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POSITIVE SOLUTIONS OF NONLINEAR M-POINT
BOUNDARY-VALUE PROBLEM FOR P-LAPLACIAN DYNAMIC

EQUATIONS ON TIME SCALES

YANBIN SANG, HUILING XI

Abstract. In this paper, we study the existence of positive solutions to non-
linear m-point boundary-value problems for a p-Laplacian dynamic equation

on time scales. We use fixed point theorems in cones and obtain criteria that

generalize and improve known results.

1. Introduction

Recently, there is much attention paid to the existence of positive solutions
for three-point boundary-value problems on time scales, see [2, 4, 8, 10, 12] and
references therein. However, there are not many results concerning the p-Laplacian
problems on time scales.

A time scale T is a nonempty closed subset of R. We make the blanket as-
sumption that (0, T ) are points in T. By an interval (0, T ), we always mean the
intersection of the real interval (0, T ) with the given time scale; that is (0, T ) ∩ T.

Anderson [2] discussed the dynamic equation on time scales:

u4∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ), (1.1)

u(0) = 0, αu(η) = u(T ). (1.2)

He obtained some results for the existence of one positive solution of the problem
(1.1) and (1.2) based on the limits f0 = limu→0+

f(u)
u and f∞ = limu→∞

f(u)
u as

well as existence of at least three positive solutions.
Kaufmann [8] studied the problem (1.1) and (1.2) and obtained existence results

of finitely many positive solutions and countably many positive solutions.
Sun and Li [12] considered the existence of positive solutions of the following

dynamic equations on time scales

u4∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T ), (1.3)

βu(0)− γu4(0) = 0, αu(η) = u(T ). (1.4)

2000 Mathematics Subject Classification. 34B18.
Key words and phrases. Time scale; three-point boundary-value problem; cone; fixed point;

positive solution.
c©2007 Texas State University - San Marcos.

Submitted May 15, 2006. Published February 27, 2007.

1



2 Y. SANG, H. XI EJDE-2007/34

They obtained the existence of single and multiple positive solutions of the problem
(1.3) and (1.4) by using a fixed point theorem and Leggett-Williams fixed point
theorem, respectively.

In this paper concerns the existence of positive solutions of the p-Laplacian
dynamic equations on time scales

(φp(u∆))∇ + a(t)f(t, u(t)) = 0, t ∈ (0, T ), (1.5)

φp(u∆(0)) =
m−2∑
i=1

aiφp(u∆(ξi)), u(T ) =
m−2∑
i=1

biu(ξi) (1.6)

where φp(s) is p-Laplacian operator, i.e., φp(s) = |s|p−2s, p > 1, φ−1
p = φq, 1

p + 1
q =

1, 0 < ξ1 < · · · < ξm−2 < ρ(T ), and ai, bi, a, f satisfy:

(H1) ai, bi ∈ [0,+∞) satisfy 0 <
∑m−2

i=1 ai < 1, and
∑m−2

i=1 bi < 1, T
∑m−2

i=1 bi ≥∑m−2
i=1 biξi;

(H2) a(t) ∈ Cld((0, T ), [0,+∞)) and there exists t0 ∈ (ξm−2, T ), such that
a(t0) > 0;

(H3) f ∈ C([0, T ]× [0,+∞), [0,+∞)).

We point out that when T = R and p = 2, (1.5), (1.6) becomes a boundary-value
problem of differential equations and is the problem considered in [11]. Our main
results extend and include the main results of [11].

The rest of the paper is arranged as follows. We state some basic time scale
definitions and prove several preliminary results in Section 2. Section 3 is devoted
to the existence of positive solutions of (1.5), (1.6), the main tool being a fixed
point theorem for cone-preserving operators.

2. Preliminaries

For convenience, we list the following definitions which can be found in [1, 3, 4,
5, 7].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R.
For t < sup T and r > inf T, define the forward jump operator σ and backward
jump operator ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,
ρ(r) = sup{τ ∈ T | τ < r} ∈ T.

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said
to be left scattered; if σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is
said to be left dense. If T has a right scattered minimum m, define Tk = T− {m};
otherwise set Tk = T. If T has a left scattered maximum M , define Tk = T−{M};
otherwise set Tk = T.

Definition 2.2. For f : T → R and t ∈ Tk, the delta derivative of f at the point t
is defined to be the number f4(t), (provided it exists), with the property that for
each ε > 0, there is a neighborhood U of t such that

|f(σ(t))− f(s)− f4(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U .
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For f : T → R and t ∈ Tk, the nabla derivative of f at t is the number f∇(t),
(provided it exists), with the property that for each ε > 0, there is a neighborhood
U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,
for all s ∈ U .

Definition 2.3. A function f is left-dense continuous (i.e. ld-continuous), if f
is continuous at each left-dense point in T and its right-sided limit exists at each
right-dense point in T. It is well-known that if f is ld-continuous, then there is a
function F (t) such that F∇(t) = f(t). In this case, it is defined that∫ b

a

f(t)∇t = F (b)− F (a).

If u4∇(t) ≤ 0 on [0, T ], then we say u is concave on [0, T ].
By a positive solution of (1.5), (1.6), we understand a function u(t) which is

positive on (0, T ), and satisfies (1.5), (1.6).
To prove the main results in this paper, we will employ several lemmas. These

lemmas are based on the linear boundary-value problem

(φp(u∆))∇ + h(t) = 0, t ∈ (0, T ), (2.1)

φp(u∆(0)) =
m−2∑
i=1

aiφp(u∆(ξi)), u(T ) =
m−2∑
i=1

biu(ξi) (2.2)

Lemma 2.4. For h ∈ Cld[0, T ] the BVP (2.1)–(2.2) has the unique solution

u(t) = −
∫ t

0

φq

( ∫ s

0

h(τ)∇τ −A
)
∆s+B, (2.3)

where

A = −
∑m−2

i=1 ai

∫ ξi

0
h(τ)∇τ

1−
∑m−2

i=1 ai

,

B =

∫ T

0
φq

( ∫ s

0
h(τ)∇τ −A

)
∆s−

∑m−2
i=1 bi

∫ ξi

0
φq

( ∫ s

0
h(τ)∇τ −A

)
∆s

1−
∑m−2

i=1 bi

Proof. Let u be as in (2.3). By [3, Theorem 2.10(iii)], taking the delta derivative
of (2.3), we have

u∆(t) = −φq

( ∫ t

0

h(τ)∇τ −A
)
,

moreover, we get

φp(u∆) = −
( ∫ t

0

h(τ)∇τ −A
)
,

taking the nabla derivative of this expression yields (φp(u∆))∇ = −h(t). And
routine calculation verify that u satisfies the boundary value conditions in (2.2), So
that u given in (2.3) is a solution of (2.1) and (2.2).

It is easy to see that the BVP

(φp(u∆))∇ = 0, φp(u∆(0)) =
m−2∑
i=1

aiφp(u∆(ξi)), u(T ) =
m−2∑
i=1

biu(ξi)
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has only the trivial solution. Thus u in (2.3) is the unique solution of (2.1), (2.2).
The proof is complete. �

Lemma 2.5. Assume (H1) holds, For h ∈ Cld[0, T ] and h ≥ 0, then the unique
solution u of (2.1)–(2.2) satisfies u(t) ≥ 0, for t ∈ [0, T ].

Proof. Let

ϕ0(s) = φq

( ∫ s

0

h(τ)∇τ −A
)
.

Since ∫ s

0

h(τ)∇τ −A =
∫ s

0

h(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
h(τ)∇τ

1−
∑m−2

i=1 ai

≥ 0,

it follows that ϕ0(s) ≥ 0. According to Lemma 2.4, we get

u(0) = B

=

∫ T

0
ϕ0(s)∆s−

∑m−2
i=1 bi

∫ ξi

0
ϕ0(s)∆s

1−
∑m−2

i=1 bi

=

∫ T

0
ϕ0(s)∆s−

∑m−2
i=1 bi

( ∫ T

0
ϕ0(s)∆s−

∫ T

ξi
ϕ0(s)∆s

)
1−

∑m−2
i=1 bi

=
∫ T

0

ϕ0(s)∆s+

∑m−2
i=1 bi

∫ T

ξi
ϕ0(s)∆s

1−
∑m−2

i=1 bi
≥ 0.

and

u(T ) = −
∫ T

0

ϕ0(s)∆s+B

= −
∫ T

0

ϕ0(s)∆s+

∫ T

0
ϕ0(s)∆s−

∑m−2
i=1 bi

∫ ξi

0
ϕ0(s)∆s

1−
∑m−2

i=1 bi

=

∑m−2
i=1 bi

∫ T

ξi
ϕ0(s)∆s

1−
∑m−2

i=1 bi
≥ 0.

If t ∈ (0, T ), we have

u(t) = −
∫ t

0

ϕ0(s)∆s+
1

1−
∑m−2

i=1 bi

[ ∫ T

0

ϕ0(s)∆s−
m−2∑
i=1

bi

∫ ξi

0

ϕ0(s)∆s
]

≥ −
∫ T

0

ϕ0(s)∆s+
1

1−
∑m−2

i=1 bi

[ ∫ T

0

ϕ0(s)∆s−
m−2∑
i=1

bi

∫ ξi

0

ϕ0(s)∆s
]

=
1

1−
∑m−2

i=1 bi

[
−

(
1−

m−2∑
i=1

bi
) ∫ T

0

ϕ0(s)∆s+
∫ T

0

ϕ0(s)∆s

−
m−2∑
i=1

bi

∫ ξi

0

ϕ0(s)∆s
]

=
1

1−
∑m−2

i=1 bi

m−2∑
i=1

bi

∫ T

ξi

ϕ0(s)∆s ≥ 0.
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So u(t) ≥ 0, t ∈ [0, T ]. The proof is complete. �

Lemma 2.6. Assume (H1) holds, if h ∈ Cld[0, T ] and h ≥ 0, then the unique
solution u of (2.1)–(2.2) satisfies

inf
t∈[0,T ]

u(t) ≥ γ‖u‖,

where

γ =
∑m−2

i=1 bi(T − ξi)

T −
∑m−2

i=1 biξi
, ‖u‖ = sup

t∈[0,T ]

|u(t)|.

Proof. It is easy to check that u∆(t) = −ϕ(t) ≤ 0, this implies

‖u‖ = u(0), min
t∈[0,T ]

u(t) = u(T ).

It is easy to see that u∆(t2) ≤ u∆(t1) for any t1, t2 ∈ [0, T ] with t1 ≤ t2. Hence
u∆(t) is a decreasing function on [0, T ]. This means that the graph of u∆(t) is
concave down on (0, T ). For each i ∈ {1, 2, . . . ,m− 2}, we have

u(T )− u(0)
T − 0

≥ u(T )− u(ξi)
T − ξi

,

i.e., Tu(ξi)− ξiu(T ) ≥ (T − ξi)u(0), so that

T
m−2∑
i=1

biu(ξi)−
m−2∑
i=1

biξiu(T ) ≥
m−2∑
i=1

bi(T − ξi)u(0).

With the boundary condition u(T ) =
∑m−2

i=1 biu(ξi), we have

u(T ) ≥
∑m−2

i=1 bi(T − ξi)

T −
∑m−2

i=1 biξi
u(0).

This completes the proof. �

Let the norm on Cld[0, T ] be the sup norm. Then Cld[0, T ] is a Banach space.
It is easy to see that (1.5)–(1.6) has a solution u = u(t) if and only if u is a fixed
point of the operator

(Au)(t) = −
∫ t

0

φq

( ∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã
)
∆s+ B̃, (2.4)

where

Ã = −
∑m−2

i=1 ai

∫ ξi

0
a(τ)f(τ, u(τ))∇τ

1−
∑m−2

i=1 ai

,

B̃ =
[ ∫ T

0

φq

( ∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã
)
∆s

−
m−2∑
i=1

bi

∫ ξi

0

φq

( ∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã
)
∆s

] 1
1−

∑m−2
i=1 bi

.

Denote
K =

{
u : u ∈ Cld[0, T ], u(t) ≥ 0, inf

t∈[0,T ]
u(t) ≥ γ‖u‖

}
,

where γ is the same as in Lemma 2.6. It is obvious that K is a cone in Cld[0, T ]. By
Lemma 2.6, A(K) ⊂ K. It is easy to see that A : K → K is completely continuous.
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Lemma 2.7. Let

ϕ(s) = φq

( ∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã
)
.

For ξi, (i = 1, . . . ,m− 2), then∫ ξi

0

ϕ(s)∆s ≤ ξi
T

∫ T

0

ϕ(s)∆s.

Proof. Since∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã =
∫ s

0

a(τ)f(τ, u(τ))∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)f(τ, u(τ))∇τ

1−
∑m−2

i=1 ai

which greater than or equal to zero, we have ϕ(s) ≥ 0. Now, for all t ∈ (0, T ], we
have (∫ t

0
ϕ(s)∆s
t

)∆

=
tϕ(t)−

∫ t

0
ϕ(s)∆s

tσ(t)
≥ 0.

In fact, Let ψ(t) = tϕ(t) −
∫ t

0
ϕ(s)∆s, taking the delta derivative of the above

expression, we have
ψ∆(t) = tϕ∆(t) ≥ 0.

Hence, ψ(t) is a nondecreasing function on [0, T ]. i.e. ψ(t) ≥ 0. For all t ∈ (0, T ],∫ t

0
ϕ(s)∆s
t

≤
∫ T

0
ϕ(s)∆s
T

. (2.5)

By (2.4), for ξi, (i = 1, . . . ,m− 2), we have∫ ξi

0

ϕ(s)∆s ≤ ξi
T

∫ T

0

ϕ(s)∆s.

The proof is complete. �

The following well-known result of the fixed point theorems is needed in our
arguments.

Lemma 2.8 ([6]). Let K be a cone in a Banach space X. Let D be an open bounded
subset of X with DK = D ∩K 6= φ and DK 6= K. Assume that A : DK → K is a
compact map such that x 6= AK for x ∈ ∂DK . Then the following results hold:

(1) If ‖Ax‖ ≤ ‖x‖ for x ∈ ∂DK , then i(A,DK ,K) = 1;
(2) If there exists x0 ∈ K\{θ} such that x 6= Ax + λx0, for all x ∈ ∂DK and

all x > 0, then i(A,DK ,K) = 0;
(3) Let U be an open set in X such that U ⊂ DK . If i(A,U,K) = 1 and

i(A,DK ,K) = 0, then A has a fixed point in DK\UK . The same results
holds, if i(A,U,K) = 0 and i(A,DK ,K) = 1.

We define

Kρ = {u(t) ∈ K : ‖u‖ < ρ}, Ωρ = {u(t) ∈ K : min
ξm−2≤t≤T

u(t) < γρ}.

Lemma 2.9 ([9]). The set Ωρ defined above has the following properties:
(a) Kγρ ⊂ Ωρ ⊂ Kρ;
(b) Ωρ is open relative to K;
(c) X ∈ ∂Ωρ if and only if minξm−2≤t≤T x(t) = γρ;
(d) If x ∈ ∂Ωρ, then γρ ≤ x(t) ≤ ρ for t ∈ [ξm−2, T ].
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For our convenience, we introduce the following notation:

fρ
γρ = min

{
min

ξm−2≤t≤T

f(t, u)
φp(ρ)

: u ∈ [γρ, ρ]
}
,

fρ
0 = max

{
max

0≤t≤T

f(t, u)
φp(ρ)

: u ∈ [0, ρ]
}
,

fα = lim
u→α

sup max
0≤t≤T

f(t, u)
φp(u)

, fα = lim
u→α

inf max
ξm−2≤t≤T

f(t, u)
φp(u)

, (α := ∞ or 0+),

m =
{ 1

1−
∑m−2

i=1 bi

∫ T

0

φq

[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
∆s

}−1

, (2.6)

M =
{T ∑m−2

i=1 bi −
∑m−2

i=1 biξi

T (1−
∑m−2

i=1 bi)

∫ T

0

φq

[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
∆s

}−1

(2.7)

Lemma 2.10. If f satisfies the conditions

fρ
0 ≤ φp(m) and u 6= Au (2.8)

for u ∈ ∂Kρ, then i(A,Kρ,K) = 1.

Proof. By (2.6) and (2.8), for all u ∈ ∂Kρ, we have∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã

=
∫ s

0

a(τ)f(τ, u(τ))∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)f(τ, u(τ))∇τ

1−
∑m−2

i=1 ai

≤ Φp(ρ)φp(m)
[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
,

so that

ϕ(s) = Φq

( ∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã
)

≤ ρmΦq

[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
.

Therefore, by (2.4), we have

‖Au‖ ≤ B̃ =
1

1−
∑m−2

i=1 bi

( ∫ T

0

ϕ(s)∆s−
m−2∑
i=1

bi

∫ ξi

0

ϕ(s)∆s
)

≤ 1
1−

∑m−2
i=1 bi

∫ T

0

ϕ(s)∆s

≤ ρm
1

1−
∑m−2

i=1 bi

∫ T

0

φq

[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
∆s

= ρ = ‖u‖.
This implies ‖Au‖ ≤ ‖u‖ for u ∈ ∂ Kρ. By Lemma 2.8(1), we have i(A,Kρ,K) =
1. �
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Lemma 2.11. If f satisfies the conditions

fρ
γρ ≥ Φp(Mγ) and u 6= Au (2.9)

for u ∈ ∂Ωρ, then i(A,Ωρ,K) = 0.

Proof. Let e(t) ≡ 1, for t ∈ [0, T ]; then e ∈ ∂K1. We claim that u 6= Au + λe for
u ∈ ∂ Ωρ, and λ > 0. In fact, if not, there exist u0 ∈ ∂Ω, and λ0 > 0 such that
u0 = Au0 + λ0e. By (2.7) and (2.9), for t ∈ [0, T ], we have∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã

=
∫ s

0

a(τ)f(τ, u(τ))∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)f(τ, u(τ))∇τ

1−
∑m−2

i=1 ai

≥ Φp(ρ)φp(Mγ)
[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
,

so that

ϕ(s) = Φq

( ∫ s

0

a(τ)f(τ, u(τ))∇τ − Ã
)

≥ ρMγΦq

[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
.

Applying (2.4) and Lemma 2.7, it follows that

u0(t) = Au0(t) + λ0e(t)

≥ −
∫ T

0

ϕ(s)∆s+
1

1−
∑m−2

i=1 bi

( ∫ T

0

ϕ(s)∆s−
m−2∑
i=1

bi

∫ ξi

0

ϕ(s)∆s
)

+ λ0

=
∑m−2

i=1 bi

1−
∑m−2

i=1 bi

∫ T

0

ϕ(s)∆s−
∑m−2

i=1 bi
∫ ξi

0
ϕ(s)∆s

1−
∑m−2

i=1 bi
+ λ0

≥
∑m−2

i=1 bi

1−
∑m−2

i=1 bi

∫ T

0

ϕ(s)∆s−
∑m−2

i=1 biξi

T (1−
∑m−2

i=1 bi)

∫ T

0

ϕ(s)∆s+ λ0

=
T

∑m−2
i=1 bi −

∑m−2
i=1 biξi

T (1−
∑m−2

i=1 bi)

∫ T

0

ϕ(s)∆s+ λ0

≥ γρM
T

∑m−2
i=1 bi −

∑m−2
i=1 biξi

T (1−
∑m−2

i=1 bi)

×
∫ T

0

φq

[ ∫ s

0

a(τ)∇τ +
∑m−2

i=1 ai

∫ ξi

0
a(τ)∇τ

1−
∑m−2

i=1 ai

]
∆s+ λ0

= γρ+ λ0

This implies γρ ≥ γρ + λ0, a contradiction. Hence, by Lemma 2.8 (2), it follows
that i(A,Ωρ,K) = 0. �
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3. Existence of Positive Solutions

We now present our results on the existence of positive solutions for (1.5)–(1.6)
under the assumptions:

(H4) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < γρ2 such that

fρ1
0 ≤ φp(m), fρ2

γρ2
≥ φp(Mγ);

(H5) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

fρ2
0 ≤ φp(m), fρ1

γρ1
≥ φp(Mγ).

Theorem 3.1. Assume that (H1)–(H3) and either (H4) or (H5) hold. Then (1.5)–
(1.6) has a positive solution.

Proof. Assume that (H4) holds. We show that A has a fixed point u1 in Ωρ2\Kρ1 .
By Lemma 2.10, we have

i(A,Kρ1 ,K) = 1.
By Lemma 2.11, we have

i(A,Kρ2 ,K) = 0.

By Lemma 2.9 (a) and ρ1 < γρ2, we have Kρ1 ⊂ Kγρ2 ⊂ Ωρ2 . It follows from
Lemma 2.8(3) that A has a fixed point u1 in Ωρ2\Kρ1 , The proof is similar when
H5 holds, and we omit it here. The proof is complete. �

As a special case of Theorem 3.1, we obtain the following result, under assump-
tions

(H6) 0 ≤ f0 < φp(m) and φp(M) < f∞ ≤ ∞;
(H7) 0 ≤ f∞ < φp(m) and φp(M) < f0 ≤ ∞.

Corollary 3.2. Assume that (H1)–(H3) and either (H6) or (H7) hold. Then (1.5)–
(1.6) has a positive solution.

For the next result we use the following assumptions:
(H8) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < γρ2 and ρ2 < ρ3 such that

fρ1
0 ≤ φp(m), fρ2

γρ2
≥ φp(Mγ), u 6= Au, ∀ u ∈ ∂Ωρ2 and fρ3

0 ≤ φp(m);

(H9) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < ρ2 < γρ3 such that

fρ2
0 ≤ φp(m), fρ1

γρ1
≥ φp(Mγ), u 6= Au, ∀ u ∈ ∂Kρ2 , and fρ3

γρ3
≥ φp(Mγ).

Theorem 3.3. Assume that (H1)–(H3) and either (H8) or (H9) hold. Then (1.5)–
(1.6) has two positive solutions. Moreover, if in (H8), fρ1

0 ≤ φp(m) is replaced by
fρ1
0 < φp(m), then (1.5)–(1.6) has a third positive solution u3 ∈ Kρ1 .

Proof. Assume that (H8) holds. We show that either A has a fixed point u1 in
∂Kρ1 or in Ωρ2\Kρ1 . If u 6= Au for u ∈ ∂Kρ1 ∪ ∂Kρ3 , then by Lemmas 2.10 and
2.11, we have

i(A,Kρ1 ,K) = 1, i(A,Kρ3 ,K) = 1, i(A,Kρ2 ,K) = 0.

By Lemma 2.9 (a) and ρ1 < γρ2, we have Kρ1 ⊂ Kγρ2 ⊂ Ωρ2 . It follows from
Lemma 2.8 (3) that A has a fixed point u1 in Ωρ2\Kρ1 . Similarly, A has a fixed
point in Kρ3\Ωρ2 . The proof is similar when (H9) holds and we omit it here. The
proof is complete. �
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As a special case of Theorem 3.3, we obtain the following result, using the as-
sumptions:
(H10) 0 ≤ f0 < φp(m), fρ

γρ ≥ φp(Mγ), u 6= Au, for all u ∈ ∂Ωρ and 0 ≤ f∞ <
φp(m);

(H11) φp(m) < f0 ≤ ∞, fρ
0 ≤ φp(m), u 6= Au, for all u ∈ ∂Kρ and φp(M) <

f∞ ≤ ∞.

Corollary 3.4. Assume (H1)–(H3). If there exist ρ > 0 such that either (H10) or
(H11) hold, then (1.5)–(1.6) has two positive solutions.

Note that when T = R, (0, T ) = (0, 1), and p = 2, Theorems 3.1 and 3.3 here
improve [11, Theorem 3.1].

References

[1] R. P. Agarwal, D. O’Regan, Nonlinear boundary value problems on time scales, Nonl. Anal.

44 (2001), 527-535.

[2] D. R. Anderson, Solutions to second-order three-point problems on time scales, J. Differ. Equ.
Appl. 8 (2002), 673-688.

[3] F. M. Atici, G. Sh. Gnseinov, On Green’n functions and positive solutions for boundary value

problems on time scales, J. Comput. Anal. Math. 141 (2002), 75-99.
[4] M. Bohner, A. Peterson, Advances in Dynamic Equations on time scales, Birkh ä user Boston,
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