Electronic Journal of Differential Equations, Vol. 2007(2007), No. 29, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE Ψ -CONDITIONAL ASYMPTOTIC STABILITY OF THE SOLUTIONS OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

ABSTRACT. We provide sufficient conditions for Ψ -conditional asymptotic stability of the solutions of a nonlinear Volterra integro-differential system.

1. INTRODUCTION

The purpose of this paper is to provide sufficient conditions for Ψ -conditional asymptotic stability of the solutions of the nonlinear Volterra integro-differential system

$$x' = A(t)x + \int_0^t F(t, s, x(s))ds$$
 (1.1)

and for the linear system

$$x' = [A(t) + B(t)]x$$
(1.2)

as a perturbed systems of

$$y' = A(t)y. \tag{1.3}$$

We investigate conditions on a fundamental matrix Y(t) of the linear equation (1.3) and on the functions B(t) and F(t, s, x) under which the solutions of (1.1), (1.2) or (1.3) are Ψ -conditionally asymptotically stable on \mathbb{R}_+ . Here, Ψ is a continuous matrix function. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the solutions.

The problem of Ψ - stability for systems of ordinary differential equations has been studied by many authors, as e.g. Akinyele [1, 2], Constantin [4, 5], Hallam [13], Kuben [15], Morchalo [18]. In these papers, the function Ψ is a scalar continuous function (and monotone in [2], nondecreasing in [4]).

In our papers [8, 9, 10], we have proved sufficient conditions for various types of Ψ -stability of the trivial solution of the equations (1.1), (1.2) and (1.3). In these papers, the function Ψ is a continuous matrix function.

Recent works for stability of solutions of (1.1) have been by Avramescu [3], by Hara, Yoneyama and Itoh [14], by Lakshmikantham and Rama Mohana Rao [16], by Mahfoud [17] and others. Coppel's paper [6, Chapter III, Theorem 12], [7] deal with the instability and conditional asymptotic stability of the solutions

Key words and phrases. Ψ -stability; Ψ -conditional asymptotic stability.

²⁰⁰⁰ Mathematics Subject Classification. 45M10, 45J05.

^{©2007} Texas State University - San Marcos.

Submitted October 4, 2006. Published February 14, 2007.

A. DIAMANDESCU

of a systems of differential equations. Späth's paper [21] and Weyl's paper [22] deal with the conditional stability of solutions of systems of differential equations. In our papers [11, 12], we have proved a necessary and sufficient conditions for Ψ -instability and Ψ -conditional stability of the equation (1.3) and sufficient conditions for Ψ -instability and Ψ -conditional stability of trivial solution of the equations (1.1) and (1.2).

2. Definitions, notation and hypotheses

Let \mathbb{R}^d denote the Euclidean *d*-space. For $x = (x_1, x_2, \ldots, x_d)^T \in \mathbb{R}^d$, let $||x|| = \max\{|x_1|, |x_2|, \ldots, |x_d|\}$ be the norm of x. For a $d \times d$ matrix $A = (a_{ij})$, we define the norm A by $|A| = \sup_{||x|| \le 1} ||Ax||$; it is well-known that $|A| = \max_{1 \le i \le d} \sum_{j=1}^d |a_{ij}|$.

norm A by $|A| = \sup_{\|x\| \le 1} \|Ax\|$; it is well-known that $|A| = \max_{1 \le i \le d} \sum_{j=1}^d |a_{ij}|$. In the equations (1.1)–(1.3) we assume that A(t) is a continuous $d \times d$ matrix on $\mathbb{R}_+ = [0, \infty)$ and $F : D \times \mathbb{R}^d \to \mathbb{R}^d$, $D = \{(t, s) \in \mathbb{R}^2 : 0 \le s \le t < \infty\}$, is a continuous *d*-vector with respect to all variables.

Let $\Psi_i : \mathbb{R}_+ \to (0, \infty), i = 1, 2, \dots d$, be a continuous functions and

 $\Psi = \operatorname{diag}[\Psi_1, \Psi_2, \dots \Psi_d].$

A matrix P is said to be a projection matrix if $P^2 = P$. If P is a projection, then so is I - P. Two such projections, whose sum is I and whose product is 0, are said to be supplementary.

Definition 2.1. The solution x(t) of (1.1) is said to be Ψ -stable on \mathbb{R}_+ , if for every $\varepsilon > 0$ and any $t_0 \ge 0$, there exists a $\delta = \delta(\varepsilon, t_0) > 0$ such that any solution $\tilde{x}(t)$ of (1.1) which satisfies the inequality $\|\Psi(t_0)(\tilde{x}(t_0) - x(t_0))\| < \delta(\varepsilon, t_0)$ exists and satisfies the inequality $\|\Psi(t)(\tilde{x}(t) - x(t))\| < \varepsilon$ for all $t \ge t_0$.

Otherwise, is said that the solution x(t) is Ψ -unstable on \mathbb{R}_+ .

Definition 2.2. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}^d$ is said to be Ψ -bounded on \mathbb{R}_+ if $\Psi(t)\varphi(t)$ is bounded on \mathbb{R}_+ .

Remark 2.3. For $\Psi_i = 1, i = 1, 2, ... d$, we obtain the notion of classical stability, instability and boundedness, respectively.

Definition 2.4. The solution x(t) of (1.1) is said to be Ψ -conditionally stable on \mathbb{R}_+ if it is not Ψ -stable on \mathbb{R}_+ but there exists a sequence $(x_n(t))$ of solutions of (1.1) defined for all $t \geq 0$ such that

$$\lim_{t \to \infty} \Psi(t) x_n(t) = \Psi(t) x(t), \quad \text{uniformly on } R_+.$$

If the sequence $x_n(t)$ can be chosen so that

$$\lim_{t \to \infty} \Psi(t)(x_n(t) - x(t)) = 0, \quad \text{for } n = 1, 2, \dots$$

then x(t) is said to be Ψ -conditionally asymptotically stable on R_+ .

Remark 2.5. (1) It is easy to see that if $|\Psi(t)|$ and $|\Psi^{-1}(t)|$ are bounded on \mathbb{R}_+ , then the Ψ -conditional asymptotic stability is equivalent with the classical conditional asymptotic stability.

(2) In the same manner as in classical conditional asymptotic stability, we can speak about Ψ -conditional asymptotic stability of a linear equation. Indeed, let x(t), y(t) be two solutions of the linear equation (1.3). We suppose that x(t) is

$$\lim_{n \to \infty} \Psi(t) y_n(t) = \Psi(t) y(t), \quad \text{uniformly on } \mathbb{R}_+,$$
$$\lim_{t \to \infty} \Psi(t) (y_n(t) - y(t)) = 0, \quad \text{for } n = 1, 2, \dots$$

where $y_n(t) = x_n(t) - x(t) + y(t)$, $n \in N$ are solutions of the linear equation (1.3). Thus, all solutions of (1.3) are Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

3. Ψ -conditional asymptotic stability of linear equations

In this section we give necessary and sufficient conditions for the Ψ -conditional asymptotic stability of the linear equation (1.3) and sufficient conditions for the Ψ -conditional asymptotic stability of the linear equations (1.3) and (1.2).

Theorem 3.1. The linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ if and only if it has a Ψ -unbounded solution on \mathbb{R}_+ and a non-trivial solution $y_0(t)$ such that $\lim_{t\to\infty} \Psi(t)y_0(t) = 0$.

Proof. Let Y(t) be a fundamental matrix for (1.3). Suppose that the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ . From Definition 2.4 and [8, Theorem 3.1], it follows that $|\Psi(t)Y(t)|$ is unbounded on \mathbb{R}_+ . Thus, the linear equation (1.3) has at least one Ψ -unbounded solution on \mathbb{R}_+ . In addition, there exists a sequence $(y_n(t))$ of non-trivial solutions of (1.3) such that $\lim_{n\to\infty} \Psi(t)y_n(t) = 0$, uniformly on \mathbb{R}_+ and $\lim_{t\to\infty} \Psi(t)y_n(t) = 0$ for $n = 1, 2, \ldots$. The proof of the "only if" part is complete.

Suppose, conversely, that (1.3) has at least one Ψ -unbounded solution on \mathbb{R}_+ and at least one non-trivial solution $y_0(t)$ such that $\lim_{t\to\infty} \Psi(t)y_0(t) = 0$. It follows that the matrix $\Psi(t)Y(t)$ is unbounded on \mathbb{R}_+ . Consequently, the linear equation (1.3) is Ψ -unstable on \mathbb{R}_+ (See [11, Theorem 1]). On the other hand, $(\frac{1}{n}y_0(t))$ is a sequence of solutions of (1.3) such that $\lim_{n\to\infty} \frac{1}{n}\Psi(t)y_0(t) = 0$, uniformly on \mathbb{R}_+ and $\lim_{t\to\infty} \frac{1}{n}\Psi(t)y_0(t) = 0$ for $n \in \mathbb{N}$. Thus, the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ . The proof is complete. \Box

We remark that Theorem 3.1 generalizes a similar result in connection with the classical conditional asymptotic stability in [6].

The conditions for Ψ -conditional asymptotic stability of the linear equation (1.3) can be expressed in terms of a fundamental matrix for (1.3).

Theorem 3.2. Let Y(t) be a fundamental matrix for (1.3). Then, the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ if and only if there are satisfied two following conditions:

- (a) There exists a projection P_1 such that $\Psi(t)Y(t)P_1$ is unbounded on \mathbb{R}_+ ;
- (b) there exists a projection $P_2 \neq 0$ such that $\lim_{t\to\infty} \Psi(t)Y(t)P_2 = 0$.

Proof. First, we shall prove the sufficiency. From the hypothesis (a) and [11, Theorem 1], it follows that the linear equation (1.3) is Ψ -unstable on \mathbb{R}_+ .

Let y(t) be a non-trivial solution on \mathbb{R}_+ of the linear equation (1.3). Let (λ_n) be such that $\lambda_n \in \mathbb{R} \setminus \{1\}$, $\lim_{n \to \infty} \lambda_n = 1$ and let (y_n) be defined by

$$y_n(t) = Y(t)P_2Y^{-1}(0)(\lambda_n y(0)) + Y(t)(I - P_2)Y^{-1}(0)y(0), t \ge 0.$$

It is easy to see that $y_n(t), n \in N$, are solutions of the linear equation (1.3).

ļ

For $n \in N$ and $t \ge 0$, we have

$$\begin{aligned} \|\Psi(t)y_n(t) - \Psi(t)y(t)\| &= \|\Psi(t)Y(t)P_2Y^{-1}(0)((\lambda_n - 1)y(0))\| \\ &\leq |\lambda_n - 1||\Psi(t)Y(t)P_2|\|Y^{-1}(0)y(0)\| \end{aligned}$$

Thus,

$$\lim_{n \to \infty} \Psi(t) y_n(t) = \Psi(t) y(t), \quad \text{uniformly on } \mathbb{R}_+,$$
$$\lim_{t \to \infty} \Psi(t) (y_n(t) - y(t)) = 0, \quad \text{for } n = 1, 2, \dots.$$

It follows that the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

Now, we shall prove the necessity. From Ψ -conditional asymptotic stability on \mathbb{R}_+ of (1.3), it follows that $\Psi(t)Y(t)$ is unbounded on \mathbb{R}_+ (see [11, Theorem 1].

In addition, there exists a non-trivial solution $y_0(t)$ on \mathbb{R}_+ of (1.3) such that $\lim_{t\to\infty} \Psi(t)y_0(t) = 0$. Thus, there exists a constant vector $c \neq 0$ such that $\Psi(t)Y(t)c$ is such that $\lim_{t\to\infty} \Psi(t)Y(t)c = 0$. Let $c_s = ||c||$. Let P_2 be the null matrix in which the s-th column is replaced with $||c||^{-1}c$. Thus, P_2 is a projection and $\lim_{t\to\infty} \Psi(t)Y(t)P_2 = 0$.

The proof is now complete.

A sufficient condition for Ψ -conditional asymptotic stability is given by the following theorem.

Theorem 3.3. If there exist two supplementary projections P_1 , P_2 , $P_i \neq 0$, and a positive constant K such that the fundamental matrix Y(t) of the equation (1.3) satisfies the condition

$$\int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|ds + \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|ds \le K$$

for all $t \ge 0$, then, the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

The proof of the above theorem follows from [11, Theorem 2 and Lemmas 1, 2].

Theorem 3.4. Suppose that:

(1) There exist supplementary projections P_1 , P_2 , $P_i \neq 0$, and a constant K > 0such that the fundamental matrix Y(t) of (1.3) satisfies the conditions

$$\begin{aligned} |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| &\leq K, \quad for \ 0 \leq s \leq t, \\ |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| &\leq K, \quad for \ 0 \leq t \leq s. \end{aligned}$$

(2)
$$\lim_{t \to \infty} \Psi(t) Y(t) P_1 = 0.$$

(3) B(t) is a $d \times d$ continuous matrix function on \mathbb{R}_+ such that

$$\int_0^\infty |\Psi(t)B(t)\Psi^{-1}(t)| dt \quad is \ convergent.$$

(4) The linear equations (1.2) and (1.3) are Ψ -unstable on \mathbb{R}_+ .

Then (1.2) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

Proof. We choose $t_0 \ge 0$ sufficiently large so that

$$q = K \int_{t_0}^{\infty} |\Psi(t)B(t)\Psi^{-1}(t)| dt < 1.$$

We put

 $S = \{x : t_0, \infty) \to \mathbb{R}^d : x \text{ is continuous and } \Psi \text{-bounded on } [t_0, \infty)\}.$

Define on the set S a norm by

$$|||x||| = \sup_{t \ge t_0} \|\Psi(t)x(t)\|.$$

It is well known that $(S, ||| \cdot |||)$ is a Banach real space.

For $x \in S$, we define

$$(Tx)(t) = \int_{t_0}^t Y(t) P_1 Y^{-1}(s) B(s) x(s) ds - \int_t^\infty Y(t) P_2 Y^{-1}(s) B(s) x(s) ds, \quad t \ge t_0.$$

It is easy to see that (Tx)(t) exists and is continuous for $t \ge t_0$ (see the Proof of [12, Theorem 3]). We have

$$\begin{split} \|\Psi(t)(Tx)(t)\| &\leq K \int_{t_0}^{\infty} |\Psi(s)B(s)\Psi^{-1}(s)| \|\Psi(s)x(s)\| ds \\ &\leq q \sup_{t \geq t_0} \|\Psi(t)x(t)\| = q|||x|||, \quad \text{for } t \geq t_0. \end{split}$$

This shows that $TS \subseteq S$.

On the other hand, T is linear and

$$||Tx_1 - Tx_2||| = |||T(x_1 - x_2)||| \le q|||x_1 - x_2|||.$$

Thus, T is a contraction on the Banach space $(S, ||| \cdot |||)$.

Now, for every fixed Ψ - bounded solution y of (1.3) we define an operator $S_y : S \to S$, by the relation

$$S_y x(t) = y(t) + Tx(t), \quad t \in [t_0, \infty).$$
 (3.1)

It follows by the Banach contraction principle that S_y has a unique fixed point in S. An easy computation shows that the fixed point $x(t) = S_y x(t), t \in [t_0, \infty)$, is a Ψ -bounded solution of (1.2).

Let S_2 , S_3 be the spaces of Ψ -bounded solutions of equations (1.2) and (1.3) respectively. We define the mapping $C: S_3 \to S_2$ in the following way: For every $y \in S_3$, Cy will be the fixed point of the contraction S_y .

Now, from x = Cy and $x_0 = Cy_0$, we have that x = y + Tx, $x_0 = y_0 + Tx_0$ respectively. We obtain

$$\begin{aligned} ||| \ x - x_0||| &\leq ||| \ y - y_0||| + ||| \ Tx - Tx_0||| \\ &\leq ||| \ y - y_0||| + q||| \ x - x_0|||. \end{aligned}$$

Thus

$$||| x - x_0||| \le (1 - q)^{-1} ||| y - y_0|||.$$
(3.2)

On the other hand,

$$\begin{aligned} ||| \ y - y_0||| &= ||| \ x - Tx - x_0 + Tx_0||| \\ &\leq ||| \ x - x_0 \ ||| \ + \ ||| \ Tx - Tx_0 \ ||| \\ &\leq \ (1 + q)||| \ x - x_0 \ |||. \end{aligned}$$

Thus, C is homeomorfism.

Now, we prove that if $x, y \in S$ are Ψ -bounded solutions of (1.2) and (1.3) respectively such that x = Cy, then

$$\lim_{t\to\infty} \|\Psi(t)(x(t)-y(t))\| = 0.$$

Indeed, for a given $\varepsilon > 0$, we choose $t_1 \ge t_0$ so that

$$\begin{split} K \sup_{t \ge t_0} \|\Psi(t)x(t)\| \int_{t_1}^{\infty} |\Psi(s)B(s)\Psi^{-1}(s)|ds < \frac{\varepsilon}{3}. \\ \text{Thus, for } t \ge t_1, \text{ we have} \\ \|\Psi(t)(x(t) - y(t))\| \\ &= \|\Psi(t)(Tx)(t)\| \\ &\leq \int_{t_0}^t \|\Psi(t)Y(t)P_1Y^{-1}(s)B(s)x(s)\|ds \\ &+ \int_t^{\infty} \|\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)\Psi(s)B(s)\Psi^{-1}(s)\Psi(s)x(s)\|ds \\ &\leq |\Psi(t)Y(t)P_1| \int_{t_0}^{t_1} \|Y^{-1}(s)B(s)x(s)\|ds \\ &+ K \sup_{t \ge t_0} \|\Psi(t)x(t)\| \int_{t_1}^{\infty} |\Psi(s)B(s)\Psi^{-1}(s)|ds \\ &+ K \sup_{t \ge t_0} \|\Psi(t)x(t)\| \int_t^{\infty} |\Psi(s)B(s)\Psi^{-1}(s)|ds \\ &< |\Psi(t)Y(t)P_1| \int_{t_0}^{t_1} \|Y^{-1}(s)B(s)x(s)\|ds + 2\frac{\varepsilon}{3}. \end{split}$$

Thus and assumption 3,

$$\lim_{t \to \infty} \|\Psi(t)(x(t) - y(t))\| = 0.$$
(3.3)

; From the hypotheses, [11, Theorem1 and 2] it follows that the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

Let x(t) be a Ψ -bounded solution on \mathbb{R}_+ of (1.2). From the assumption 4, this solution is Ψ -unstable on \mathbb{R}_+ . Let $y = C^{-1}x$. From Definition 2.4, it follows that there exists a sequence (y_n) of solutions of (1.3) defined on \mathbb{R}_+ such that

$$\lim_{n \to \infty} \Psi(t) y_n(t) = \Psi(t) y(t), \quad \text{uniformly on } \mathbb{R}_+,$$
$$\lim_{t \to \infty} \Psi(t) (y_n(t) - y(t)) = 0, \quad \text{for } n = 1, 2, \dots.$$

Let $x_n = Cy_n$. From (3.2) it follows that the sequence (x_n) of solutions of (1.2) defined on $[t_0, \infty)$ (in fact, defined on \mathbb{R}_+) satisfies the condition

$$\lim_{n\to\infty}\Psi(t)x_n(t)=\!\Psi(t)x(t),\quad\text{uniformly on }[t_0,\infty).$$

Clearly,

$$\lim_{n \to \infty} x_n(t_0) = x(t_0).$$

By the Dependence on initial conditions Theorem (see [6, Chapter I, Theorem 3]), it follows that

$$\lim_{n \to \infty} x_n(t) = x(t), \quad \text{uniformly on } [0, t_0].$$

Hence,

$$\lim_{n \to \infty} \Psi(t) x_n(t) = \Psi(t) x(t), \quad \text{uniformly on } [0, t_0].$$

Thus,

$$\lim_{n\to\infty}\Psi(t)x_n(t)=\!\Psi(t)x(t),\quad\text{uniformly on }\mathbb{R}_+.$$

This shows that the linear equation (1.2) is Ψ -conditionally stable on \mathbb{R}_+ . From (3.3) and

$$\Psi(t)(x_n(t) - x(t)) = \Psi(t)(x_n(t) - y_n(t)) + \Psi(t)(y_n(t) - y(t)) + \Psi(t)(y(t) - x(t)),$$

it follows that

$$\lim_{t \to \infty} \Psi(t)(x_n(t) - x(t)) = 0, \text{ for } n = 1, 2, \dots$$

This shows that the linear equation (1.2) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ . The proof is complete.

Theorem 3.5. Suppose that:

(1) There exist two supplementary projections P_1 , P_2 , $P_i \neq 0$, and a positive constant K such that the fundamental matrix Y(t) of the equation (1.3) satisfies the condition

$$\int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|ds + \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|ds \le K$$

for all $t \geq 0$.

(2) B(t) is a $d \times d$ continuous matrix function on \mathbb{R}_+ such that

$$\lim_{t \to \infty} |\Psi(t)B(t)\Psi^{-1}(t)| = 0.$$

Then, the linear equation (1.2) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

The proof of the above theorem is similar to the proof of Theorem 3.4.

Remark 3.6. The first condition of the above Theorems can certainly be satisfied if A(t) = A is a d×d real constant matrix which has characteristic roots with different real parts. In this case, e.g., there exists an interval $(\alpha, \beta) \subset \mathbb{R}$ such that for $\lambda \in (\alpha, \beta), \Psi(t) = e^{-\lambda t} I_d$ and Y(t) can satisfy the first hypotheses of Theorems.

We have a similar situation if A(t) is a $d \times d$ real continuous periodic matrix (See [12, Examples 1, 2]).

Thus, the above results can be considered as a generalization of a well-known result in conection with the classical conditional asymptotic stability.

Remark 3.7. If in the above Theorems, the linear equation (1.3) is only Ψ conditionally asymptotically stable on \mathbb{R}_+ , then the perturbed equation (1.2) can
not be Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

This is shown by the next example transformed after an equation due to Perron [19].

Example 3.8. Let $a, b \in \mathbb{R}$ such that $0 < 4a < 1, b \neq 0$ and

$$A(t) = \begin{pmatrix} \sin \ln(t+1) + \cos \ln(t+1) - 4a & 0\\ 0 & -2a \end{pmatrix}.$$

Then, a fundamental matrix for the homogeneous equation (1.3) is

$$Y(t) = \begin{pmatrix} e^{(t+1)[\sin\ln(t+1)-4a]} & 0\\ 0 & e^{-2a(t+1)} \end{pmatrix}.$$

Let

$$\Psi(t) = \begin{pmatrix} 1 & 0 \\ 0 & e^{a(t+1)} \end{pmatrix}.$$

 $\mathrm{EJDE}\text{-}2007/29$

We have

$$\Psi(t)Y(t) = \begin{pmatrix} e^{(t+1)[\sin\ln(t+1)-4a]} & 0\\ 0 & e^{-a(t+1)} \end{pmatrix}.$$

Let $t'_n = e^{(2n+\frac{1}{2})\pi} - 1$ for n = 1, 2... Since $\lim_{n \to \infty} |\Psi(t'_n)Y(t'_n)| = \infty$, it follows that the linear equation (1.3) is Ψ -unstable on \mathbb{R}_+ (see [11, Theorem 1])

From Theorem 3.1 it follows that the linear equation (1.3) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ . If we take

$$B(t) = \begin{pmatrix} 0 & be^{-2a(t+1)} \\ 0 & 0 \end{pmatrix},$$

then, a fundamental matrix for the perturbed equation (1.2) is

$$\widetilde{Y}(t) = \begin{pmatrix} be^{(t+1)[\sin\ln(t+1)-4a]} \int_{1}^{t+1} e^{-s\sin\ln s} ds & e^{(t+1)[\sin\ln(t+1)-4a]} \\ e^{-2a(t+1)} & 0 \end{pmatrix}.$$

We have

$$\Psi(t)\widetilde{Y}(t) = \begin{pmatrix} be^{(t+1)[\sin\ln(t+1)-4a]} \int_{1}^{t+1} e^{-s\sin\ln s} ds & e^{(t+1)[\sin\ln(t+1)-4a]} \\ e^{-a(t+1)} & 0 \end{pmatrix}.$$

Since $\lim_{n\to\infty} |\Psi(t'_n)\tilde{Y}(t'_n)| = \infty$, it follows that the perturbed equation (1.2) is Ψ -unstable on \mathbb{R}_+ (see [11, Theorem 1]).

Let $\alpha \in (0, \frac{\pi}{2})$. Let $\mathbf{t}_n = e^{(2n-\frac{1}{2})\pi}$ for $n = 1, 2, \ldots$ For $t_n \leq s \leq t_n e^{\alpha}$ we have $s \cos \alpha \leq -s \sin \ln s \leq s$ and hence

$$e^{t_n e^{\pi}(\sin\ln t_n e^{\pi} - 4a)} \int_1^{t_n e^{\pi}} e^{-s\sin\ln s} ds > e^{t_n e^{\pi}(\sin\ln t_n e^{\pi} - 4a)} \int_{t_n}^{t_n e^{\alpha}} e^{-s\sin\ln s} ds$$
$$\geq e^{t_n e^{\pi}(1 - 4a)} \int_{t_n}^{t_n e^{\alpha}} e^{s\cos\alpha} ds$$
$$= e^{t_n [(1 - 4a)e^{\pi} + \cos\alpha]} \frac{e^{t_n (e^{\alpha} - 1)\cos\alpha} - 1}{\cos\alpha} \to \infty$$

Thus, the columns of $\Psi(t)\tilde{Y}(t)$ are unbounded on \mathbb{R}_+ . It follows that the perturbed equation (1.2) is not Ψ -conditionally asymptotically stable on \mathbb{R}_+ (see Theorem 3.1).

Finally, we have $|\Psi(t)B(t)\Psi^{-1}(t) = be^{-3a(t+1)}$. Thus, B(t) satisfies the conditions:

$$\lim_{t \to \infty} |\Psi(t)B(t)\Psi^{-1}(t)| = 0;$$

and $\int_0^\infty |\Psi(t)B(t)\Psi^{-1}(t)| dt$ can be a sufficiently small number.

4. Ψ -conditional asymptotic stability of the nonlinear equation (1.1)

In this section we give sufficient conditions for the Ψ -conditional asymptotic stability of Ψ -bounded solutions of the nonlinear Volterra integro-differential system (1.1).

Theorem 4.1. Suppose that:

(1) There exist supplementary projections P_1 , P_2 , $P_i \neq 0$ and a constant K > 0such that the fundamental matrix Y(t) of (1.3) satisfies the condition

$$\int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|ds + \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|ds \le K$$

for all $t \geq 0$.

(2) The function F(t, s, x) satisfies the inequality

$$\|\Psi(t) \left(F(t, s, x(s)) - F(t, s, y(s)) \right) \| \le f(t, s) \|\Psi(s) \left(x(s) - y(s) \right) \|,$$

for $0 \leq s \leq t < \infty$ and for all continuous and Ψ -bounded functions $x, y : \mathbb{R}_+ \to \mathbb{R}^d$, where f(t,s) is a continuous nonnegative function on D such that

$$F(t, s, 0) = 0, \quad \lim_{t \to \infty} \int_0^t f(t, s) ds = 0, \quad \sup_{t \ge 0} \int_0^t f(t, s) ds < K^{-1}$$

Then, all Ψ -bounded solutions of (1.1) are Ψ -conditionally asymptotically stable on \mathbb{R}_+ .

Proof. Let

$$q = K \sup_{t \ge 0} \int_0^t f(t, s) ds < 1.$$

We put

 $S = \{ x : \mathbb{R}_+ \to R^d : x \text{ is continuous and } \Psi \text{-bounded on } \mathbb{R}_+ \}.$

Define on the set S a norm by

$$|||x||| = \sup_{t \ge 0} \|\Psi(t)x(t)\|.$$

It is well-known that $(S, ||| \cdot |||)$ is a Banach space. For $x \in S$, we define

$$\begin{split} (Tx)\,(t) &= \int_0^t Y(t) P_1 Y^{-1}(s) \int_o^s F(s,u,x(u))\,du\,ds \\ &\quad -\int_t^\infty Y(t) P_2 Y^{-1}(s) \int_o^s \ F(s,u,x(u))\,du\,ds, t \geq 0. \end{split}$$

For $0 \le t \le v$, we have

$$\begin{split} \|\Psi(t)\int_{t}^{v}Y(t)P_{2}Y^{-1}(s)\int_{o}^{s}F(s,u,x(u))\,du\,ds\| \\ &=\|\int_{t}^{v}\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)\int_{o}^{s}\Psi(s)F(s,u,x(u))du\,ds\| \\ &\leq \int_{t}^{v}|\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)|\int_{o}^{s}\|\Psi(s)F(s,u,x(u))\|\,du\,ds \\ &\leq \int_{t}^{v}|\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)|\int_{0}^{s}f(s,u)\|\Psi(u)x(u)\|\,du\,ds \\ &\leq \sup_{u\geq 0}\|\Psi(u)x(u)\|\int_{t}^{v}|\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)|\int_{0}^{s}f(s,u)\,du\,ds \\ &\leq qK^{-1}\sup_{u\geq 0}\|\Psi(u)x(u)\|\int_{t}^{v}|\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)|ds. \end{split}$$

¿From assumption 1, it follows that the integral

$$\int_t^\infty Y(t) P_2 Y^{-1}(s) \int_o^s F(s,u,x(u)) \, du \, ds$$

is convergent. Thus, (Tx)(t) exists and is continuous for $t \ge 0$. For $x \in S$ and $t \ge 0$, we have

$$\begin{split} \|\Psi(t)(Tx)(t)\| &= \|\int_0^t \Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)\int_o^s \Psi(s)F(s,u,x(u))\,du\,ds \\ &-\int_t^\infty \Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)\int_o^s \Psi(s)F(s,u,x(u))\,du\,ds \| \\ &\leq \int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|\int_o^s \|\Psi(s)F(s,u,x(u))\|\,du\,ds \\ &+\int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|\int_o^s f(s,u)\|\Psi(u)x(u)\|\,du\,ds \\ &\leq \int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|\int_o^s f(s,u)\|\Psi(u)x(u)\|\,du\,ds \\ &+\int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|\int_o^s f(s,u)\|\Psi(u)x(u)\|\,du\,ds \\ &\leq g\sup_{u\geq 0} \|\Psi(u)x(u)\|. \end{split}$$

$$\begin{split} & \text{This shows that } TS \subseteq S. \text{ On the other hand, for } x, y \in S \text{ and } t \geq 0, \text{ we have} \\ & \|\Psi(t)\left((Tx)(t) - (Ty)(t)\right)\| \\ & = \|\int_0^t \Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)\int_o^s \Psi(s)\left(F(s,u,x(u)) - F(s,u,y(u))\right) \, du \, ds \\ & -\int_t^\infty \Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)\int_o^s \Psi(s)\left(F(s,u,x(u)) - F(s,u,y(u))\right) \, du \, ds \| \\ & \leq \int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|\int_o^s \|\Psi(s)\left(F(s,u,x(u)) - F(s,u,y(u))\right)\| \, du \, ds \\ & +\int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|\int_o^s f(s,u)\|\Psi(u)(x(u) - y(u))\| \, du \, ds \\ & \leq \int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)|\int_0^s f(s,u)\|\Psi(u)(x(u) - y(u))\| \, du \, ds \\ & +\int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|\int_0^s f(s,u)\|\Psi(u)(x(u) - y(u))\| \, du \, ds \\ & \leq \sup_{u\geq 0} \|\Psi(u)(x(u) - y(u))\|. \end{split}$$

It follows that

$$\sup_{t \ge 0} \|\Psi(t) \left((Tx)(t) - (Ty)(t) \right)\| \le q \sup_{t \ge 0} \|\Psi(t)(x(t) - y(t))\|$$

Thus, we have

$$|||Tx - Ty||| \le q|||x - y|||.$$

This shows that T is a contraction of the Banach space $(S, ||| \cdot |||)$.

As in the Proof of Theorem 3.4, it follows by the Banach contraction principle that for any function $y \in S$, the integral equation

$$x = y + Tx \tag{4.1}$$

has a unique solution $x \in S$. Furthermore, by the definition of T, x(t) - y(t) is differentiable and

$$(x(t) - y(t))' = A(t) (x(t) - y(t)) + \int_0^t F(t, s, x(s)) ds, t \ge 0.$$

Hence, if y(t) is a Ψ -bounded solution of (1.3), x(t) is a Ψ -bounded solution of (1.1). Conversely, if x(t) is a Ψ -bounded solution of (1.1), the function y(t) defined by (4.1) is a Ψ -bounded solution of (1.3).

Thus, (4.1) establishes a one-to-one correspondence C between the Ψ -bounded solutions of (1.1) and (1.3): x = Cy.

Now, we consider the analogous equation

$$x_0 = y_0 + Tx_0$$

We get

$$(1-q)||| |x-x_0||| \le ||| |y-y_0|||.$$
(4.2)

Now, we prove that if $x, y \in S$ are Ψ -bounded solutions of (1.1) and (1.3) respectively such that x = Cy, then

$$\lim_{t \to \infty} \|\Psi(t)(x(t) - y(t))\| = 0.$$
(4.3)

For a given $\varepsilon > 0$, we can choose $t_1 \ge 0$ such that

$$K|||x||| \int_0^t f(t,s)ds < \frac{\varepsilon}{2},$$

for $t \ge t_1$. Moreover, since $\lim_{t\to\infty} |\Psi(t)Y(t)P_1| = 0$ (see [11, Lemma 1]), there exists a number $t_2 \ge t_1$ such that

$$qK^{-1}|\Psi(t)Y(t)P_1||||x|||\int_0^{t_1}|P_1Y^{-1}(s)\Psi^{-1}(s)|ds| < \frac{\varepsilon}{2}$$

for $t \ge t_2$. We have, for $t \ge t_2$,

$$\begin{split} \|\Psi(t)(x(t) - y(t))\| \\ &\leq \int_{0}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)| \int_{o}^{s} \|\Psi(s)F(s,u,x(u))\| \, du \, ds + \\ &+ \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \int_{o}^{s} \|\Psi(s)F(s,u,x(u))\| \, du \, ds \\ &\leq \int_{0}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)| \int_{0}^{s} f(s,u)\|\Psi(u)x(u)\| \, du \, ds \\ &+ \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \int_{o}^{s} f(s,u)\|\Psi(u)x(u)\| \, du \, ds \\ &\leq qK^{-1}|\Psi(t)Y(t)P_{1}| |||x||| \int_{0}^{t_{1}} |P_{1}Y^{-1}(s)\Psi^{-1}(s)| ds \\ &+ |||x||| \int_{t_{1}}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)| \Big(\int_{0}^{s} f(s,u)du\Big) ds \\ &+ |||x||| \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \Big(\int_{0}^{s} f(s,u)du\Big) ds < \varepsilon. \end{split}$$

Now, let x(t) be a Ψ -bounded solution of (1.1). This solution is Ψ -unstable on \mathbb{R}_+ .

Indeed, if not, for every $\varepsilon \downarrow 0$ and any $t_0 \ge 0$, there exists a $\delta = \delta(\varepsilon, t_0) > 0$ such that any solution $\widetilde{x}(t)$ of (1.1) which satisfies the inequality $\|\Psi(t_0)(\widetilde{x}(t_0) - x(t_0))\| < \delta(\varepsilon, t_0)$ exists and satisfies the inequality $\|\Psi(t)(\widetilde{x}(t) - x(t))\| < \varepsilon$ for all $t \ge t_0$.

Let $z_0 \in \mathbb{R}^d$ be such that $P_1 z_0 = 0$ and $0 < ||\Psi(0)z_0|| < \delta(\varepsilon, 0)$ and let $\widetilde{x}(t)$ the solution of (1.1) with the initial condition $\widetilde{x}(0) = x(0) + z_0$. Then $||\Psi(t)z(t)|| < \varepsilon$ for all $t \ge 0$, where $z(t) = \widetilde{x}(t) - x(t)$.

Now we consider the function $y(t) = z(t) - (Tz)(t), t \ge 0$.

Clearly, y(t) is a Ψ -bounded solution on \mathbb{R}_+ of (1.3). Without loss of generality, we can suppose that Y(0) = I. It is easy to see that $P_1y(0) = 0$. If $P_2y(0) \neq 0$, from [11, Lemma 2], it follows that $\limsup_{t\to\infty} ||\Psi(t)y(t)|| = \infty$, which is contradictory. Thus, $P_2y(0) = 0$ and then y(t) = 0 for $t \geq 0$.

It follows that z = Tz and then z = 0, which is a contradiction. This shows that the solution x(t) is Ψ -unstable on \mathbb{R}_+ .

Let y = x - Tx. From Theorem 3.3, it follows that there exists a sequence (y_n) of solutions of (1.3) defined on \mathbb{R}_+ such that

$$\lim_{n \to \infty} \Psi(t) y_n(t) = \Psi(t) y(t), \quad \text{uniformly on } \mathbb{R}_+,$$
$$\lim_{t \to \infty} \Psi(t) (y_n(t) - y(t)) = 0, \quad n = 1, 2, \dots$$

Let $x_n = Cy_n$. From (4.2) it follows that the sequence (x_n) of solutions of (1.1) defined on \mathbb{R}_+ is such that

$$\lim_{n \to \infty} \Psi(t) x_n(t) = \Psi(t) x(t), \quad \text{uniformly on } \mathbb{R}_+.$$

This shows that the solution x(t) is Ψ -conditionally stable on \mathbb{R}_+ . From (4.3) and $\Psi(t)(x_n(t) - x(t)) = \Psi(t)(x_n(t) - y_n(t)) + \Psi(t)(y_n(t) - y(t)) + \Psi(t)(y(t) - x(t)),$ it follows that

$$\lim_{t \to \infty} \Psi(t)(x_n(t) - x(t)) = 0, \text{ for } n = 1, 2, \dots$$

This shows that the solution x(t) is Ψ -conditionally asymptotically stable on \mathbb{R}_+ . The proof is now complete.

Corollary 4.2. If in Theorem 4.1 we assume that f(t.s) = g(t)h(s), where g and h are nonnegative continuous functions on \mathbb{R}_+ such that

$$\sup_{t \ge 0} g(t) \int_0^t h(s) ds < K^{-1},$$
$$\lim_{t \to \infty} g(t) \int_0^t h(s) ds = 0,$$

then the conclusion of the Theorem remains valid.

Corollary 4.3. If in Theorem 4.1 we assume that f(t.s) = g(t)h(s), where g and h are nonnegative continuous functions on \mathbb{R}_+ such that

$$\begin{split} I &= \int_0^\infty h(s)\,ds \quad is \ convergent, \\ \lim_{t\to\infty} g(t) &= 0, \quad \sup_{t\ge 0} g(t) < \frac{1}{KI}, \end{split}$$

then the conclusion of the Theorem remains valid.

References

- Akinyele, O. On partial stability and boundedness of degree k; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), 259 - 264.
- [2] Akinyele, O. On the φ-stability for differential systems; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (4), 68(1980), 287 - 293.
- [3] Avramescu, C. Asupra comportării asimptotice a solutiilor unor ecuatii functionale; Analele Universității din Timisoara, Seria Stiinte Matematice-Fizice, vol. VI, 1968, 41 - 55.
- [4] Constantin, A. Asymptotic properties of solutions of differential equations; Analele Universitătii din Timisoara, Seria Stiinte Matematice, vol. XXX, fasc. 2-3, 1992, 183 - 225.
- [5] Constantin, A. A note on the φ-stability for differential systems; Boll. Un. Math. Ital., 6A(1992), 233 - 243.
- [6] Coppel, W.A. Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
- [7] Coppel, W.A. On the stability of ordinary differential equations, J. London Math. Soc. 38(1963), 255 - 260.
- [8] Diamandescu, A. On the Ψ-stability of a nonlinear Volterra integro-differential system; Electron. J. Diff. Eqns., Vol. 2005(2005), No. 56, pp. 1 14; URL http://ejde.math.txstate.edu
- [9] Diamandescu, A. On the Ψ-asymptotic stability of a nonlinear Volterra integro-differential system; Bull. Math. Sc. Math. Roumanie, Tome 46(94), No. 1-2, 2003, pp. 39 - 60.
- [10] Diamandescu, A. On the Ψ-uniform asymptotic stability of a nonlinear Volterra integrodifferential system; Analele Universității de Vest Timişoara, Seria Matematică - Informatică, Vol. XXXIX, fasc. 2, 2001, pp. 35 - 62.
- [11] Diamandescu, A. On the Ψ-instability of a nonlinear Volterra integro-differential system; Bull. Math. Sc. Math. Roumanie, Tome 46(94), No. 3 - 4, 2003, pp. 103 - 119..
- [12] Diamandescu, A. On the Ψ-conditional stability of the solutions of a nonlinear Volterra integro-differential system; Proceedings of the National Conference on Mathematical Analysis and Applications, Timişoara, 12-13 Dec. 2000, pp. 89 - 106.
- [13] Halam, T.G. On asymptotic equivalence of the bounded solutions of two systems of differential equations; Mich. Math. Journal., Vol. 16(1969), 353 - 363.
- [14] Hara, T., Yoneyama, T. and Ytoh, T. Asymptotic Stability Criteria for Nonlinear Volterra Integro - Differential Equations; Funkcialaj Ecvacioj, 33(1990), 39 - 57.
- [15] Kuben, J. Asymptotic equivalence of second order differential equations; Czech. Math. J. 34(109), (1984), 189 - 202.
- [16] Lakshmikantham, V. and Rama Mohana Rao, M. Stability in variation for nonlinear integrodifferential equations; Appl. Anal. 24(1987), 165 - 173.
- [17] Mahfoud, W.E. Boundedness properties in Volterra integro-differential systems; Proc. Amer. Math. Soc., 100(1987), 37 - 45.
- [18] Morchalo, J. On Ψ L_p-stability of nonlinear systems of differential equations; Analele Stiintifice ale Universitătii quotedblright Al. I. Cuzaquotedblright Iasi, Tomul XXXVI, s. I a, Matematică, 1990, f. 4, 353 - 360.
- [19] Perron, O. Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32(1930), 703 728.
- [20] Sansone, G. and Conti, R. Non-linear differential equations, Pergamon Press, 1964.
- [21] Späth, H. Uber das asymptotische Verhalten der Lö sungenlinearer Differentialgleichungen, Math. Z., 30(1929), 487 - 513.
- [22] Weyl, H. Comment on the preceding paper, Amer. J. Math., 68(1946), 7 12.
- [23] Yoshizawa, T. Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, 1966.

Aurel Diamandescu

Department of Applied Mathematics, University of Craiova, 13, "Al. I. Cuza" st., 200585, Craiova, Romania

E-mail address: adiamandescu@central.ucv.ro