Electronic Journal of Differential Equations, Vol. 2007(2007), No. 35, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EIGENCURVES OF THE p-LAPLACIAN WITH WEIGHTS AND THEIR ASYMPTOTIC BEHAVIOR

AHMED DAKKAK, MOHAMMED HADDA

Abstract

In this paper we study the existence of the eigencurves of the p-Laplacian with indefinite weights. We obtain also their variational formulations and asymptotic behavior.

1. Introduction and preliminaries

We consider the nonlinear eigenvalue problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda m(x)|u|^{p-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N},-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $1<p<\infty, m \in \mathcal{L}^{\infty}(\Omega)$ is a weight function which can change sign and verifies

$$
\operatorname{meas}\{x \in \Omega: m(x)>0\} \neq 0
$$

We denote

$$
\mathcal{M}^{+}(\Omega)=\left\{m \in \mathcal{L}^{\infty}(\Omega): \text { meas }\{x \in \Omega: m(x)>0\} \neq 0\right\}
$$

We say that λ is a eigenvalue of p-Laplacian with weight m, when the problem 1.1) has at least a nontrivial solution u in $\mathcal{W}_{0}^{1, p}(\Omega)$. The set of positive eigenvalues constitutes the spectrum $\sigma^{+}\left(-\Delta_{p}, m, \Omega\right)$ of p-Laplacian with weight m in the domain Ω. This spectrum contains an infinite sequence given by $\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \rightarrow+\infty$ and formulated as follows

$$
\begin{equation*}
\frac{1}{\lambda_{n}}=\frac{1}{\lambda_{n}(m)}=\sup _{K \in \Gamma_{n}} \min _{u \in K} \int_{\Omega} m|u|^{p} \tag{1.2}
\end{equation*}
$$

where Γ_{n} is defined by

$$
\Gamma_{n}=\{K \subset S: K \text { is symetric, compact and } \gamma(K) \geq n\}
$$

$S=\left\{u \in \mathcal{W}_{0}^{1, p}(\Omega): \int_{\Omega}|\nabla u|^{p}=1\right\}$ is the sphere unity of $\mathcal{W}_{0}^{1, p}(\Omega)$ and γ is the genus function. We may also define the negative spectrum when $-m \in \mathcal{M}^{+}(\Omega)$ by

[^0]$-\sigma^{+}\left(-\Delta_{p},-m, \Omega\right)$ which contains an infinite sequence $\lambda_{-1}>\lambda_{-2} \geq \cdots \geq \lambda_{-n} \rightarrow$ $-\infty$ such that
\[

$$
\begin{equation*}
\lambda_{-n}=\lambda_{-n}(m):=-\lambda_{n}(-m) . \tag{1.3}
\end{equation*}
$$

\]

The variational characterization $\sqrt{1.2}$ and the properties of λ_{n} depending on weight m was the subject of several works of which we cite for example [1, 2, 3, 3, 6,

In this note, we study the following problem: Find all the real numbers α, β such that $\lambda_{n}\left(\alpha m_{1}+\beta m_{2}\right)=1$.

This last equation comes from the problem of eigencurves of Sturm-Liouville. Several applications of these problems can be found in the bifurcation domain and other, making reference [5]. In 4] we find the properties related to the first eigencurve such as concavity, differentiability and the asymptotic behavior. The authors wished to have information about the other eigencurves, especially their asymptotic behavior. This will be the object of our study. Let $m_{1}, m_{2} \in \mathcal{M}^{+}(\Omega)$ so that essinf $\operatorname{in}_{\Omega} m_{2}>0$. we define the graph of the $n^{\text {th }}$ eigencurve by

$$
\begin{equation*}
C_{n}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \lambda_{n}\left(\alpha m_{1}+\beta m_{2}\right)=1\right\}, \tag{1.4}
\end{equation*}
$$

We note that this definition differs from that given in 5, which is

$$
\begin{equation*}
\beta_{n}(\alpha)=\inf _{K \in \Gamma_{n}} \max _{u \in K} \frac{\int_{\Omega}|\nabla u|^{p}-\alpha \int_{\Omega} m_{1}|u|^{p}}{\int_{\Omega} m_{2}|u|^{p}} . \tag{1.5}
\end{equation*}
$$

This paper is organized as follows. First, we are interested to the existence of eigencurve C_{n}. Then we show that $\left(\alpha, \beta_{n}(\alpha)\right) \in C_{n}$. This would allow us to affirm the coincidence of the two definitions (1.4) et $\sqrt{1.5}$) and also present the variational formulation of that eigencurve. We would end up with the study of the asymptotic behavior of the eigencurves C_{n}. And finally we affirm that all eigencurves have the same asymptotic behavior.

2. Existence of the eigencurve C_{n}

We first recall the following
Proposition 2.1. (1) Let $m, m^{\prime} \in \mathcal{M}^{+}(\Omega)$. If $m \leq m^{\prime}$ (resp. $m<m^{\prime}$), then $\lambda_{n}(m) \geq \lambda_{n}\left(m^{\prime}\right)\left(\right.$ resp. $\left.\lambda_{n}(m)>\lambda_{n}\left(m^{\prime}\right)\right)$.
(2) $\lambda_{n}: m \mapsto \lambda_{n}(m)$ is continuous in $\left(\mathcal{M}^{+}(\Omega),\|\cdot\|_{\infty}\right)$.

For the proof, see for example [6].
Next we can establish the following
Proposition 2.2. Let $\left(m_{k}\right)_{k}$ be a sequence in $\mathcal{M}^{+}(\Omega)$ such that $m_{k} \rightarrow m$ in $\mathcal{L}^{\infty}(\Omega)$. Then $\lim _{k} \lambda_{n}\left(m_{k}\right)=+\infty$ if and only if $m \leq 0$ almost everywhere in Ω.

Proof. Let $\left(m_{k}\right)_{k}$ be a sequence in $\mathcal{M}^{+}(\Omega)$ such that m_{k} converges to m in $\mathcal{L}^{\infty}(\Omega)$. Assume first that $\lim _{k} \lambda_{n}\left(m_{k}\right)=+\infty$, we claim that $m \leq 0$ almost everywhere in Ω; otherwise

$$
\operatorname{meas}\{x \in \Omega: m(x)>0\} \neq 0
$$

it then follows that $\lim _{k} \lambda_{n}\left(m_{k}\right)=\lambda_{n}(m)$, is a finite, a contradiction.
Inversely, if $m \leq 0$ almost everywhere in Ω, suppose that $\lim _{k} \lambda_{n}\left(m_{k}\right)$ is finite, then there exist $\lambda>0$ such that

$$
\begin{equation*}
\lambda_{n}\left(m_{k}\right) \leq \lambda \quad \text { for all } k \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

We put $r=2 \lambda / \lambda_{n}(2)$ and $\varepsilon=1 / r$. Then there exist $k=k(r)$, such that

$$
\left\|m_{k}-m\right\|_{\infty}<\varepsilon
$$

We consider the following weights

$$
m_{k, r}(x)= \begin{cases}m_{k}(x) & \text { if } x \in \Omega \backslash B_{r} \cap \Omega_{k}^{-} \\ \frac{1}{r} & \text { if } x \in B_{r} \cap \Omega_{k}^{-}\end{cases}
$$

and

$$
m_{r}(x)= \begin{cases}m(x) & \text { if } x \in \Omega \backslash B_{r} \cap \Omega_{k}^{-} \\ \frac{1}{r} & \text { if } x \in B_{r} \cap \Omega_{k}^{-}\end{cases}
$$

where $B_{r}=B\left(x_{k}, \frac{1}{r}\right)$ is a ball and $x_{k} \in \Omega_{k}^{-}=\left\{x \in \Omega: m_{k}(x)<0\right\}$. It is clear that

$$
\left\|m_{k, r}-m_{r}\right\|_{\infty} \leq\left\|m_{k}-m\right\|_{\infty}
$$

so that

$$
m_{k, r} \leq m_{r}+\varepsilon \quad \text { almost everywhere in } \Omega
$$

Observe that $m_{k} \leq m_{k, r}$. Since $m \leq 0$ almost everywhere in Ω, we have $m_{r} \leq 1 / r$ almost everywhere in Ω, and

$$
\begin{equation*}
m_{k} \leq \frac{1}{r}+\varepsilon \quad \text { almost everywhere in } \Omega \tag{2.2}
\end{equation*}
$$

It follows from 2.1 and 2.2 that

$$
\lambda \geq \lambda_{n}\left(m_{k}\right) \geq \lambda_{n}\left(\frac{1}{r}+\varepsilon\right) .
$$

Since $\frac{1}{r}+\varepsilon=\frac{2}{r}$,

$$
2 \lambda=r \lambda_{n}(2)=\lambda_{n}\left(\frac{1}{r}+\varepsilon\right) \leq \lambda_{n}\left(m_{k}\right) \leq \lambda
$$

which is a contradiction. So $\lim _{k} \lambda_{n}\left(m_{k}\right)=+\infty$.
Now we can state the main theorem of this section.
Theorem 2.3. Let $m_{1}, m_{2} \in \mathcal{M}^{+}(\Omega)$ be such that $\operatorname{essinf}_{\Omega} m_{2}>0$. So for all $\alpha \in \mathbb{R}$ there exist a unique real $t_{n}(\alpha)$ which satisfies $\lambda_{n}\left(\alpha m_{1}+t_{n}(\alpha) m_{2}\right)=1$.

Proof. Let $\alpha \in \mathbb{R}$. We consider the function $f_{\alpha}: t \mapsto \lambda_{n}\left(\alpha m_{1}+t m_{2}\right)$. According to the proposition 2.1 we affirm that f_{α} is decreasing continuous. Consequently f_{α} is injective. To show that the equation $f_{\alpha}(t)=1$ has a solution (hence only one), we distinguish three cases.
Case 1: $\lambda_{-n}\left(m_{1}\right)<\alpha<\lambda_{n}\left(m_{1}\right)$ It is clear that when $\alpha=0$, the unique real t_{0} that verifies $\lambda_{n}\left(\alpha m_{1}+t_{0} m_{2}\right)=1$ is $t_{0}=\lambda_{n}\left(m_{2}\right)$. Suppose that α is not nil, in this case we have

$$
f_{\alpha}(0)=\frac{\lambda_{n}\left(m_{1}\right)}{\alpha} \quad \text { if } \alpha>0 \quad \text { and } \quad f_{\alpha}(0)=\frac{\lambda_{-n}\left(m_{1}\right)}{\alpha} \quad \text { if } \alpha<0 ;
$$

So that $f_{\alpha}(0)>1$. Now $\frac{\alpha}{t} m_{1}+m_{2} \rightarrow m_{2}$ in $\mathcal{L}^{\infty}(\Omega)$ as $t \rightarrow+\infty$;

$$
\lim _{t \rightarrow+\infty} f_{\alpha}(t)=\lim _{t \rightarrow+\infty} \frac{1}{t} \lambda_{n}\left(\frac{\alpha}{t} m_{1}+m_{2}\right)=0
$$

so there exist a unique real $\left.t_{n}(\alpha) \in\right] 0,+\infty\left[\right.$ which verifies $f_{\alpha}\left(t_{n}(\alpha)\right)=1$.
Case 2: $\alpha>\lambda_{n}\left(m_{1}\right)$. In this case $\alpha>0$ and

$$
\begin{equation*}
0<f_{\alpha}(0)=\frac{\lambda_{n}\left(m_{1}\right)}{\alpha}<1 \tag{2.3}
\end{equation*}
$$

Let $\gamma_{\alpha}=\frac{-\alpha\left\|m_{1}\right\|_{\infty}}{\operatorname{essinf} \Omega m_{2}}$, it is easy to see that

$$
\alpha m_{1}+\gamma_{\alpha} m_{2} \leq 0 \quad \text { almost everywhere in } \Omega
$$

SO

$$
\gamma_{\alpha} \in\left\{t<0: \alpha m_{1}(x)+t m_{2}(x) \leq 0 \quad \text { a.e. } x \in \Omega\right\}=A_{\alpha}
$$

we put $\tau_{\alpha}=\sup A_{\alpha}$. We prove that $\tau_{\alpha} \in A_{\alpha}$.
We first show that $\tau_{\alpha}<0$. Since $f_{\alpha}(0)>0$, and f_{α}, is a continuous function then there exist $\eta<0$ such that $f_{\alpha}(t)>0$ for all $t \in[\eta, 0]$. so $\lambda_{n}\left(\alpha m_{1}+t m_{2}\right)>0$ for all $t \in[\eta, 0]$; i.e.,

$$
\operatorname{meas}\left\{x \in \Omega: \alpha m_{1}(x)+t m_{2}(x)>0\right\} \neq 0 \quad \forall t \in[\eta, 0] ;
$$

hence $\tau_{\alpha} \leq \eta<0$. Moreover, for all $n \in \mathbb{N}$, there exist $t_{n} \in A_{\alpha}$ such that $\tau_{\alpha}-\frac{1}{n}<t_{n}$. It follows that
$\alpha m_{1}(x)+\tau_{\alpha} m_{2}(x) \leq \alpha m_{1}(x)+t_{n} m_{2}(x)+\frac{1}{n} m_{2}(x) \quad \leq \frac{1}{n}\left\|m_{2}\right\|_{\infty} \quad$ a.e. $x \in \Omega, \forall n \in \mathbb{N}$
thus we have $\alpha m_{1}+\tau_{\alpha} m_{2} \leq 0$ almost everywhere in Ω. Then Proposition 2.2 implies

$$
\begin{equation*}
\lim _{t \rightarrow \tau_{\alpha}} f_{\alpha}(t)=+\infty \tag{2.4}
\end{equation*}
$$

It then follows from (2.3) and 2.4 that there exist a unique real $\left.t_{n}(\alpha) \in\right] \tau_{\alpha}, 0[$ which verifies $f_{\alpha}\left(t_{n}(\alpha)\right)=1$.
case 3: $\alpha<\lambda_{-n}\left(m_{1}\right)$. In this case we have $\alpha<0$ and

$$
0<f_{\alpha}(0)=\frac{\lambda_{-n}\left(m_{1}\right)}{\alpha}<1
$$

Let $\delta_{\alpha}=\frac{\alpha\left\|m_{1}\right\|_{\infty}}{\operatorname{essinf}_{\Omega} m_{2}}$,

$$
B_{\alpha}=\left\{t<0: \alpha m_{1}(x)+t m_{2}(x) \leq 0 \text { a.e. } x \in \Omega\right\} \quad \text { and } \quad \rho_{\alpha}=\sup B_{\alpha}
$$

Obviously

$$
\alpha m_{1}+\delta_{\alpha} m_{2} \leq 0 \quad \text { almost everywhere in } \Omega
$$

The rest of the proof can be carried out in a similar manner to that of the case 2 . The proof is complete.

3. Variational formulation of the eigencurve C_{n}

We consider the formula 1.5 of $\beta_{n}(\alpha)$. By the Sobolev inequality and hypothesis ess $\inf { }_{\Omega} m_{2}>0$, it is easy to see that $\beta_{n}(\alpha)$ is finite. Our objective in this section is to show that the graph of $\beta_{n}(\alpha)$ is exactly C_{n}.

Theorem 3.1. We take again the notation of Theorem 2.3. So we have

$$
t_{n}(\alpha)=\beta_{n}(\alpha) \quad \text { for all } \alpha \in \mathbb{R}
$$

Proof. We have on one hand, according to 1.5 for all $K \in \Gamma_{n}$, there is $u_{K} \in K$ such that

$$
\beta_{n}(\alpha) \leq \max _{u \in K} \frac{\int_{\Omega}|\nabla u|^{p}-\alpha \int_{\Omega} m_{1}|u|^{p}}{\int_{\Omega} m_{2}|u|^{p}}=\frac{\int_{\Omega}\left|\nabla u_{K}\right|^{p}-\alpha \int_{\Omega} m_{1}\left|u_{K}\right|^{p}}{\int_{\Omega} m_{2}\left|u_{K}\right|^{p}}
$$

then

$$
\alpha \int_{\Omega} m_{1}\left|u_{K}\right|^{p}+\beta_{n}(\alpha) \int_{\Omega} m_{2}\left|u_{K}\right|^{p} \leq \int_{\Omega}\left|\nabla u_{K}\right|^{p}=1
$$

So that

$$
\min _{u \in K} \int_{\Omega}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right)|u|^{p} \leq \alpha \int_{\Omega} m_{1}\left|u_{K}\right|^{p}+\beta_{n}(\alpha) \int_{\Omega} m_{2}\left|u_{K}\right|^{p} \leq 1
$$

for all $K \in \Gamma_{n}$, this implies

$$
\sup _{K \in \Gamma_{n}} \min _{u \in K} \int_{\Omega}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right)|u|^{p} \leq 1
$$

Since

$$
\frac{1}{\lambda_{n}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right)}=\sup _{K \in \Gamma_{n}} \min _{u \in K} \int_{\Omega}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right)|u|^{p}
$$

it follows that

$$
\begin{equation*}
\lambda_{n}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right) \geq 1 \tag{3.1}
\end{equation*}
$$

On the other hand, from Theorem 2.3, we have

$$
\lambda_{n}\left(\alpha m_{1}+t_{n}(\alpha) m_{2}\right)=1
$$

so for all $K \in \Gamma_{n}$, there is $u_{K} \in K$ such that

$$
\alpha \int_{\Omega} m_{1}\left|u_{K}\right|^{p}+t_{n}(\alpha) \int_{\Omega} m_{2}\left|u_{K}\right|^{p}=\min _{u \in K} \int_{\Omega}\left(\alpha m_{1}+t_{n}(\alpha) m_{2}\right)|u|^{p},
$$

and

$$
\min _{u \in K} \int_{\Omega}\left(\alpha m_{1}+t_{n}(\alpha) m_{2}\right)|u|^{p} \leq \lambda_{n}\left(\alpha m_{1}+t_{n}(\alpha) m_{2}\right)=1
$$

Since $1=\int_{\Omega}\left|\nabla u_{K}\right|^{p}$,

$$
\alpha \int_{\Omega} m_{1}\left|u_{K}\right|^{p}+t_{n}(\alpha) \int_{\Omega} m_{2}\left|u_{K}\right|^{p} \leq \int_{\Omega}\left|\nabla u_{K}\right|^{p}
$$

This implies

$$
t_{n}(\alpha) \leq \frac{\int_{\Omega}\left|\nabla u_{K}\right|^{p}-\alpha \int_{\Omega} m_{1}\left|u_{K}\right|^{p}}{\int_{\Omega} m_{2}\left|u_{K}\right|^{p}} \leq \max _{u \in K} \frac{\int_{\Omega}|\nabla u|^{p}-\alpha \int_{\Omega} m_{1}|u|^{p}}{\int_{\Omega} m_{2}|u|^{p}}
$$

for all $K \in \Gamma_{n}$, thus we deduce

$$
t_{n}(\alpha) \leq \inf _{K \in \Gamma_{n}} \max _{u \in K} \frac{\int_{\Omega}|\nabla u|^{p}-\alpha \int_{\Omega} m_{1}|u|^{p}}{\int_{\Omega} m_{2}|u|^{p}}=\beta_{n}(\alpha) .
$$

Using the monotony of λ_{n} with respect to the weight, it follows that

$$
\begin{equation*}
\lambda_{n}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right) \leq \lambda_{n}\left(\alpha m_{1}+t_{n}(\alpha) m_{2}\right)=1 \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we obtain

$$
\lambda_{n}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right)=1
$$

Since $t_{n}(\alpha)$ is unique, we then conclude that $t_{n}(\alpha)=\beta_{n}(\alpha)$.

4. Asymptotic Behavior of C_{n}

The fact of considering $\beta_{n}(\alpha)$ by its expression given in the variational formulation 1.5 makes regrettably the study of its asymptotic behavior difficult. So, our aim in this section is to determine the asymptotic behavior with the help of Theorem 3.1 and the definition of C_{n} (cf. 1.4).
Theorem 4.1. Let $m_{1}, m_{2} \in \mathcal{M}^{+}(\Omega)$ be such that $\operatorname{essinf} m_{2}>0$. So we have the following asymptotic behavior:
(i) $\lim _{\alpha \rightarrow+\infty} \beta_{n}(\alpha) / \alpha=-\operatorname{ess} \sup _{\Omega} m_{1} / m_{2}$,
(ii) $\lim _{\alpha \rightarrow-\infty} \beta_{n}(\alpha) / \alpha=-\operatorname{essinf}_{\Omega} m_{1} / m_{2}$.

Proof. To prove (i), we consider $\alpha>\lambda_{n}\left(m_{1}\right)$: The formula

$$
\lambda_{n}\left(\alpha m_{1}+\beta_{n}(\alpha) m_{2}\right)=1
$$

then implies

$$
\lambda_{n}\left(m_{1}+\frac{\beta_{n}(\alpha)}{\alpha} m_{2}\right)=\alpha
$$

which is a finite quantity and positive, so

$$
m_{1}+\frac{\beta_{n}(\alpha)}{\alpha} m_{2} \in \mathcal{M}^{+}(\Omega)
$$

thus there exist a subset Ω_{α} such that

$$
\operatorname{meas}\left(\Omega_{\alpha}\right) \neq 0 \quad \text { and } \quad m_{1}(x)+\frac{\beta_{n}(\alpha)}{\alpha} m_{2}(x)>0 \quad \text { a.e. } x \in \Omega_{\alpha}
$$

Hence

$$
-\frac{\beta_{n}(\alpha)}{\alpha}<\frac{m_{1}(x)}{m_{2}(x)} \quad \text { a.e. } x \in \Omega_{\alpha}
$$

thus we have

$$
-\frac{\beta_{n}(\alpha)}{\alpha}<\underset{\Omega}{\operatorname{ess} \sup } \frac{m_{1}}{m_{2}}
$$

So we get

$$
\begin{equation*}
\limsup _{\alpha \rightarrow+\infty}-\frac{\beta_{n}(\alpha)}{\alpha} \leq \underset{\Omega}{\operatorname{ess} \sup } \frac{m_{1}}{m_{2}} \tag{4.1}
\end{equation*}
$$

On the other hand, suppose that

$$
l=\liminf _{\alpha \rightarrow+\infty}-\frac{\beta_{n}(\alpha)}{\alpha}
$$

We choose a sequence $\alpha_{k} \rightarrow+\infty$, so that

$$
m_{1}+\frac{\beta_{n}\left(\alpha_{k}\right)}{\alpha_{k}} m_{2} \rightarrow m_{1}-l m_{2} \quad \text { in } \mathcal{L}^{\infty}(\Omega)
$$

Since

$$
\lambda_{n}\left(m_{1}+\frac{\beta_{n}\left(\alpha_{k}\right)}{\alpha_{k}} m_{2}\right)=\alpha_{k} \rightarrow+\infty
$$

according to Proposition 2.2, we obtain $m_{1}-l m_{2} \leq 0$ almost everywhere in Ω, i.e.,

$$
\frac{m_{1}}{m_{2}} \leq l \quad \text { almost everywhere in } \Omega
$$

so that

$$
\begin{equation*}
\underset{\Omega}{\operatorname{ess} \sup } \frac{m_{1}}{m_{2}} \leq l=\liminf _{\alpha \rightarrow+\infty}-\frac{\beta_{n}(\alpha)}{\alpha} \tag{4.2}
\end{equation*}
$$

Then (4.1) and (4.2) yield the result (i).
The proof of (ii) can be carried out as that of (i). This concludes the proof .

Remarks.

(i) All eigencurves of the p-Laplacian have the same asymptotic behavior.
(ii) The asymptotic behavior of the first eigencurve of the p-Laplacian is already established in [4], but their method which uses the properties of the first eigenfunction is not generalised to the higher orders.
(iii) The results established in this paper can also be generalised to eigencurves of order ≥ 2 of the p-Laplacian with Neumann condition.

Acknowledgment. The authors are grateful for the referee's valuable suggestions.

References

[1] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C.R.A.S, Paris, t. 305 (1987), pp. 725-728.
[2] A. Anane, Etude des valeurs propres et de la résonance pour l'opérateur p-Laplacien, Thèse de Doctorat ,Université Libre de Bruxelles, Belgique. (1988).
[3] A. Anane, N. Tsouli, On the second eigenvalue of the pLaplacian, Nonlinear Partial Differential Equations, Pitman Research Notes 343 (1996), 1-9.
[4] P. A. Binding, Y. X. Huang, The principal eigenvalue of the pLaplacian, Diff. Int. Eqns. 8 (1995), 405-414.
[5] P. A. Binding, Y. X. Huang, Bifurcation from eigencurves of the p-Laplacian, Diff. Int. Eqns. 8 (1995), 415-428.
[6] N. Tsouli, Etude de l'ensemble nodal des fonctions propres et de la non-résonance pour l'opérateur p-Laplacien, Tèse de Doctorat d'Etat Es-Sciences, Faculté des Sciences Oujda Maroc. (1995).

Ahmed Dakkak
Department of Mathematics, University Moulay Ismail, Faculty of Sciences and Techniques, B. P. 509 - Boutalamine, Errachidia, Morocco

E-mail address: dakkakahmed@hotmail.com
Mohammed Hadda
Department of Mathematics, University Moulay Ismail, Faculty of Sciences and Techniques, B. P. 509 - Boutalamine, Errachidia, Morocco

E-mail address: mohammedhad@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J70, 35P05, 35P30.
 Key words and phrases. Nonlinear eigenvalue problem; eigencurves; p-Laplacian;
 indefinite weight; asymptotic behavior.
 (C) 2007 Texas State University - San Marcos.

 Submitted July 21, 2006. Published February 27, 2007.

