Electronic Journal of Differential Equations, Vol. 2007(2007), No. 29, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE Ψ-CONDITIONAL ASYMPTOTIC STABILITY OF THE SOLUTIONS OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

Abstract

We provide sufficient conditions for Ψ-conditional asymptotic stability of the solutions of a nonlinear Volterra integro-differential system.

1. Introduction

The purpose of this paper is to provide sufficient conditions for Ψ-conditional asymptotic stability of the solutions of the nonlinear Volterra integro-differential system

$$
\begin{equation*}
x^{\prime}=A(t) x+\int_{0}^{t} F(t, s, x(s)) d s \tag{1.1}
\end{equation*}
$$

and for the linear system

$$
\begin{equation*}
x^{\prime}=[A(t)+B(t)] x \tag{1.2}
\end{equation*}
$$

as a perturbed systems of

$$
\begin{equation*}
y^{\prime}=A(t) y . \tag{1.3}
\end{equation*}
$$

We investigate conditions on a fundamental matrix $Y(t)$ of the linear equation (1.3) and on the functions $B(t)$ and $F(t, s, x)$ under which the solutions of (1.1), 1.2 or 1.3 are Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. Here, Ψ is a continuous matrix function. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the solutions.

The problem of Ψ - stability for systems of ordinary differential equations has been studied by many authors, as e.g. Akinyele [1, 2, Constantin 44, 5], Hallam [13], Kuben [15], Morchalo [18]. In these papers, the function Ψ is a scalar continuous function (and monotone in [2], nondecreasing in [4]).

In our papers [8, 9, 10], we have proved sufficient conditions for various types of Ψ-stability of the trivial solution of the equations $1.1,1.2$ and 1.3 . In these papers, the function Ψ is a continuous matrix function.

Recent works for stability of solutions of 1.1) have been by Avramescu [3], by Hara, Yoneyama and Itoh [14, by Lakshmikantham and Rama Mohana Rao [16], by Mahfoud [17] and others. Coppel's paper [6, Chapter III, Theorem 12], [7] deal with the instability and conditional asymptotic stability of the solutions

[^0]of a systems of differential equations. Späth's paper [21] and Weyl's paper [22] deal with the conditional stability of solutions of systems of differential equations. In our papers [11, 12], we have proved a necessary and sufficient conditions for Ψ instability and Ψ-conditional stability of the equation 1.3 and sufficient conditions for Ψ-instability and Ψ-conditional stability of trivial solution of the equations 1.1 and 1.2 .

2. Definitions, notation and hypotheses

Let \mathbb{R}^{d} denote the Euclidean d-space. For $x=\left(x_{1}, x_{2}, \ldots x_{d}\right)^{T} \in R^{d}$, let $\|x\|=$ $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\left|x_{d}\right|\right\}$ be the norm of x. For a $d \times d$ matrix $A=\left(a_{i j}\right)$, we define the norm A by $|A|=\sup _{\|x\| \leq 1}\|A x\|$; it is well-known that $|A|=\max _{1 \leq i \leq d} \sum_{j=1}^{d}\left|a_{i j}\right|$.

In the equations (1.1) we assume that $A(t)$ is a continuous $d \times d$ matrix on $\mathbb{R}_{+}=[0, \infty)$ and $F: D \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, D=\left\{(t, s) \in \mathbb{R}^{2}: 0 \leq s \leq t<\infty\right\}$, is a continuous d-vector with respect to all variables.

Let $\Psi_{i}: \mathbb{R}_{+} \rightarrow(0, \infty), i=1,2, \ldots d$, be a continuous functions and

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{d}\right]
$$

A matrix P is said to be a projection matrix if $P^{2}=P$. If P is a projection, then so is $I-P$. Two such projections, whose sum is I and whose product is 0 , are said to be supplementary.

Definition 2.1. The solution $x(t)$ of $\sqrt{1.1}$ is said to be Ψ-stable on \mathbb{R}_{+}, if for every $\varepsilon>0$ and any $t_{0} \geq 0$, there exists a $\delta=\delta\left(\varepsilon, t_{0}\right)>0$ such that any solution $\widetilde{x}(\mathrm{t})$ of 1.1 which satisfies the inequality $\left\|\Psi\left(t_{0}\right)\left(\widetilde{x}\left(t_{0}\right)-x\left(t_{0}\right)\right)\right\|<\delta\left(\varepsilon, t_{0}\right)$ exists and satisfies the inequality $\|\Psi(t)(\widetilde{x}(t)-x(t))\|<\varepsilon$ for all $t \geq t_{0}$.

Otherwise, is said that the solution $\mathrm{x}(\mathrm{t})$ is Ψ-unstable on \mathbb{R}_{+}.
Definition 2.2. A function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ is said to be Ψ-bounded on \mathbb{R}_{+}if $\Psi(t) \varphi(t)$ is bounded on \mathbb{R}_{+}.

Remark 2.3. For $\Psi_{i}=1, i=1,2, \ldots d$, we obtain the notion of classical stability, instability and boundedness, respectively.

Definition 2.4. The solution $x(t)$ of 1.1 is said to be Ψ-conditionally stable on \mathbb{R}_{+}if it is not Ψ-stable on \mathbb{R}_{+}but there exists a sequence $\left(x_{n}(t)\right)$ of solutions of (1.1) defined for all $t \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), \quad \text { uniformly on } R_{+}
$$

If the sequence $x_{n}(t)$ can be chosen so that

$$
\lim _{t \rightarrow \infty} \Psi(t)\left(x_{n}(t)-x(t)\right)=0, \quad \text { for } n=1,2, \ldots
$$

then $x(t)$ is said to be Ψ-conditionally asymptotically stable on R_{+}.
Remark 2.5. (1) It is easy to see that if $|\Psi(t)|$ and $\left|\Psi^{-1}(t)\right|$ are bounded on \mathbb{R}_{+}, then the Ψ-conditional asymptotic stability is equivalent with the classical conditional asymptotic stability.
(2) In the same manner as in classical conditional asymptotic stability, we can speak about Ψ-conditional asymptotic stability of a linear equation. Indeed, let $x(t), y(t)$ be two solutions of the linear equation 1.3. We suppose that $x(t)$ is
Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. Then $y(t)$ is Ψ-unstable on \mathbb{R}_{+}(see [11, Theorem 1]) and

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \Psi(t) y_{n}(t)=\Psi(t) y(t), \quad \text { uniformly on } \mathbb{R}_{+} \\
\lim _{t \rightarrow \infty} \Psi(t)\left(y_{n}(t)-y(t)\right)=0, \quad \text { for } n=1,2, \ldots
\end{gathered}
$$

where $\mathrm{y}_{n}(t)=x_{n}(t)-x(t)+y(t), n \in N$ are solutions of the linear equation (1.3). Thus, all solutions of 1.3 are Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.

3. Ψ-CONDITIONAL ASYMPTOTIC STABILITY OF LINEAR EQUATIONS

In this section we give necessary and sufficient conditions for the Ψ-conditional asymptotic stability of the linear equation 1.3 and sufficient conditions for the Ψ-conditional asymptotic stability of the linear equations 1.3 and (1.2).

Theorem 3.1. The linear equation (1.3) is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}if and only if it has a Ψ-unbounded solution on \mathbb{R}_{+}and a non-trivial solution $y_{0}(t)$ such that $\lim _{t \rightarrow \infty} \Psi(t) y_{0}(t)=0$.
Proof. Let $Y(t)$ be a fundamental matrix for 1.3$)$. Suppose that the linear equation (1.3) is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. From Definition 2.4 and 8 , Theorem 3.1], it follows that $|\Psi(\mathrm{t}) \mathrm{Y}(\mathrm{t})|$ is unbounded on \mathbb{R}_{+}. Thus, the linear equation 1.3 has at least one Ψ-unbounded solution on \mathbb{R}_{+}. In addition, there exists a sequence $\left(y_{n}(t)\right)$ of non-trivial solutions of 1.3 such that $\lim _{n \rightarrow \infty} \Psi(t) y_{n}(t)=0$, uniformly on \mathbb{R}_{+}and $\lim _{t \rightarrow \infty} \Psi(t) y_{n}(t)=0$ for $n=1,2, \ldots$ The proof of the "only if" part is complete.

Suppose, conversely, that (1.3) has at least one Ψ-unbounded solution on \mathbb{R}_{+}and at least one non-trivial solution $y_{0}(t)$ such that $\lim _{t \rightarrow \infty} \Psi(t) y_{0}(t)=0$. It follows that the matrix $\Psi(t) Y(t)$ is unbounded on \mathbb{R}_{+}. Consequently, the linear equation (1.3) is Ψ-unstable on \mathbb{R}_{+}(See [11, Theorem 1]). On the other hand, $\left(\frac{1}{n} y_{0}(t)\right)$ is a sequence of solutions of 1.3 such that $\lim _{n \rightarrow \infty} \frac{1}{n} \Psi(t) y_{0}(t)=0$, uniformly on \mathbb{R}_{+}and $\lim _{t \rightarrow \infty} \frac{1}{n} \Psi(t) y_{0}(t)=0$ for $n \in \mathbb{N}$. Thus, the linear equation (1.3) is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. The proof is complete.

We remark that Theorem 3.1 generalizes a similar result in connection with the classical conditional asymptotic stability in 6].

The conditions for Ψ-conditional asymptotic stability of the linear equation 1.3 can be expressed in terms of a fundamental matrix for (1.3).
Theorem 3.2. Let $Y(t)$ be a fundamental matrix for 1.3). Then, the linear equation (1.3) is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}if and only if there are satisfied two following conditions:
(a) There exists a projection P_{1} such that $\Psi(t) Y(t) P_{1}$ is unbounded on \mathbb{R}_{+};
(b) there exists a projection $P_{2} \neq 0$ such that $\lim _{t \rightarrow \infty} \Psi(t) Y(t) P_{2}=0$.

Proof. First, we shall prove the sufficiency. From the hypoyhesis (a) and 11, Theorem 1], it follows that the linear equation (1.3) is Ψ-unstable on \mathbb{R}_{+}.

Let $y(t)$ be a non-trivial solution on \mathbb{R}_{+}of the linear equation (1.3). Let $\left(\lambda_{n}\right)$ be such that $\lambda_{n} \in \mathbb{R} \backslash\{1\}, \lim _{n \rightarrow \infty} \lambda_{n}=1$ and let $\left(y_{n}\right)$ be defined by

$$
y_{n}(t)=Y(t) P_{2} Y^{-1}(0)\left(\lambda_{n} y(0)\right)+Y(t)\left(I-P_{2}\right) Y^{-1}(0) y(0), t \geq 0
$$

It is easy to see that $y_{n}(t), n \in N$, are solutions of the linear equation 1.3.).

For $n \in N$ and $t \geq 0$, we have

$$
\begin{aligned}
\left\|\Psi(t) y_{n}(t)-\Psi(t) y(t)\right\| & =\left\|\Psi(t) Y(t) P_{2} Y^{-1}(0)\left(\left(\lambda_{n}-1\right) y(0)\right)\right\| \\
& \leq\left|\lambda_{n}-1\left\|\Psi(t) Y(t) P_{2} \mid\right\| Y^{-1}(0) y(0) \|\right.
\end{aligned}
$$

Thus,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \Psi(t) y_{n}(t)=\Psi(t) y(t), \quad \text { uniformly on } \mathbb{R}_{+} \\
\lim _{t \rightarrow \infty} \Psi(t)\left(y_{n}(t)-y(t)\right)=0, \quad \text { for } n=1,2, \ldots
\end{gathered}
$$

It follows that the linear equation 1.3 is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.

Now, we shall prove the necessity. From Ψ-conditional asymptotic stability on \mathbb{R}_{+}of (1.3), it follows that $\Psi(t) Y(t)$ is unbounded on \mathbb{R}_{+}(see [11, Theorem 1].

In addition, there exists a non-trivial solution $y_{0}(t)$ on \mathbb{R}_{+}of (1.3) such that $\lim _{t \rightarrow \infty} \Psi(t) y_{0}(t)=0$. Thus, there exists a constant vector $c \neq 0$ such that $\Psi(t) Y(t) c$ is such that $\lim _{t \rightarrow \infty} \Psi(t) Y(t) c=0$. Let $c_{s}=\|c\|$. Let P_{2} be the null matrix in which the s-th column is replaced with $\|c\|^{-1} c$. Thus, P_{2} is a projection and $\lim _{t \rightarrow \infty} \Psi(t) Y(t) P_{2}=0$.

The proof is now complete.
A sufficient condition for Ψ-conditional asymptotic stability is given by the following theorem.
Theorem 3.3. If there exist two supplementary projections $P_{1}, P_{2}, P_{i} \neq 0$, and a positive constant K such that the fundamental matrix $Y(t)$ of the equation (1.3) satisfies the condition

$$
\int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| d s+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K
$$

for all $t \geq 0$, then, the linear equation 1.3 is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.

The proof of the above theorem follows from [11, Theorem 2 and Lemmas 1, 2].
Theorem 3.4. Suppose that:
(1) There exist supplementary projections $P_{1}, P_{2}, P_{i} \neq 0$, and a constant $K>0$ such that the fundamental matrix $Y(t)$ of 1.3 satisfies the conditions

$$
\begin{aligned}
& \left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K, \quad \text { for } 0 \leq s \leq t \\
& \left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K, \quad \text { for } 0 \leq t \leq s
\end{aligned}
$$

(2) $\lim _{t \rightarrow \infty} \Psi(t) Y(t) P_{1}=0$.
(3) $B(t)$ is a $d \times d$ continuous matrix function on \mathbb{R}_{+}such that

$$
\int_{0}^{\infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right| d t \quad \text { is convergent. }
$$

(4) The linear equations (1.2) and (1.3) are Ψ-unstable on \mathbb{R}_{+}.

Then (1.2) is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.
Proof. We choose $\mathrm{t}_{0} \geq 0$ sufficiently large so that

$$
q=K \int_{t_{0}}^{\infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right| d t<1
$$

We put

$$
\left.S=\left\{x: t_{0}, \infty\right) \rightarrow \mathbb{R}^{d}: x \text { is continuous and } \Psi \text {-bounded on }\left[t_{0}, \infty\right)\right\}
$$

Define on the set S a norm by

$$
\||x|\|=\sup _{t \geq t_{0}}\|\Psi(t) x(t)\|
$$

It is well known that $(S,\| \| \cdot\| \|)$ is a Banach real space.
For $x \in S$, we define
$(T x)(t)=\int_{t_{0}}^{t} Y(t) P_{1} Y^{-1}(s) B(s) x(s) d s-\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) B(s) x(s) d s, \quad t \geq t_{0}$.
It is easy to see that $(T x)(t)$ exists and is continuous for $t \geq t_{0}$ (see the Proof of [12, Theorem 3]). We have

$$
\begin{aligned}
\|\Psi(t)(T x)(t)\| & \leq K \int_{t_{0}}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right|\|\Psi(s) x(s)\| d s \\
& \leq q \sup _{t \geq t_{0}}\|\Psi(t) x(t)\|=q\| \| x \| \mid, \quad \text { for } t \geq t_{0}
\end{aligned}
$$

This shows that $T S \subseteq S$.
On the other hand, T is linear and

$$
\left|\left\|T x_{1}-T x_{2}\right\|\|=\|\left\|T\left(x_{1}-x_{2}\right)\right\|\right| \leq q\| \| x_{1}-x_{2} \mid \| .
$$

Thus, T is a contraction on the Banach space $(S,\| \| \cdot\| \|)$.
Now, for every fixed Ψ - bounded solution y of (1.3) we define an operator S_{y} : $S \rightarrow S$, by the relation

$$
\begin{equation*}
S_{y} x(t)=y(t)+T x(t), \quad t \in\left[t_{0}, \infty\right) \tag{3.1}
\end{equation*}
$$

It follows by the Banach contraction principle that S_{y} has a unique fixed point in S. An easy computation shows that the fixed point $x(t)=S_{y} x(t), t \in\left[t_{0}, \infty\right)$, is a Ψ-bounded solution of 1.2 .

Let S_{2}, S_{3} be the spaces of Ψ-bounded solutions of equations 1.2 and 1.3 respectively. We define the mapping $C: S_{3} \rightarrow S_{2}$ in the following way: For every $y \in S_{3}, C y$ will be the fixed point of the contraction S_{y}.

Now, from $x=C y$ and $x_{0}=C y_{0}$, we have that $x=y+T x, x_{0}=y_{0}+T x_{0}$ respectively. We obtain

$$
\begin{aligned}
\left\|\mid x-x_{0}\right\| \| & \leq\| \| y-y_{0}\left\|\left|+\left\|| | x-T x_{0}\right\| \|\right.\right. \\
& \leq\left\|\left|y-y_{0}\||+q|\| x-x_{0}\| \|\right.\right.
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|\left\|x-x_{0}\left|\left\|\left|\leq(1-q)^{-1}\right|\right\| y-y_{0} \|\right|\right.\right. \tag{3.2}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left\|\left|\left|y-y_{0}\right| \|\right.\right. & =\left|\left\|x-T x-x_{0}+T x_{0} \mid\right\|\right. \\
& \leq\left\|\left|x-x_{0}\left\|\left|+\left|\left|T x-T x_{0} \|\right|\right.\right.\right.\right.\right. \\
& \leq(1+q)\left\|\left|x-x_{0}\right|\right\| .
\end{aligned}
$$

Thus, C is homeomorfism.
Now, we prove that if $x, y \in S$ are Ψ-bounded solutions of 1.2 and 1.3 respectively such that $x=C y$, then

$$
\lim _{t \rightarrow \infty}\|\Psi(t)(x(t)-y(t))\|=0
$$

Indeed, for a given $\varepsilon>0$, we choose $t_{1} \geq t_{0}$ so that

$$
K \sup _{t \geq t_{0}}\|\Psi(t) x(t)\| \int_{t_{1}}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s<\frac{\varepsilon}{3}
$$

Thus, for $t \geq t_{1}$, we have

$$
\begin{aligned}
&\|\Psi(t)(x(t)-y(t))\| \\
&=\|\Psi(t)(T x)(t)\| \\
& \leq \int_{t_{0}}^{t}\left\|\Psi(t) Y(t) P_{1} Y^{-1}(s) B(s) x(s)\right\| d s \\
&+\int_{t}^{\infty}\left\|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) B(s) \Psi^{-1}(s) \Psi(s) x(s)\right\| d s \\
& \leq\left|\Psi(t) Y(t) P_{1}\right| \int_{t_{0}}^{t_{1}}\left\|Y^{-1}(s) B(s) x(s)\right\| d s \\
&+K \sup _{t \geq t_{0}}\|\Psi(t) x(t)\| \int_{t_{1}}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s \\
&+K \sup _{t \geq t_{0}}^{\infty}\|\Psi(t) x(t)\| \int_{t}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s \\
&<\left|\Psi(t) Y(t) P_{1}\right| \int_{t_{0}}^{t_{1}}\left\|Y^{-1}(s) B(s) x(s)\right\| d s+2 \frac{\varepsilon}{3}
\end{aligned}
$$

Thus and assumption 3,

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|\Psi(t)(x(t)-y(t))\|=0 \tag{3.3}
\end{equation*}
$$

¿From the hypotheses, [11, Theorem1 and 2] it follows that the linear equation 1.3 is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.

Let $x(t)$ be a Ψ-bounded solution on \mathbb{R}_{+}of $\sqrt{1.2}$. ¿From the assumption 4 , this solution is Ψ-unstable on \mathbb{R}_{+}. Let $y=C^{-1} x$. From Definition 2.4, it follows that there exists a sequence $\left(y_{n}\right)$ of solutions of 1.3 defined on \mathbb{R}_{+}such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \Psi(t) y_{n}(t)=\Psi(t) y(t), \quad \text { uniformly on } \mathbb{R}_{+} \\
& \lim _{t \rightarrow \infty} \Psi(t)\left(y_{n}(t)-y(t)\right)=0, \quad \text { for } n=1,2, \ldots
\end{aligned}
$$

Let $x_{n}=C y_{n}$. From (3.2) it follows that the sequence $\left(x_{n}\right)$ of solutions of 1.2) defined on $\left[t_{0}, \infty\right.$) (in fact, defined on \mathbb{R}_{+}) satisfies the condition

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), \quad \text { uniformly on }\left[t_{0}, \infty\right)
$$

Clearly,

$$
\lim _{n \rightarrow \infty} x_{n}\left(t_{0}\right)=x\left(t_{0}\right)
$$

By the Dependence on initial conditions Theorem (see [6, Chapter I, Theorem 3]), it follows that

$$
\lim _{n \rightarrow \infty} x_{n}(t)=x(t), \quad \text { uniformly on }\left[0, t_{0}\right]
$$

Hence,

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), \quad \text { uniformly on }\left[0, t_{0}\right]
$$

Thus,

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), \quad \text { uniformly on } \mathbb{R}_{+}
$$

This shows that the linear equation $\sqrt{1.2}$ is Ψ-conditionally stable on \mathbb{R}_{+}. From (3.3) and

$$
\Psi(t)\left(x_{n}(t)-x(t)\right)=\Psi(t)\left(x_{n}(t)-y_{n}(t)\right)+\Psi(t)\left(y_{n}(t)-y(t)\right)+\Psi(t)(y(t)-x(t))
$$

it follows that

$$
\lim _{t \rightarrow \infty} \Psi(t)\left(x_{n}(t)-x(t)\right)=0, \quad \text { for } n=1,2, \ldots
$$

This shows that the linear equation $\sqrt{1.2}$ is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. The proof is complete.

Theorem 3.5. Suppose that:
(1) There exist two supplementary projections $P_{1}, P_{2}, P_{i} \neq 0$, and a positive constant K such that the fundamental matrix $Y(t)$ of the equation 1.3) satisfies the condition

$$
\int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| d s+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K
$$

for all $t \geq 0$.
(2) $B(t)$ is a $d \times d$ continuous matrix function on \mathbb{R}_{+}such that

$$
\lim _{t \rightarrow \infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right|=0
$$

Then, the linear equation 1.2 is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.
The proof of the above theorem is similar to the proof of Theorem 3.4.
Remark 3.6. The first condition of the above Theorems can certainly be satisfied if $\mathrm{A}(\mathrm{t})=\mathrm{A}$ is a $\mathrm{d} \times \mathrm{d}$ real constant matrix which has characteristic roots with different real parts. In this case, e.g., there exists an interval $(\alpha, \beta) \subset \mathbb{R}$ such that for $\lambda \in(\alpha, \beta), \Psi(t)=e^{-\lambda t} I_{d}$ and $Y(t)$ can satisfy the first hypotheses of Theorems.

We have a similar situation if $A(t)$ is a $d \times d$ real continuous periodic matrix (See [12, Examples 1, 2]).

Thus, the above results can be considered as a generalization of a well-known result in conection with the classical conditional asymptotic stability.

Remark 3.7. If in the above Theorems, the linear equation $\sqrt{1.3}$ is only Ψ conditionally asymptotically stable on \mathbb{R}_{+}, then the perturbed equation $\sqrt[1.2]{ }$ can not be Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.

This is shown by the next example transformed after an equation due to Perron [19.

Example 3.8. Let $a, b \in \mathbb{R}$ such that $0<4 a<1, b \neq 0$ and

$$
A(t)=\left(\begin{array}{cc}
\sin \ln (t+1)+\cos \ln (t+1)-4 a & 0 \\
0 & -2 a
\end{array}\right)
$$

Then, a fundamental matrix for the homogeneous equation (1.3) is

$$
Y(t)=\left(\begin{array}{cc}
e^{(t+1)[\sin \ln (t+1)-4 a]} & 0 \\
0 & e^{-2 a(t+1)}
\end{array}\right)
$$

Let

$$
\Psi(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{a(t+1)}
\end{array}\right)
$$

We have

$$
\Psi(t) Y(t)=\left(\begin{array}{cc}
e^{(t+1)[\sin \ln (t+1)-4 a]} & 0 \\
0 & e^{-a(t+1)}
\end{array}\right)
$$

Let $t_{n}^{\prime}=e^{\left(2 n+\frac{1}{2}\right) \pi}-1$ for $n=1,2 \ldots$ Since $\lim _{n \rightarrow \infty}\left|\Psi\left(t_{n}^{\prime}\right) Y\left(t_{n}^{\prime}\right)\right|=\infty$, it follows that the linear equation $\sqrt{1.3}$ is Ψ-unstable on \mathbb{R}_{+}(see [11, Theorem 1])

From Theorem 3.1 it follows that the linear equation 1.3 is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. If we take

$$
B(t)=\left(\begin{array}{cc}
0 & b e^{-2 a(t+1)} \\
0 & 0
\end{array}\right)
$$

then, a fundamental matrix for the perturbed equation $\sqrt{1.2}$ is

$$
\tilde{Y}(t)=\left(\begin{array}{cc}
b e^{(t+1)[\sin \ln (t+1)-4 a]} \int_{1}^{t+1} e^{-s \sin \ln s} d s & e^{(t+1)[\sin \ln (t+1)-4 a]} \\
e^{-2 a(t+1)} & 0
\end{array}\right)
$$

We have

$$
\Psi(t) \widetilde{Y}(t)=\left(\begin{array}{cc}
b e^{(t+1)[\sin \ln (t+1)-4 a]} \int_{1}^{t+1} e^{-s \sin \ln s} d s & e^{(t+1)[\sin \ln (t+1)-4 a]} \\
e^{-a(t+1)} & 0
\end{array}\right)
$$

Since $\lim _{n \rightarrow \infty}\left|\Psi\left(t_{n}^{\prime}\right) \tilde{Y}\left(t_{n}^{\prime}\right)\right|=\infty$, it follows that the perturbed equation 1.2 is Ψ-unstable on \mathbb{R}_{+}(see [11, Theorem 1]).

Let $\alpha \in\left(0, \frac{\pi}{2}\right)$. Let $\mathrm{t}_{n}=e^{\left(2 n-\frac{1}{2}\right) \pi}$ for $n=1,2, \ldots$. For $t_{n} \leq s \leq t_{n} e^{\alpha}$ we have $s \cos \alpha \leq-s \sin \ln s \leq s$ and hence

$$
\begin{aligned}
e^{t_{n} e^{\pi}\left(\sin \ln t_{n} e^{\pi}-4 a\right)} \int_{1}^{t_{n} e^{\pi}} e^{-s \sin \ln s} d s & >e^{t_{n} e^{\pi}\left(\sin \ln t_{n} e^{\pi}-4 a\right)} \int_{t_{n}}^{t_{n} e^{\alpha}} e^{-s \sin \ln s} d s \\
& \geq e^{t_{n} e^{\pi}(1-4 a)} \int_{t_{n}}^{t_{n} e^{\alpha}} e^{s \cos \alpha} d s \\
& =e^{t_{n}\left[(1-4 a) e^{\pi}+\cos \alpha\right]} \frac{e^{t_{n}\left(e^{\alpha}-1\right) \cos \alpha}-1}{\cos \alpha} \rightarrow \infty
\end{aligned}
$$

Thus, the columns of $\Psi(t) \tilde{Y}(t)$ are unbounded on \mathbb{R}_{+}. It follows that the perturbed equation 1.2 is not Ψ-conditionally asymptotically stable on \mathbb{R}_{+}(see Theorem 3.1.

Finally, we have $\mid \Psi(t) B(t) \Psi^{-1}(t)=b e^{-3 a(t+1)}$. Thus, $B(t)$ satisfies the conditions:

$$
\lim _{t \rightarrow \infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right|=0
$$

and $\int_{0}^{\infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right| d t$ can be a sufficiently small number.
4. Ψ-CONDITIONAL ASYMPTOTIC STABILITY OF THE NONLINEAR EQUATION 1.1

In this section we give sufficient conditions for the Ψ-conditional asymptotic stability of Ψ-bounded solutions of the nonlinear Volterra integro-differential system (1.1).

Theorem 4.1. Suppose that:
(1) There exist supplementary projections $P_{1}, P_{2}, P_{i} \neq 0$ and a constant $K>0$ such that the fundamental matrix $Y(t)$ of (1.3) satisfies the condition

$$
\int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| d s+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K
$$

for all $t \geq 0$.
(2) The function $F(t, s, x)$ satisfies the inequality

$$
\|\Psi(t)(F(t, s, x(s))-F(t, s, y(s)))\| \leq f(t, s)\|\Psi(s)(x(s)-y(s))\|
$$

for $0 \leq s \leq t<\infty$ and for all continuous and Ψ-bounded functions x, y : $\mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$, where $f(t, s)$ is a continuous nonnegative function on D such that

$$
F(t, s, 0)=0, \quad \lim _{t \rightarrow \infty} \int_{0}^{t} f(t, s) d s=0, \quad \sup _{t \geq 0} \int_{0}^{t} f(t, s) d s<K^{-1}
$$

Then, all Ψ-bounded solutions of (1.1) are Ψ-conditionally asymptotically stable on \mathbb{R}_{+}.

Proof. Let

$$
q=K \sup _{t \geq 0} \int_{0}^{t} f(t, s) d s<1
$$

We put

$$
S=\left\{x: \mathbb{R}_{+} \rightarrow R^{d}: x \text { is continuous and } \Psi \text {-bounded on } \mathbb{R}_{+}\right\}
$$

Define on the set S a norm by

$$
\|\|x\|\|=\sup _{t \geq 0}\|\Psi(t) x(t)\|
$$

It is well-known that $(S,\| \| \cdot \| \mid)$ is a Banach space. For $x \in S$, we define

$$
\begin{aligned}
(T x)(t)= & \int_{0}^{t} Y(t) P_{1} Y^{-1}(s) \int_{o}^{s} F(s, u, x(u)) d u d s \\
& -\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) \int_{o}^{s} F(s, u, x(u)) d u d s, t \geq 0
\end{aligned}
$$

For $0 \leq t \leq v$, we have

$$
\begin{aligned}
& \left\|\Psi(t) \int_{t}^{v} Y(t) P_{2} Y^{-1}(s) \int_{o}^{s} F(s, u, x(u)) d u d s\right\| \\
& =\left\|\int_{t}^{v} \Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s) \int_{o}^{s} \Psi(s) F(s, u, x(u)) d u d s\right\| \\
& \leq \int_{t}^{v}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s) F(s, u, x(u))\| d u d s \\
& \leq \int_{t}^{v}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s \\
& \leq \sup _{u \geq 0}\|\Psi(u) x(u)\| \int_{t}^{v}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} f(s, u) d u d s \\
& \leq q K^{-1} \sup _{u \geq 0}\|\Psi(u) x(u)\| \int_{t}^{v}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| d s
\end{aligned}
$$

¿From assumption 1, it follows that the integral

$$
\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) \int_{o}^{s} F(s, u, x(u)) d u d s
$$

is convergent. Thus, $(T x)(t)$ exists and is continuous for $t \geq 0$. For $x \in S$ and $t \geq 0$, we have

$$
\begin{aligned}
\|\Psi(t)(T x)(t)\|= & \| \int_{0}^{t} \Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s) \int_{o}^{s} \Psi(s) F(s, u, x(u)) d u d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s) \int_{o}^{s} \Psi(s) F(s, u, x(u)) d u d s \| \\
\leq & \int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s) F(s, u, x(u))\| d u d s \\
& +\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s) F(s, u, x(u))\| d u d s \\
\leq & \int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s \\
& +\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s \\
\leq & q \sup _{u \geq 0}\|\Psi(u) x(u)\| .
\end{aligned}
$$

This shows that $T S \subseteq S$. On the other hand, for $x, y \in S$ and $t \geq 0$, we have

$$
\begin{aligned}
&\|\Psi(t)((T x)(t)-(T y)(t))\| \\
&= \| \int_{0}^{t} \Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s) \int_{o}^{s} \Psi(s)(F(s, u, x(u))-F(s, u, y(u))) d u d s \\
&-\int_{t}^{\infty} \Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s) \int_{o}^{s} \Psi(s)(F(s, u, x(u))-F(s, u, y(u))) d u d s \| \\
& \leq \int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s)(F(s, u, x(u))-F(s, u, y(u)))\| d u d s \\
&+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s)(F(s, u, x(u))-F(s, u, y(u)))\| d u d s \\
& \leq \int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} f(s, u)\|\Psi(u)(x(u)-y(u))\| d u d s \\
&+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} f(s, u)\|\Psi(u)(x(u)-y(u))\| d u d s \\
& \leq q \sup _{u \geq 0}\|\Psi(u)(x(u)-y(u))\| .
\end{aligned}
$$

It follows that

$$
\sup _{t \geq 0}\|\Psi(t)((T x)(t)-(T y)(t))\| \leq q \sup _{t \geq 0}\|\Psi(t)(x(t)-y(t))\|
$$

Thus, we have

$$
\|\mid T x-T y\|\|\leq q\|\|x-y\| \| .
$$

This shows that T is a contraction of the Banach space $(S,\| \| \cdot\| \|)$.
As in the Proof of Theorem 3.4, it follows by the Banach contraction principle that for any function $y \in S$, the integral equation

$$
\begin{equation*}
x=y+T x \tag{4.1}
\end{equation*}
$$

has a unique solution $x \in S$. Furthermore, by the definition of $T, x(t)-y(t)$ is differentiable and

$$
(x(t)-y(t))^{\prime}=A(t)(x(t)-y(t))+\int_{0}^{t} F(t, s, x(s)) d s, t \geq 0
$$

Hence, if $\mathrm{y}(\mathrm{t})$ is a Ψ-bounded solution of $1.3, x(t)$ is a Ψ-bounded solution of (1.1). Conversely, if $x(t)$ is a Ψ-bounded solution of (1.1), the function $y(t)$ defined by (4.1) is a Ψ-bounded solution of (1.3).

Thus, 4.1 establishes a one-to-one correspondence C between the Ψ-bounded solutions of (1.1) and 1.3): $x=C y$.

Now, we consider the analogous equation

$$
x_{0}=y_{0}+T x_{0}
$$

We get

$$
\begin{equation*}
(1-q)\left\|\left|x-x_{0}\right|\right\|\left|\leq\left\|\left|y-y_{0}\right|\right\| .\right. \tag{4.2}
\end{equation*}
$$

Now, we prove that if $x, y \in S$ are Ψ-bounded solutions of 1.1 and 1.3 respectively such that $x=C y$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|\Psi(t)(x(t)-y(t))\|=0 \tag{4.3}
\end{equation*}
$$

For a given $\varepsilon>0$, we can choose $t_{1} \geq 0$ such that

$$
K\left|\|x \mid\| \int_{0}^{t} f(t, s) d s<\frac{\varepsilon}{2}\right.
$$

for $t \geq t_{1}$. Moreover, since $\lim _{t \rightarrow \infty}\left|\Psi(t) Y(t) P_{1}\right|=0$ (see [11, Lemma 1]), there exists a number $t_{2} \geq t_{1}$ such that

$$
q K^{-1}\left|\Psi(t) Y(t) P_{1}\right|| ||x| \| \int_{0}^{t_{1}}\left|P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| d s<\frac{\varepsilon}{2}
$$

for $t \geq t_{2}$. We have, for $t \geq t_{2}$,

$$
\begin{aligned}
&\|\Psi(t)(x(t)-y(t))\| \\
& \leq \int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s) F(s, u, x(u))\| d u d s+ \\
&+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s}\|\Psi(s) F(s, u, x(u))\| d u d s \\
& \leq \int_{0}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s \\
&+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \int_{o}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s \\
& \leq q K^{-1}\left|\Psi(t) Y(t) P_{1}\right|\left\|| | x\left|\| \int_{0}^{t_{1}}\right| P_{1} Y^{-1}(s) \Psi^{-1}(s) \mid d s\right. \\
&+\left|\left\|x\left|\| \int_{t_{1}}^{t}\right| \Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s) \mid\left(\int_{0}^{s} f(s, u) d u\right) d s\right.\right. \\
&+\left|\left\|x\left|\| \int_{t}^{\infty}\right| \Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s) \mid\left(\int_{0}^{s} f(s, u) d u\right) d s<\varepsilon\right.\right.
\end{aligned}
$$

Now, let $x(t)$ be a Ψ-bounded solution of 1.1 . This solution is Ψ-unstable on \mathbb{R}_{+}.

Indeed, if not, for every $\varepsilon i 0$ and any $t_{0} \geq 0$, there exists a $\delta=\delta\left(\varepsilon, t_{0}\right)>0$ such that any solution $\widetilde{x}(t)$ of 1.1 which satisfies the inequality $\left\|\Psi\left(t_{0}\right)\left(\widetilde{x}\left(t_{0}\right)-x\left(t_{0}\right)\right)\right\|<$ $\delta\left(\varepsilon, t_{0}\right)$ exists and satisfies the inequality $\|\Psi(t)(\widetilde{x}(t)-x(t))\|<\varepsilon$ for all $t \geq t_{0}$.

Let $z_{0} \in R^{d}$ be such that $P_{1} z_{0}=0$ and $0<\left\|\Psi(0) z_{0}\right\|<\delta(\varepsilon, 0)$ and let $\widetilde{x}(t)$ the solution of (1.1) with the initial condition $\widetilde{x}(0)=x(0)+z_{0}$. Then $\|\Psi(t) z(t)\|<\varepsilon$ for all $t \geq 0$, where $z(t)=\widetilde{x}(t)-x(t)$.

Now we consider the function $y(t)=z(t)-(T z)(t), t \geq 0$.
Clearly, $y(t)$ is a Ψ-bounded solution on \mathbb{R}_{+}of 1.3$)$. Without loss of generality, we can suppose that $Y(0)=I$. It is easy to see that $P_{1} y(0)=0$. If $P_{2} y(0) \neq 0$, from [11, Lemma 2], it follows that $\lim \sup _{t \rightarrow \infty}\|\Psi(t) y(t)\|=\infty$, which is contradictory. Thus, $P_{2} y(0)=0$ and then $y(t)=0$ for $t \geq 0$.

It follows that $z=T z$ and then $z=0$, which is a contradiction. This shows that the solution $x(t)$ is Ψ-unstable on \mathbb{R}_{+}.

Let $y=x-T x$. From Theorem 3.3 , it follows that there exists a sequence $\left(y_{n}\right)$ of solutions of 1.3 defined on \mathbb{R}_{+}such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \Psi(t) y_{n}(t)=\Psi(t) y(t), \quad \text { uniformly on } \mathbb{R}_{+} \\
\lim _{t \rightarrow \infty} \Psi(t)\left(y_{n}(t)-y(t)\right)=0, \quad n=1,2, \ldots
\end{gathered}
$$

Let $x_{n}=C y_{n}$. From 4.2 it follows that the sequence $\left(x_{n}\right)$ of solutions of 1.1 defined on \mathbb{R}_{+}is such that

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), \quad \text { uniformly on } \mathbb{R}_{+}
$$

This shows that the solution $x(t)$ is Ψ-conditionally stable on \mathbb{R}_{+}. From 4.3) and

$$
\Psi(t)\left(x_{n}(t)-x(t)\right)=\Psi(t)\left(x_{n}(t)-y_{n}(t)\right)+\Psi(t)\left(y_{n}(t)-y(t)\right)+\Psi(t)(y(t)-x(t))
$$

it follows that

$$
\lim _{t \rightarrow \infty} \Psi(t)\left(x_{n}(t)-x(t)\right)=0, \quad \text { for } n=1,2, \ldots
$$

This shows that the solution $x(t)$ is Ψ-conditionally asymptotically stable on \mathbb{R}_{+}. The proof is now complete.

Corollary 4.2. If in Theorem 4.1 we assume that $f(t . s)=g(t) h(s)$, where g and h are nonnegative continuous functions on \mathbb{R}_{+}such that

$$
\begin{gathered}
\sup _{t \geq 0} g(t) \int_{0}^{t} h(s) d s<K^{-1} \\
\lim _{t \rightarrow \infty} g(t) \int_{0}^{t} h(s) d s=0
\end{gathered}
$$

then the conclusion of the Theorem remains valid.
Corollary 4.3. If in Theorem 4.1 we assume that $f(t . s)=g(t) h(s)$, where g and h are nonnegative continuous functions on \mathbb{R}_{+}such that

$$
\begin{aligned}
& I=\int_{0}^{\infty} h(s) d s \quad \text { is convergent } \\
& \lim _{t \rightarrow \infty} g(t)=0, \quad \sup _{t \geq 0} g(t)<\frac{1}{K I}
\end{aligned}
$$

then the conclusion of the Theorem remains valid.

References

[1] Akinyele, O. On partial stability and boundedness of degree k; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), $259-264$.
[2] Akinyele, O. On the φ-stability for differential systems; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,(4), 68(1980), 287-293.
[3] Avramescu, C. Asupra comportãrii asimptotice a solutiilor unor ecuatii functionale; Analele Universitãtii din Timisoara, Seria Stiinte Matematice-Fizice, vol. VI, 1968, 41 - 55.
[4] Constantin, A. Asymptotic properties of solutions of differential equations; Analele Universitãtii din Timisoara, Seria Stiinte Matematice, vol. XXX, fasc. 2-3, 1992, 183-225.
[5] Constantin, A. A note on the φ-stability for differential systems; Boll. Un. Math. Ital., 6A(1992), 233-243.
[6] Coppel, W.A. Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[7] Coppel, W.A. On the stability of ordinary differential equations, J. London Math. Soc. 38(1963), 255-260.
[8] Diamandescu, A. On the Ψ-stability of a nonlinear Volterra integro-differential system; Electron. J. Diff. Eqns., Vol. 2005(2005), No. 56, pp. 1-14; URL http://ejde.math.txstate.edu
[9] Diamandescu, A. On the Ψ-asymptotic stability of a nonlinear Volterra integro-differential system; Bull. Math. Sc. Math. Roumanie, Tome 46(94), No. 1-2, 2003, pp. 39-60.
[10] Diamandescu, A. On the Ψ-uniform asymptotic stability of a nonlinear Volterra integrodifferential system; Analele Universităţii de Vest Timişoara, Seria Matematică - Informatică, Vol. XXXIX, fasc. 2, 2001, pp. 35-62.
[11] Diamandescu, A. On the Ψ-instability of a nonlinear Volterra integro-differential system; Bull. Math. Sc. Math. Roumanie, Tome 46(94), No. 3-4, 2003, pp. 103-119..
[12] Diamandescu, A. On the Ψ-conditional stability of the solutions of a nonlinear Volterra integro-differential system; Proceedings of the National Conference on Mathematical Analysis and Applications, Timişoara, 12-13 Dec. 2000, pp. 89-106.
[13] Halam, T.G. On asymptotic equivalence of the bounded solutions of two systems of differential equations; Mich. Math. Journal., Vol. 16(1969), 353-363.
[14] Hara, T., Yoneyama, T. and Ytoh, T. Asymptotic Stability Criteria for Nonlinear Volterra Integro - Differential Equations; Funkcialaj Ecvacioj, 33(1990), 39-57.
[15] Kuben, J. Asymptotic equivalence of second order differential equations; Czech. Math. J. 34(109), (1984), 189-202.
[16] Lakshmikantham, V. and Rama Mohana Rao, M. Stability in variation for nonlinear integrodifferential equations; Appl. Anal. 24(1987), 165-173.
[17] Mahfoud, W.E. Boundedness properties in Volterra integro-differential systems; Proc. Amer. Math. Soc., 100(1987), 37-45.
[18] Morchalo, J. On $\Psi-L_{p}$-stability of nonlinear systems of differential equations; Analele Stiintifice ale Universitãtii quotedblright Al. I. Cuzaquotedblright Iasi, Tomul XXXVI, s. I a, Matematicã, 1990, f. 4, 353-360.
[19] Perron, O. Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32(1930), 703 - 728.
[20] Sansone, G. and Conti, R. Non-linear differential equations, Pergamon Press, 1964.
[21] Späth, H. Uber das asymptotische Verhalten der Lö sungenlinearer Differentialgleichungen, Math. Z., 30(1929), 487-513.
[22] Weyl, H. Comment on the preceding paper, Amer. J. Math., 68(1946), 7-12.
[23] Yoshizawa, T. Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, 1966.

Aurel Diamandescu
Department of Applied Mathematics, University of Craiova, 13, "Al. I. Cuza" st., 200585, Craiova, Romania

E-mail address: adiamandescu@central.ucv.ro

[^0]: 2000 Mathematics Subject Classification. 45M10, 45J05.
 Key words and phrases. Ψ-stability; Ψ-conditional asymptotic stability.
 (C) 2007 Texas State University - San Marcos.

 Submitted October 4, 2006. Published February 14, 2007.

