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ON THE Ψ-CONDITIONAL ASYMPTOTIC STABILITY OF THE
SOLUTIONS OF A NONLINEAR VOLTERRA

INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

Abstract. We provide sufficient conditions for Ψ-conditional asymptotic sta-
bility of the solutions of a nonlinear Volterra integro-differential system.

1. Introduction

The purpose of this paper is to provide sufficient conditions for Ψ-conditional
asymptotic stability of the solutions of the nonlinear Volterra integro-differential
system

x′ = A(t)x +
∫ t

0

F (t, s, x(s))ds (1.1)

and for the linear system
x′ = [A(t) + B(t)]x (1.2)

as a perturbed systems of
y′ = A(t)y. (1.3)

We investigate conditions on a fundamental matrix Y (t) of the linear equation
(1.3) and on the functions B(t) and F (t, s, x) under which the solutions of (1.1),
(1.2) or (1.3) are Ψ-conditionally asymptotically stable on R+. Here, Ψ is a contin-
uous matrix function. The introduction of the matrix function Ψ permits to obtain
a mixed asymptotic behavior of the solutions.

The problem of Ψ- stability for systems of ordinary differential equations has been
studied by many authors, as e.g. Akinyele [1, 2], Constantin [4, 5], Hallam [13],
Kuben [15], Morchalo [18]. In these papers, the function Ψ is a scalar continuous
function (and monotone in [2], nondecreasing in [4]).

In our papers [8, 9, 10], we have proved sufficient conditions for various types of
Ψ-stability of the trivial solution of the equations (1.1), (1.2) and (1.3). In these
papers, the function Ψ is a continuous matrix function.

Recent works for stability of solutions of (1.1) have been by Avramescu [3],
by Hara, Yoneyama and Itoh [14], by Lakshmikantham and Rama Mohana Rao
[16], by Mahfoud [17] and others. Coppel’s paper [6, Chapter III, Theorem 12],
[7] deal with the instability and conditional asymptotic stability of the solutions
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of a systems of differential equations. Späth’s paper [21] and Weyl’s paper [22]
deal with the conditional stability of solutions of systems of differential equations.
In our papers [11, 12], we have proved a necessary and sufficient conditions for Ψ-
instability and Ψ-conditional stability of the equation (1.3) and sufficient conditions
for Ψ-instability and Ψ-conditional stability of trivial solution of the equations (1.1)
and (1.2).

2. Definitions, notation and hypotheses

Let Rd denote the Euclidean d-space. For x = (x1, x2, . . . xd)T ∈ Rd, let ‖x‖ =
max{|x1|, |x2|, . . . |xd|} be the norm of x. For a d×d matrix A = (aij), we define the
norm A by |A| = sup‖x‖≤1 ‖Ax‖; it is well-known that |A| = max1≤i≤d

∑d
j=1 |aij |.

In the equations (1.1)–(1.3) we assume that A(t) is a continuous d × d matrix
on R+ = [0,∞) and F : D × Rd → Rd, D = {(t, s) ∈ R2 : 0 ≤ s ≤ t < ∞}, is a
continuous d-vector with respect to all variables.

Let Ψi : R+ → (0,∞), i = 1, 2, . . . d, be a continuous functions and

Ψ = diag[Ψ1,Ψ2, . . . Ψd].

A matrix P is said to be a projection matrix if P 2 = P . If P is a projection, then
so is I −P . Two such projections, whose sum is I and whose product is 0, are said
to be supplementary.

Definition 2.1. The solution x(t) of (1.1) is said to be Ψ-stable on R+, if for every
ε > 0 and any t0 ≥ 0, there exists a δ = δ(ε, t0) > 0 such that any solution x̃(t)
of (1.1) which satisfies the inequality ‖Ψ(t0)(x̃(t0) − x(t0))‖ < δ(ε, t0) exists and
satisfies the inequality ‖Ψ(t)(x̃(t)− x(t))‖ < ε for all t ≥ t0.

Otherwise, is said that the solution x(t) is Ψ-unstable on R+.

Definition 2.2. A function ϕ : R+ → Rd is said to be Ψ-bounded on R+ if Ψ(t)ϕ(t)
is bounded on R+.

Remark 2.3. For Ψi = 1, i = 1, 2, . . . d, we obtain the notion of classical stability,
instability and boundedness, respectively.

Definition 2.4. The solution x(t) of (1.1) is said to be Ψ-conditionally stable on
R+ if it is not Ψ-stable on R+ but there exists a sequence (xn(t)) of solutions of
(1.1) defined for all t ≥ 0 such that

lim
n→∞

Ψ(t)xn(t) = Ψ(t)x(t), uniformly on R+.

If the sequence xn(t) can be chosen so that

lim
t→∞

Ψ(t)(xn(t)− x(t)) = 0, for n = 1, 2, . . .

then x(t) is said to be Ψ-conditionally asymptotically stable on R+.

Remark 2.5. (1) It is easy to see that if |Ψ(t)| and |Ψ−1(t)| are bounded on
R+, then the Ψ-conditional asymptotic stability is equivalent with the classical
conditional asymptotic stability.

(2) In the same manner as in classical conditional asymptotic stability, we can
speak about Ψ-conditional asymptotic stability of a linear equation. Indeed, let
x(t), y(t) be two solutions of the linear equation (1.3). We suppose that x(t) is
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Ψ-conditionally asymptotically stable on R+. Then y(t) is Ψ-unstable on R+ (see
[11, Theorem 1]) and

lim
n→∞

Ψ(t)yn(t) = Ψ(t)y(t), uniformly on R+,

lim
t→∞

Ψ(t)(yn(t)− y(t)) = 0, for n = 1, 2, . . .

where yn(t) = xn(t)− x(t) + y(t), n ∈ N are solutions of the linear equation (1.3).
Thus, all solutions of (1.3) are Ψ-conditionally asymptotically stable on R+.

3. Ψ-conditional asymptotic stability of linear equations

In this section we give necessary and sufficient conditions for the Ψ-conditional
asymptotic stability of the linear equation (1.3) and sufficient conditions for the
Ψ-conditional asymptotic stability of the linear equations (1.3) and (1.2).

Theorem 3.1. The linear equation (1.3) is Ψ-conditionally asymptotically stable
on R+ if and only if it has a Ψ-unbounded solution on R+ and a non-trivial solution
y0(t) such that limt→∞Ψ(t)y0(t) = 0.

Proof. Let Y (t) be a fundamental matrix for (1.3). Suppose that the linear equation
(1.3) is Ψ-conditionally asymptotically stable on R+. From Definition 2.4 and [8,
Theorem 3.1], it follows that |Ψ(t)Y(t)| is unbounded on R+. Thus, the linear equa-
tion (1.3) has at least one Ψ-unbounded solution on R+. In addition, there exists a
sequence (yn(t)) of non-trivial solutions of (1.3) such that limn→∞Ψ(t)yn(t) = 0,
uniformly on R+ and limt→∞Ψ(t)yn(t) = 0 for n = 1, 2, . . . . The proof of the “only
if” part is complete.

Suppose, conversely, that (1.3) has at least one Ψ-unbounded solution on R+ and
at least one non-trivial solution y0(t) such that limt→∞Ψ(t)y0(t) = 0. It follows
that the matrix Ψ(t)Y (t) is unbounded on R+. Consequently, the linear equation
(1.3) is Ψ-unstable on R+ (See [11, Theorem 1]). On the other hand, ( 1

ny0(t))
is a sequence of solutions of (1.3) such that limn→∞

1
nΨ(t)y0(t) = 0, uniformly

on R+ and limt→∞
1
nΨ(t)y0(t) = 0 for n ∈ N. Thus, the linear equation (1.3) is

Ψ-conditionally asymptotically stable on R+. The proof is complete. �

We remark that Theorem 3.1 generalizes a similar result in connection with the
classical conditional asymptotic stability in [6].

The conditions for Ψ-conditional asymptotic stability of the linear equation (1.3)
can be expressed in terms of a fundamental matrix for (1.3).

Theorem 3.2. Let Y (t) be a fundamental matrix for (1.3). Then, the linear equa-
tion (1.3) is Ψ-conditionally asymptotically stable on R+ if and only if there are
satisfied two following conditions:

(a) There exists a projection P1 such that Ψ(t)Y (t)P1 is unbounded on R+;
(b) there exists a projection P2 6= 0 such that limt→∞Ψ(t)Y (t)P2 = 0.

Proof. First, we shall prove the sufficiency. From the hypoyhesis (a) and [11, The-
orem 1], it follows that the linear equation (1.3) is Ψ-unstable on R+.

Let y(t) be a non-trivial solution on R+ of the linear equation (1.3). Let (λn)
be such that λn ∈ R \ {1}, limn→∞ λn = 1 and let (yn) be defined by

yn(t) = Y (t)P2Y
−1(0)(λny(0)) + Y (t)(I − P2)Y −1(0)y(0), t ≥ 0.

It is easy to see that yn(t), n ∈ N , are solutions of the linear equation (1.3).
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For n ∈ N and t ≥ 0, we have

‖Ψ(t)yn(t)−Ψ(t)y(t)‖ = ‖Ψ(t)Y (t)P2Y
−1(0)((λn − 1)y(0))‖

≤ |λn − 1||Ψ(t)Y (t)P2|‖Y −1(0)y(0)‖
Thus,

lim
n→∞

Ψ(t)yn(t) = Ψ(t)y(t), uniformly on R+,

lim
t→∞

Ψ(t)(yn(t)− y(t)) = 0, for n = 1, 2, . . . .

It follows that the linear equation (1.3) is Ψ-conditionally asymptotically stable on
R+.

Now, we shall prove the necessity. From Ψ-conditional asymptotic stability on
R+ of (1.3), it follows that Ψ(t)Y (t) is unbounded on R+ (see [11, Theorem 1].

In addition, there exists a non-trivial solution y0(t) on R+ of (1.3) such that
limt→∞Ψ(t)y0(t) = 0. Thus, there exists a constant vector c 6= 0 such that
Ψ(t)Y (t)c is such that limt→∞Ψ(t)Y (t)c = 0. Let cs = ‖c‖. Let P2 be the null
matrix in which the s-th column is replaced with ‖c‖−1c. Thus, P2 is a projection
and limt→∞Ψ(t)Y (t)P2 = 0.

The proof is now complete. �

A sufficient condition for Ψ-conditional asymptotic stability is given by the fol-
lowing theorem.

Theorem 3.3. If there exist two supplementary projections P1, P2, Pi 6= 0, and
a positive constant K such that the fundamental matrix Y (t) of the equation (1.3)
satisfies the condition∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|ds +

∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|ds ≤ K

for all t ≥ 0, then, the linear equation (1.3) is Ψ-conditionally asymptotically stable
on R+.

The proof of the above theorem follows from [11, Theorem 2 and Lemmas 1, 2].

Theorem 3.4. Suppose that:
(1) There exist supplementary projections P1, P2, Pi 6= 0, and a constant K > 0

such that the fundamental matrix Y (t) of (1.3) satisfies the conditions

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ≤ K, for 0 ≤ s ≤ t,

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ≤ K, for 0 ≤ t ≤ s.

(2) limt→∞Ψ(t)Y (t)P1 = 0.
(3) B(t) is a d× d continuous matrix function on R+ such that∫ ∞

0

|Ψ(t)B(t)Ψ−1(t)|dt is convergent.

(4) The linear equations (1.2) and (1.3) are Ψ-unstable on R+.
Then (1.2) is Ψ-conditionally asymptotically stable on R+.

Proof. We choose t0 ≥ 0 sufficiently large so that

q = K

∫ ∞

t0

|Ψ(t)B(t)Ψ−1(t)|dt < 1.
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We put

S = {x : t0,∞) → Rd : x is continuous and Ψ-bounded on [t0,∞)}.
Define on the set S a norm by

|||x||| = sup
t≥t0

‖Ψ(t)x(t)‖.

It is well known that (S, ||| · |||) is a Banach real space.
For x ∈ S, we define

(Tx)(t) =
∫ t

t0

Y (t)P 1Y
−1(s)B(s)x(s)ds−

∫ ∞

t

Y (t)P2Y
−1(s)B(s)x(s)ds, t ≥ t0.

It is easy to see that (Tx)(t) exists and is continuous for t ≥ t0 (see the Proof of
[12, Theorem 3]). We have

‖Ψ(t)(Tx)(t)‖ ≤ K

∫ ∞

t0

|Ψ(s)B(s)Ψ−1(s)|‖Ψ(s)x(s)‖ds

≤ q sup
t≥t0

‖Ψ(t)x(t)‖ = q|||x|||, for t ≥ t0.

This shows that TS ⊆ S.
On the other hand, T is linear and

|||Tx1 − Tx2||| = |||T (x1 − x2)||| ≤ q|||x1 − x2|||.
Thus, T is a contraction on the Banach space (S, ||| · |||).
Now, for every fixed Ψ- bounded solution y of (1.3) we define an operator Sy :

S → S, by the relation

Syx(t) = y(t) + Tx(t), t ∈ [t0,∞). (3.1)

It follows by the Banach contraction principle that Sy has a unique fixed point in
S. An easy computation shows that the fixed point x(t) = Syx(t), t ∈ [t0,∞), is a
Ψ-bounded solution of (1.2).

Let S2, S3 be the spaces of Ψ-bounded solutions of equations (1.2) and (1.3)
respectively. We define the mapping C : S3 → S2 in the following way: For every
y ∈ S3, Cy will be the fixed point of the contraction Sy.

Now, from x = Cy and x0 = Cy0, we have that x = y + Tx, x0 = y0 + Tx0

respectively. We obtain

||| x− x0||| ≤ ||| y − y0|||+ ||| Tx− Tx0|||
≤ ||| y − y0|||+ q||| x− x0|||.

Thus
||| x− x0||| ≤ (1− q)−1||| y − y0|||. (3.2)

On the other hand,

||| y − y0||| = ||| x− Tx− x0 + Tx0|||
≤ ||| x− x0 ||| + ||| Tx− Tx0 |||
≤ (1 + q)||| x− x0 |||.

Thus, C is homeomorfism.
Now, we prove that if x, y ∈ S are Ψ-bounded solutions of (1.2) and (1.3)

respectively such that x = Cy, then

lim
t→∞

‖Ψ(t)(x(t)− y(t))‖ = 0.
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Indeed, for a given ε > 0, we choose t1 ≥ t0 so that

K sup
t≥t0

‖Ψ(t)x(t)‖
∫ ∞

t1

|Ψ(s)B(s)Ψ−1(s)|ds <
ε

3
.

Thus, for t ≥ t1, we have

‖Ψ(t)(x(t)− y(t))‖
= ‖Ψ(t)(Tx)(t)‖

≤
∫ t

t0

‖Ψ(t)Y (t)P1Y
−1 (s)B(s)x(s)‖ds

+
∫ ∞

t

‖Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)Ψ(s)B(s)Ψ−1(s)Ψ(s)x(s)‖ds

≤ |Ψ(t)Y (t)P1|
∫ t1

t0

‖ Y −1(s)B(s)x(s)‖ds

+ K sup
t≥t0

‖Ψ(t)x(t)‖
∫ ∞

t1

|Ψ(s)B(s)Ψ−1(s)|ds

+ K sup
t≥t0

‖Ψ(t)x(t)‖
∫ ∞

t

|Ψ(s)B(s)Ψ−1(s)|ds

< |Ψ(t)Y (t)P1|
∫ t1

t0

‖Y −1(s)B(s)x(s)‖ds + 2
ε

3
.

Thus and assumption 3,

lim
t→∞

‖Ψ(t)(x(t)− y(t))‖ = 0. (3.3)

¿From the hypotheses, [11, Theorem1 and 2] it follows that the linear equation (1.3)
is Ψ-conditionally asymptotically stable on R+.

Let x(t) be a Ψ-bounded solution on R+ of (1.2). ¿From the assumption 4, this
solution is Ψ-unstable on R+. Let y = C−1x. From Definition 2.4, it follows that
there exists a sequence (yn) of solutions of (1.3) defined on R+ such that

lim
n→∞

Ψ(t)yn(t) = Ψ(t)y(t), uniformly on R+,

lim
t→∞

Ψ(t)(yn(t)− y(t)) = 0, for n = 1, 2, . . . .

Let xn = Cyn. From (3.2) it follows that the sequence (xn) of solutions of (1.2)
defined on [t0,∞) (in fact, defined on R+) satisfies the condition

lim
n→∞

Ψ(t)xn(t) =Ψ(t)x(t), uniformly on [t0,∞).

Clearly,
lim

n→∞
xn(t0) = x(t0).

By the Dependence on initial conditions Theorem (see [6, Chapter I, Theorem 3]),
it follows that

lim
n→∞

xn(t) = x(t), uniformly on [0, t0].

Hence,
lim

n→∞
Ψ(t)xn(t) = Ψ(t)x(t), uniformly on [0, t0].

Thus,
lim

n→∞
Ψ(t)xn(t) =Ψ(t)x(t), uniformly on R+.
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This shows that the linear equation (1.2) is Ψ-conditionally stable on R+. From
(3.3) and

Ψ(t)(xn(t)− x(t)) = Ψ(t)(xn(t)− yn(t)) + Ψ(t)(yn(t)− y(t)) + Ψ(t)(y(t)− x(t)),

it follows that

lim
t→∞

Ψ(t)(xn(t)− x(t)) = 0, for n = 1, 2, . . . .

This shows that the linear equation (1.2) is Ψ-conditionally asymptotically stable
on R+. The proof is complete. �

Theorem 3.5. Suppose that:
(1) There exist two supplementary projections P1, P2, Pi 6= 0, and a positive

constant K such that the fundamental matrix Y (t) of the equation (1.3)
satisfies the condition∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|ds +

∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|ds ≤ K

for all t ≥ 0.
(2) B(t) is a d× d continuous matrix function on R+ such that

lim
t→∞

|Ψ(t)B(t)Ψ−1(t)| = 0.

Then, the linear equation (1.2) is Ψ-conditionally asymptotically stable on R+.

The proof of the above theorem is similar to the proof of Theorem 3.4.

Remark 3.6. The first condition of the above Theorems can certainly be satisfied
if A(t) = A is a d×d real constant matrix which has characteristic roots with
different real parts. In this case, e.g., there exists an interval (α, β) ⊂ R such that
for λ ∈ (α, β), Ψ(t) = e−λtId and Y (t) can satisfy the first hypotheses of Theorems.

We have a similar situation if A(t) is a d×d real continuous periodic matrix (See
[12, Examples 1, 2]).

Thus, the above results can be considered as a generalization of a well-known
result in conection with the classical conditional asymptotic stability.

Remark 3.7. If in the above Theorems, the linear equation (1.3) is only Ψ-
conditionally asymptotically stable on R+, then the perturbed equation (1.2) can
not be Ψ-conditionally asymptotically stable on R+.

This is shown by the next example transformed after an equation due to Perron
[19].

Example 3.8. Let a, b ∈ R such that 0 < 4a < 1, b 6= 0 and

A(t) =
(

sin ln(t + 1) + cos ln(t + 1)− 4a 0
0 −2a

)
.

Then, a fundamental matrix for the homogeneous equation (1.3) is

Y (t) =
(

e(t+1)[sin ln(t+1)−4a] 0
0 e−2a(t+1)

)
.

Let

Ψ(t) =
(

1 0
0 ea(t+1)

)
.
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We have

Ψ(t)Y (t) =
(

e(t+1)[sin ln(t+1)−4a] 0
0 e−a(t+1)

)
.

Let t′n = e(2n+ 1
2 )π − 1 for n = 1, 2 . . . . Since limn→∞ |Ψ(t′n)Y (t′n)| = ∞, it follows

that the linear equation (1.3) is Ψ-unstable on R+ (see [11, Theorem 1])
From Theorem 3.1 it follows that the linear equation (1.3) is Ψ-conditionally

asymptotically stable on R+. If we take

B(t) =
(

0 be−2a(t+1)

0 0

)
,

then, a fundamental matrix for the perturbed equation (1.2) is

Ỹ (t) =
(

be(t+1)[sin ln(t+1)−4a]
∫ t+1

1
e−s sin ln sds e(t+1)[sin ln(t+1)−4a]

e−2a(t+1) 0

)
.

We have

Ψ(t)Ỹ (t) =
(

be(t+1)[sin ln(t+1)−4a]
∫ t+1

1
e−s sin ln sds e(t+1)[sin ln(t+1)−4a]

e−a(t+1) 0

)
.

Since limn→∞ |Ψ(t′n)Ỹ (t′n)| = ∞, it follows that the perturbed equation (1.2) is
Ψ-unstable on R+ (see [11, Theorem 1]).

Let α ∈ (0, π
2 ). Let tn = e(2n− 1

2 )π for n = 1, 2, . . . . For tn ≤ s ≤ tneα we have
s cos α ≤ −s sin ln s ≤ s and hence

etneπ(sin ln tneπ−4a)

∫ tneπ

1

e−s sin ln sds > etneπ(sin ln tneπ−4a)

∫ tneα

tn

e−s sin ln sds

≥ etneπ(1−4a)

∫ tneα

tn

es cos αds

= etn[(1−4a)eπ+cos α] e
tn(eα−1) cos α − 1

cos α
→∞.

Thus, the columns of Ψ(t)Ỹ (t) are unbounded on R+. It follows that the perturbed
equation (1.2) is not Ψ-conditionally asymptotically stable on R+ (see Theorem
3.1).

Finally, we have |Ψ(t)B(t)Ψ−1(t) = be−3a(t+1). Thus, B(t) satisfies the condi-
tions:

lim
t→∞

|Ψ(t)B(t)Ψ−1(t)| = 0;

and
∫∞
0
|Ψ(t)B(t)Ψ−1(t)|dt can be a sufficiently small number.

4. Ψ-conditional asymptotic stability of the nonlinear equation (1.1)

In this section we give sufficient conditions for the Ψ-conditional asymptotic
stability of Ψ-bounded solutions of the nonlinear Volterra integro-differential system
(1.1).

Theorem 4.1. Suppose that:
(1) There exist supplementary projections P1, P2, Pi 6= 0 and a constant K > 0

such that the fundamental matrix Y (t) of (1.3) satisfies the condition∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|ds +

∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|ds ≤ K
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for all t ≥ 0.
(2) The function F (t, s, x) satisfies the inequality

‖Ψ(t) (F (t, s, x(s))− F (t, s, y(s))) ‖ ≤ f(t, s)‖Ψ(s) (x(s)− y(s)) ‖,

for 0 ≤ s ≤ t < ∞ and for all continuous and Ψ-bounded functions x, y :
R+ → Rd, where f(t, s) is a continuous nonnegative function on D such
that

F (t, s, 0) = 0, lim
t→∞

∫ t

0

f(t, s)ds = 0, sup
t≥0

∫ t

0

f(t, s)ds < K
−1

.

Then, all Ψ-bounded solutions of (1.1) are Ψ-conditionally asymptotically stable on
R+.

Proof. Let

q = K sup
t≥0

∫ t

0

f(t, s)ds < 1.

We put

S = {x : R+ → Rd : x is continuous and Ψ-bounded on R+}.

Define on the set S a norm by

|||x||| = sup
t≥0

‖Ψ(t)x(t)‖.

It is well-known that (S, ||| · |||) is a Banach space. For x ∈ S, we define

(Tx) (t) =
∫ t

0

Y (t)P 1Y
−1(s)

∫ s

o

F (s, u, x(u)) du ds

−
∫ ∞

t

Y (t)P 2Y
−1(s)

∫ s

o

F (s, u, x(u)) du ds, t ≥ 0.

For 0 ≤ t ≤ v, we have

‖Ψ(t)
∫ v

t

Y (t)P 2Y
−1(s)

∫ s

o

F (s, u, x(u)) du ds‖

= ‖
∫ v

t

Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)

∫ s

o

Ψ(s)F (s, u, x(u))du ds‖

≤
∫ v

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s)F (s, u, x(u))‖ du ds

≤
∫ v

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

0

f(s, u)‖Ψ (u)x(u)‖ du ds

≤ sup
u≥0

‖Ψ(u)x(u)‖
∫ v

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

0

f(s, u) du ds

≤ qK−1 sup
u≥0

‖Ψ(u)x(u)‖
∫ v

t

|Ψ(t)Y (t)P2Y
−1 (s)Ψ−1(s)|ds.

¿From assumption 1, it follows that the integral∫ ∞

t

Y (t)P 2Y
−1(s)

∫ s

o

F (s, u, x(u)) du ds
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is convergent. Thus, (Tx)(t) exists and is continuous for t ≥ 0. For x ∈ S and
t ≥ 0, we have

‖Ψ(t)(Tx)(t)‖ = ‖
∫ t

0

Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)

∫ s

o

Ψ(s)F (s, u, x(u)) du ds

−
∫ ∞

t

Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)

∫ s

o

Ψ(s)F (s, u, x(u)) du ds‖

≤
∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s)F (s, u, x(u))‖ du ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s)F (s, u, x(u))‖ du ds

≤
∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

∫ s

0

f(s, u)‖Ψ(u)x(u)‖ du ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

o

f(s, u)‖Ψ(u)x(u)‖ du ds

≤ q sup
u≥0

‖Ψ(u)x(u)‖.

This shows that TS ⊆ S. On the other hand, for x, y ∈ S and t ≥ 0, we have

‖Ψ(t) ((Tx)(t)− (Ty)(t)) ‖

= ‖
∫ t

0

Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)

∫ s

o

Ψ(s) (F (s, u, x(u))− F (s, u, y(u))) du ds

−
∫ ∞

t

Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)

∫ s

o

Ψ(s) (F (s, u, x(u))− F (s, u, y(u))) du ds‖

≤
∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s) (F (s, u, x(u))− F (s, u, y(u))) ‖ du ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s) (F (s, u, x(u))− F (s, u, y(u))) ‖ du ds

≤
∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

∫ s

0

f(s, u)‖Ψ(u)(x(u)− y(u))‖ du ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

0

f(s, u)‖Ψ(u)(x(u)− y(u))‖ du ds

≤ q sup
u≥0

‖Ψ(u)(x(u)− y(u))‖.

It follows that

sup
t≥0

‖Ψ(t) ((Tx)(t)− (Ty)(t)) ‖ ≤ q sup
t≥0

‖Ψ(t)(x(t)− y(t))‖.

Thus, we have

|||Tx− Ty||| ≤ q|||x− y|||.

This shows that T is a contraction of the Banach space (S, ||| · |||).
As in the Proof of Theorem 3.4, it follows by the Banach contraction principle

that for any function y ∈ S, the integral equation

x = y + Tx (4.1)



EJDE-2007/29 Ψ-CONDITIONAL ASYMPTOTIC STABILITY 11

has a unique solution x ∈ S. Furthermore, by the definition of T , x(t) − y(t) is
differentiable and

(x(t)− y(t))′ = A(t) (x(t)− y(t)) +
∫ t

0

F (t, s, x(s))ds, t ≥ 0.

Hence, if y(t) is a Ψ-bounded solution of (1.3), x(t) is a Ψ-bounded solution of
(1.1). Conversely, if x(t) is a Ψ-bounded solution of (1.1), the function y(t) defined
by (4.1) is a Ψ-bounded solution of (1.3).

Thus, (4.1) establishes a one-to-one correspondence C between the Ψ-bounded
solutions of (1.1) and (1.3): x = Cy.

Now, we consider the analogous equation

x0 = y0 + Tx0.

We get
(1− q)||| x− x0||| ≤ ||| y − y0|||. (4.2)

Now, we prove that if x, y ∈ S are Ψ-bounded solutions of (1.1) and (1.3) respec-
tively such that x = Cy, then

lim
t→∞

‖Ψ(t)(x(t)− y(t))‖ = 0. (4.3)

For a given ε > 0, we can choose t1 ≥ 0 such that

K|||x|||
∫ t

0

f(t, s)ds <
ε

2
,

for t ≥ t1. Moreover, since limt→∞ |Ψ(t)Y (t)P1| = 0 (see [11, Lemma 1]), there
exists a number t2 ≥ t1 such that

qK−1|Ψ(t)Y (t)P1||||x|||
∫ t1

0

|P1Y
−1(s)Ψ−1(s)|ds <

ε

2

for t ≥ t2. We have, for t ≥ t2,

‖Ψ(t)(x(t)− y(t))‖

≤
∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s)F (s, u, x(u))‖ du ds+

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

o

‖Ψ(s)F (s, u, x(u))‖ du ds

≤
∫ t

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

∫ s

0

f(s, u)‖Ψ(u)x(u)‖ du ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

∫ s

o

f(s, u)‖Ψ(u)x(u)‖ du ds

≤ qK−1|Ψ(t)Y (t)P1| |||x|||
∫ t1

0

|P1Y
−1(s)Ψ−1(s)|ds

+ |||x|||
∫ t

t1

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|

( ∫ s

0

f(s, u)du
)
ds

+ |||x|||
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|

( ∫ s

0

f(s, u)du
)
ds < ε.

Now, let x(t) be a Ψ-bounded solution of (1.1). This solution is Ψ-unstable on R+.
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Indeed, if not, for every ε ¿ 0 and any t0 ≥ 0, there exists a δ = δ(ε, t0) > 0 such
that any solution x̃(t) of (1.1) which satisfies the inequality ‖Ψ(t0)(x̃(t0)−x(t0))‖ <
δ(ε, t0) exists and satisfies the inequality ‖Ψ(t)(x̃(t)− x(t))‖ < ε for all t ≥ t0.

Let z0 ∈ Rd be such that P1z0 = 0 and 0 < ‖Ψ(0)z0‖ < δ(ε, 0) and let x̃(t) the
solution of (1.1) with the initial condition x̃(0) = x(0) + z0. Then ‖Ψ(t)z(t)‖ < ε
for all t ≥ 0, where z(t) = x̃(t)− x(t).

Now we consider the function y(t) = z(t)− (Tz)(t), t ≥ 0.
Clearly, y(t) is a Ψ-bounded solution on R+ of (1.3). Without loss of generality,

we can suppose that Y (0) = I. It is easy to see that P1y(0) = 0. If P2y(0) 6= 0, from
[11, Lemma 2], it follows that lim supt→∞ ‖Ψ(t)y(t)‖ = ∞, which is contradictory.
Thus, P2y(0) = 0 and then y(t) = 0 for t ≥ 0.

It follows that z = Tz and then z = 0, which is a contradiction. This shows that
the solution x(t) is Ψ-unstable on R+.

Let y = x− Tx. From Theorem 3.3, it follows that there exists a sequence (yn)
of solutions of (1.3) defined on R+ such that

lim
n→∞

Ψ(t)yn(t) = Ψ(t)y(t), uniformly on R+,

lim
t→∞

Ψ(t)(yn(t)− y(t)) = 0, n = 1, 2, . . . .

Let xn = Cyn. From (4.2) it follows that the sequence (xn) of solutions of (1.1)
defined on R+ is such that

lim
n→∞

Ψ(t)xn(t) = Ψ(t)x(t), uniformly on R+.

This shows that the solution x(t) is Ψ-conditionally stable on R+. From (4.3) and

Ψ(t)(xn(t)− x(t)) = Ψ(t)(xn(t)− yn(t)) + Ψ(t)(yn(t)− y(t)) + Ψ(t)(y(t)− x(t)),

it follows that

lim
t→∞

Ψ(t)(xn(t)− x(t)) = 0, for n = 1, 2, . . . .

This shows that the solution x(t) is Ψ-conditionally asymptotically stable on R+.
The proof is now complete. �

Corollary 4.2. If in Theorem 4.1 we assume that f(t.s) = g(t)h(s), where g and
h are nonnegative continuous functions on R+ such that

sup
t≥0

g(t)
∫ t

0

h(s)ds < K−1,

lim
t→∞

g(t)
∫ t

0

h(s)ds = 0,

then the conclusion of the Theorem remains valid.

Corollary 4.3. If in Theorem 4.1 we assume that f(t.s) = g(t)h(s), where g and
h are nonnegative continuous functions on R+ such that

I =
∫ ∞

0

h(s) ds is convergent,

lim
t→∞

g(t) = 0, sup
t≥0

g(t) <
1

KI
,

then the conclusion of the Theorem remains valid.
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and Applications, Timişoara, 12-13 Dec. 2000, pp. 89 - 106.
[13] Halam, T.G. On asymptotic equivalence of the bounded solutions of two systems of differential

equations; Mich. Math. Journal., Vol. 16(1969), 353 - 363.

[14] Hara, T., Yoneyama, T. and Ytoh, T. Asymptotic Stability Criteria for Nonlinear Volterra
Integro - Differential Equations; Funkcialaj Ecvacioj, 33(1990), 39 - 57.

[15] Kuben, J. Asymptotic equivalence of second order differential equations; Czech. Math. J.

34(109), (1984), 189 - 202.
[16] Lakshmikantham, V. and Rama Mohana Rao, M. Stability in variation for nonlinear integro-

differential equations; Appl. Anal. 24(1987), 165 - 173.

[17] Mahfoud, W.E. Boundedness properties in Volterra integro-differential systems; Proc. Amer.
Math. Soc., 100(1987), 37 - 45.

[18] Morchalo, J. On Ψ − Lp-stability of nonlinear systems of differential equations; Analele

Stiintifice ale Universitãtii quotedblright Al. I. Cuzaquotedblright Iasi, Tomul XXXVI, s. I -
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