e	2(t, u) ∆u

≤ (2ε1 + ε2)K2 + δ(1 + ε1δ).
(4.11)
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From (4.11), we see that if,

(2ε1 + ε2)K2 + δ(1 + ε1 δ) ≤ K, (4.12)

then P : S → S. But inequality (4.12) is satisfied for K satisfying (4.10), by noting
that

1
2(2ε1 + ε2)

<
1 +

√
1− 4(2ε1 + ε2)δ(1 + ε1 δ)

2(2ε1 + ε2)
.

Thus, if ϕ ∈ S, then ‖Pϕ‖ ≤ K. It is obvious that conditions (4.3), (4.5) and (4.6)
are satisfied.

We now show that P defines a contraction mapping on the metric space S. Let
ζ, η ∈ S. Then∣∣∣(Pζ)(t)− (Pη)(t)

∣∣∣ ≤ 2ε1K‖ζ − η‖+
(
4ε1K + 4ε2K

) ∫ t

0

e	2(t, u) ∆u ‖ζ − η‖

≤
[
2ε1K + 2K(ε1 + ε2)

]
‖ζ − η‖

= 2(2ε1 + ε2)K‖ζ − η‖.
By condition (4.10), we have ∥∥Pζ − Pη

∥∥ ≤ α‖ζ − η‖,
for some α ∈ (0, 1). By Theorem 4.1, every solution x(·, 0, ψ) of (4.8) with small
continuous initial function ψ : −2Z ∪ {0} → R is in S, is bounded and goes to zero
as t→∞. �
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