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ON A CLASS OF NONLINEAR VARIATIONAL INEQUALITIES:
HIGH CONCENTRATION OF THE GRAPH OF WEAK
SOLUTION VIA ITS FRACTIONAL DIMENSION AND

MINKOWSKI CONTENT

LUKA KORKUT, MERVAN PAŠIĆ

Abstract. Weak continuous bounded solutions of a class of nonlinear vari-

ational inequalities associated to one-dimensional p-Laplacian are studied. It

is shown that a kind of boundary behaviour of nonlinearity in the main prob-
lem produces a kind of high boundary concentration of the graph of solutions.

It is verified by calculating lower bounds for the upper Minkowski-Bouligand

dimension and Minkowski content of the graph of each solution and its deriv-
ative. Finally, the order of growth for singular behaviour of the Lp norm of

derivative of solutions is given.

1. Introduction

Let 1 < p <∞ and −∞ < a < b <∞. Let f(t, η, ξ) be a Caratheodory function
defined on (a, b)× R× R. We consider a class of nonlinear variational inequalities
with two obstacles ϕ and ψ in the form:

u ∈ K(ϕ,ψ),∫ b

a

|u′|p−2u′(v − u)′dt−
∫ b

a

f(t, u, u′)(v − u)dt ≥ 0,

∀v ∈ K(ϕ,ψ) such that supp(v − u) ⊂⊂ (a, b),

(1.1)

where ϕ,ψ ∈ L∞(a, b), ϕ ≤ ψ and

K(ϕ,ψ) = {v ∈W 1,p
loc ((a, b]) ∩ C([a, b]) : ϕ ≤ v ≤ ψ in (a, b)}.

Here the condition v ∈W 1,p
loc ((a, b]) means that v ∈W 1,p(a+ ε, b) for each ε > 0.

The main subject of the paper is the graph G(u) of a continuous real function u
defined on [a, b], that is

G(u) = {(t, u(t)) : a ≤ t ≤ b}.
In order to describe a kind of very high boundary concentration of G(u) near the
point t = a, where u is any solution of (1.1), we associate to G(u) the following two
numbers:
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• The upper Minkowski-Bouligand (box-counting) dimension of G(u),

dimM G(u) = lim sup
ε→0

(
2− log |Gε(u)|

log ε
)
,

where Gε(u) denotes the ε-neighbourdhood of G(u) and |Gε(u)| denotes
the Lebesgue measure of Gε(u).

• The s-dimensional upper Minkowski content of G(u),

Ms(G(u)) = lim sup
ε→0

(2ε)s−2|Gε(u)|,

where s ∈ (1, 2).
In Section 3, for arbitrarily given s ∈ (1, 2) we will find some sufficient conditions
on the obstacles ϕ and ψ and on the nonlinearity f(t, η, ξ) such that each solution
u of (1.1) satisfies

|Gε(u)| ≥
1
26

(b− a)sε2−s > 0 for each ε ∈ (0, ε0), (1.2)

where ε0 > 0 will be precised too. According to the definitions of dimM G(u) and
Ms(G(u)), the inequality (1.2) enables us to show that each solution u of (1.1)
satisfies

dimM G(u) ≥ s and Ms(G(u)) ≥ 1
27

(b− a)s > 0. (1.3)

Since dimM (A∪B) = max{dimM A,dimM B} and u ∈W 1,p(a+ε, b) for each ε > 0,
we have that u is an absolutely continuous function on [a+ε, b] which together with
(1.3) gives us

dimMloc(G(u); a) ≥ s and dimMloc(G(u); t) = 1 for each t ∈ (a, b].

Here dimMloc(G(u); t) denotes the locally upper Minkowski-Bouligand dimension
of G(u) at a point t ∈ [a, b], given by

dimMloc(G(u); t) = lim sup
ε→0

dimM (G(u) ∩Bε(t, u(t))),

where Br(t1, t2) denotes a ball with radius r > 0 centered at the point (t1, t2) ∈ R2.
As an easy consequence, we derive that each solution u of (1.1) satisfies:

u /∈W 1,p(a, b) and length(G(u)) = ∞,

u ∈W 1,p(a+ ε, b) and length(G(u|[a+ε,b])) <∞ for any ε > 0,

where u|I denotes the restriction of u on I. Thus, according to the previous state-
ments, we may conclude that the graph G(u) of any solution u of (1.1) is (in a
sense) highly concentrated at the boundary point t = a. Furthermore, the state-
ment length(G(u)) = ∞ is precised in (1.3). For arbitrarily given s ∈ (1, 2) and
under the same hypotheses on ϕ, ψ and f(t, η, ξ) as in getting of (1.2)–(1.3), we
will prove in Section 3 that each solution u of (1.1) satisfies

|Gε(u|(a,c])| ≥
1
26

(c− a)sε2−s > 0 for any c ∈ (a, b) and ε ∈ (0, εc), (1.4)

where the number εc will be also determined. The preceding inequality yields

Ms(G(u) ∩Br(a, u(a))) ≥
1
27

(
r√
5
)s for any r ∈ (0, b− a). (1.5)

It completes the second inequality in (1.3).
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Next, for arbitrarily given s ∈ (1, 2) and under the same hypotheses on ϕ, ψ and
f(t, η, ξ) as in getting of (1.2)-(1.5), we will show in Section 4 that each solution u
of (1.1) such that u ∈ C1(a, b) satisfies

|Gε(u′)| ≥
√

2
24

(b− a)s/2ε1−s/2 > 0 for each ε ∈ (0, ε0). (1.6)

where ε0 > 0 will be also precised. Here u′ denotes the derivative of u in the
classical sense. According to the definitions of dimM G(u′) and Ms(G(u′)), from
(1.6) we get that each smooth enough solution u od (1.1) satisfies:

dimM G(u′) ≥ 1 +
s

2
and M1+s/2(G(u′)) ≥ 1

24
(b− a)s/2 > 0. (1.7)

In (1.7) we have two estimations for singular behaviour of u′ near the boundary
point t = a. Much more information about singular behaviour of u′ near the point
t = a can be obtained from asymptotic behaviour of ‖u′‖Lp(a+ε,b) as ε ≈ 0. More
precisely, from above observation we have in particular that each solution u of (1.1)
satisfies

lim sup
ε→0

‖u′‖Lp(a+ε,b) = ∞.

However, in Section 5 we will be able to precise this statement. That is, for arbi-
trarily given s ∈ (1, 2) and under related hypotheses on ϕ, ψ and f(t, η, ξ) as in
getting of (1.2)–(1.7), we will prove that each solution u of (1.1) satisfies( ∫ b

a+ε

|u′|pdt
)1/p

≥ c
(1
ε

)s−1 for some ε ∈ (0, ε1), (1.8)

where c > 0 and ε1 > 0 will be also precised. Immediately from (1.8) we obtain the
lower bound for the order of growth of the local singular behaviour of ‖u′‖Lp(a+ε,b)

as ε ≈ 0, that is

lim sup
ε→0

log
( ∫ b

a+ε
|u′|pdt

)1/p

log 1/ε
≥ s− 1. (1.9)

It is worth to mention that the local regular behaviour of ‖u′‖Lp is widely consid-
ered even in more dimensional case, where u is any solution of quasilinear elliptic
equations associated to p -Laplacian. See for instance Rakotoson’s paper [16] and
references therein.

Preceding results were obtained in the author’s paper [12] but for the case of
corresponding equation:

−(|y′|p−2y′)′ = f(t, y, y′) in (a, b),

y(a) = y(b) = 0,

y ∈W 1,p
loc ((a, b]) ∩ C([a, b]).

(1.10)

In this paper we show how the methods presented in [12] permit us to obtain
some new singular properties of the graph of solutions of the variational inequality
(1.1). About some regular properties of solutions of quasilinear elliptic variational
inequalities, we refer reader to [4, 9, 13, 17]. About the fractal dimensions and their
properties we refer to [1, 3, 8, 10, 15, 18, 19].

Finally, let us remark that the existence of at least one solution y of (1.10) was
discussed in [12, Appendix, p. 303-304], where the nonlinearity f(t, η, ξ) satisfy
related assumptions needed here to obtain (1.2)–(1.9) (about the existence of con-
tinuous solutions for the equations with singular nonlinearity see [11, Chapter 14]).
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Moreover, if for instance ϕ(a) = ψ(a) = 0 and if ϕ is decreasing and convex on
[a, b] and if ψ is increasing and concave on [a, b], and if f(t, η, ξ) satisfies:

f(t, η, ξ) < 0, t ∈ (a, b), η > ψ(t) and ξ ∈ R,
f(t, η, ξ) > 0, t ∈ (a, b), η < ϕ(t) and ξ ∈ R,

then each solution y of the equation (1.10) satisfies ϕ(t) ≤ y(t) ≤ ψ(t) in [a, b]. So
in such case, each solution of (1.10) also satisfies the variational inequality (1.1)
and thus, the existence of solutions of (1.1) in this case follows from the existence
result of the equation (1.10).

2. Control of essential infimum and essential supremum of solutions

In this section, we present a method which plays an important role in the proofs
of the main results. It is so called the control of ess inf and ess sup of solutions
introduced in [5] and considered in [6] and [7] to get some qualitative properties
of solutions of quasilinear elliptic equations and variational inequalities. Here, we
show that this method can be applied to solutions of variational inequality (1.1) to
derive some consequences needed in the proofs of the main results.

Lemma 2.1 (Control of ess sup). Let (a2, b2) ⊂⊂ (a, b) be an open interval. Let
ω2 be an arbitrarily given real number such that

ess inf
(a2,b2)

ϕ < ω2 < ess inf
(a2,b2)

ψ. (2.1)

Let J2 be a set defined by J2 = (ess inf(a2,b2) ϕ, ω2) and let the Caratheodory function
f(t, η, ξ) satisfy:

f(t, η, ξ) ≥ 0, t ∈ (a2, b2), η ∈ J2, ξ ∈ R, (2.2)∫
A2

ess inf
(η,ξ)∈J2×R

f(t, η, ξ)dt >
c(p)

(b2 − a2)p−1

(ess inf(a2,b2) ψ − ess inf(a2,b2) ϕ)p

ess inf(a2,b2) ψ − ω2
, (2.3)

where c(p) = 2[4(p− 1)]p−1 and A2 is a set defined by

A2 = [a2 +
1
4
(b2 − a2), b2 −

1
4
(b2 − a2)].

Then for any solution u of (1.1) there is a σ2 ∈ (a2, b2) such that

u(σ2) ≥ ω2. (2.4)

We will also need the dual result of Lemma 2.1.

Lemma 2.2 (control of ess inf). Let (a1, b1) ⊂⊂ (a, b) be an open interval. Let θ1
be an arbitrarily given real number such that

ess sup
(a1,b1)

ϕ < θ1 < ess sup
(a1,b1)

ψ. (2.5)

Let J1 be a set defined by J1 = (θ1, ess sup(a1,b1) ψ) and let the Caratheodory function
f(t, η, ξ) satisfy:

f(t, η, ξ) ≤ 0, t ∈ (a1, b1), η ∈ J1, ξ ∈ R, (2.6)∫
A1

ess sup
(η,ξ)∈J1×R

f(t, η, ξ)dt < − c(p)
(b1 − a1)p−1

(ess sup(a1,b1) ψ − ess sup(a1,b1) ϕ)p

θ1 − ess sup(a1,b1) ϕ
,

(2.7)
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where c(p) = 2[4(p− 1)]p−1 and A1 is a set defined by

A1 = [a1 +
1
4
(b1 − a1), b1 −

1
4
(b1 − a1)].

Then for any solution u of (1.1) there is a σ1 ∈ (a1, b1) such that

u(σ1) ≤ θ1. (2.8)

Let us remark that the conditions (2.1) and (2.5) will be easy fulfiled in Theorem
3.3 below.

Proof of Lemma 2.1. Let t0 and r be two real numbers defined as follows:

t0 =
a2 + b2

2
, r =

1
4
(b2 − a2).

Let Br = Br(t0) denote a ball with radius r > 0 centered at the point t0. Then we
have

B2r = B2r(t0) = (a2, b2), Br = Br(t0) = A2,

where the set A2 is appearing in (2.3). Since |B2r| = 4r = b2 − a2, where |A|
denotes the Lebesgue measure of a set A, and using the preceding notations, the
hypotheses (2.2) and (2.3) can be rewritten in the form:

f(t, η, ξ) ≥ 0, t ∈ B2r, η ∈ J2, ξ ∈ R, (2.9)∫
Br

ess inf
(η,ξ)∈J2×R

f(t, η, ξ)dt >
c(p)
4p−1

1
rp−1

(ess infB2r
ψ − ess infB2r

ϕ)p

ess infB2r ψ − ω2
. (2.10)

Next, let u be a solution of (1.1). Let us suppose a contrary statement to (2.4),
that is

u(t) < ω2 for each t ∈ B2r. (2.11)
Since ϕ ≤ u in (a, b) and because of (2.1), besides (2.11) we have also

ess inf
B2r

ϕ ≤ u(t) < ω2 < ess inf
B2r

ψ for each t ∈ B2r. (2.12)

Using c(p) = 2[4(p− 1)]p−1 and |Br| = 2r, from (2.9)–2.12, we get

f(t, u, u′) ≥ 0 in B2r, (2.13)∫
Br

f(t, u, u′)dt > (p− 1)p−1 |Br|
rp

(ess infB2r
ψ − ess infB2r

ϕ)p

ess infB2r
ψ − ω2

. (2.14)

Regarding (2.13) and (2.14) we are here in a very similar situation as in the proof
[6, Theorem 5, p. 256] or [12, Theorem 4.1, p. 282]. In this direction, it is known
that for any c0 > 1 there exists a function Φ ∈ C∞0 (R) , 0 ≤ Φ ≤ 1 in R such that
the following properties are fulfilled, see [6, Lemma 5, pp. 267]:

Φ(t) = 1, t ∈ Br and Φ(t) = 0, t ∈ R \B2r,

Φ(t) > 0, t ∈ B2r and |Φ′(t)| ≤ c0
r
, t ∈ R.

(2.15)

For any c0 > 1, we take a test function

v(t) = (ess inf
B2r

ψ − u(t))Φp(t) + u(t), t ∈ R.

With the help of (2.12) we have that ess infB2r
ψ−u(t) ≥ 0 in B2r and so, it is easy

to check that

v ∈ K(ϕ,ψ) and supp(v − u) ⊆ B2r ⊂⊂ (a, b),
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where the space K(ϕ,ψ) was defined in (1.1). Therefore, we may put in (1.1) this
test function and we obtain

−
∫

B2r

|u′|pΦpdt ≥ −p
∫

B2r

|u′|p−2u′(ess inf
B2r

ψ − u)Φp−1Φ′dt

+
∫

B2r

f(t, u, u′)(ess inf
B2r

ψ − u)Φpdt.

Multiplying this inequality by −1 we get∫
B2r

|u′|pΦpdt ≤ p

∫
B2r

|u′|p−1Φp−1(ess inf
B2r

ψ − u)|Φ′|dt

−
∫

B2r

f(t, u, u′)(ess inf
B2r

ψ − u)Φpdt.

(2.16)

For the record, with the help of (2.12) we also have:

ess inf
B2r

ψ − u(t) ≤ ess inf
B2r

ψ − ess inf
B2r

ϕ, t ∈ B2r,

ess inf
B2r

ψ − u(t) ≥ ess inf
B2r

ψ − ω2, t ∈ B2r.
(2.17)

Using (p− 1)p′ = p and δ1(pδ2) ≤ d
p′ δ

p′

1 + (p
d )p−1δp

2 especially for

δ1 = |u′|p−1Φp−1, δ2 = (ess inf
B2r

ψ − u)|Φ′|, d = p′,

with the help of (2.13), (2.16) and (2.17) we obtain

0 =
[
1− d

p′
]∫

B2r

|u′|pΦpdt ≤
( p
p′

)p−1(ess inf
B2r

ψ − ess inf
B2r

ϕ)p

∫
B2r

|Φ′|pdt

− (ess inf
B2r

ψ − ω2)
∫

Br

f(t, u, u′)Φpdt.

(2.18)

Now, by means of (2.15) we derive

0 ≤
( p
p′

)p−1(ess inf
B2r

ψ − ess inf
B2r

ϕ)p|B2r \Br|
(c0
r

)p

− (ess inf
B2r

ψ − ω2)
∫

Br

f(t, u, u′)dt.

Since |B2r \Br| = |Br| and passing to the limit as c0 → 1 we obtain∫
Br

f(t, y, y′)dt ≤ (p− 1)p−1 |Br|
rp

(ess infB2r
ψ − ess infB2r

ϕ)p

ess infB2r
ψ − ω2

.

But, this inequality contradicts the assumption (2.14) and so the hypothesis (2.11)
is not possible. Thus, the desired statement (2.4) is proved. �

Analogously we can obtain the proof of Lemma 2.2. In Section 5, we need to use
slightly different versions of preceding lemmas.

Lemma 2.3 (A version of Lemma 2.1). Let (a2, b2) ⊂⊂ (a, b) be an open interval.
Let θ̃0, ω̃0 and ω2 be three arbitrarily given real numbers such that

θ̃0 ≤ ess inf
(a2,b2)

ϕ < ω2 < ess inf
(a2,b2)

ψ ≤ ω̃0. (2.19)
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Let J2 be a set defined by J2 = (θ̃0, ω2) and let the Caratheodory function f(t, η, ξ)
satisfy:

f(t, η, ξ) ≥ 0, t ∈ (a2, b2), η ∈ J2, ξ ∈ R,∫
A2

ess inf
(η,ξ)∈J2×R

f(t, η, ξ)dt >
c(p)

(b2 − a2)p−1

(ω̃0 − θ̃0)p

ess inf(a2,b2) ψ − ω2
,

(2.20)

where c(p) = 2[4(p− 1)]p−1 and A2 is a set defined by

A2 = [a2 +
1
4
(b2 − a2), b2 −

1
4
(b2 − a2)].

Then for any solution u of (1.1) there is a σ2 ∈ (a2, b2) such that

u(σ2) ≥ ω2. (2.21)

We will also need the dual result of Lemma 2.3.

Lemma 2.4 (A version of Lemma 2.2). Let (a1, b1) ⊂⊂ (a, b) be an open interval.
Let θ̃0, ω̃0 and θ1 be three arbitrarily given real numbers such that

θ̃0 ≤ ess sup
(a1,b1)

ϕ < θ1 < ess sup
(a1,b1)

ψ ≤ ω̃0.

Let J1 be a set defined by J1 = (θ1, ω̃0) and let the Caratheodory function f(t, η, ξ)
satisfy:

f(t, η, ξ) ≤ 0, t ∈ (a1, b1), η ∈ J1, ξ ∈ R,∫
A1

ess sup
(η,ξ)∈J1×R

f(t, η, ξ)dt < − c(p)
(b1 − a1)p−1

(ω̃0 − θ̃0)p

θ1 − ess sup(a1,b1) ϕ
,

where c(p) = 2[4(p− 1)]p−1 and A1 is a set defined by

A1 = [a1 +
1
4
(b1 − a1), b1 −

1
4
(b1 − a1)].

Then for any solution u of (1.1) there is a σ1 ∈ (a1, b1) such that

u(σ1) ≤ θ1.

The proof of Lemma 2.3 can be done in analogous way as we did the proof of
Lemma 2.1. At the end of this section, we give an example for the nonlinearity
f(t, η, ξ) which satisfies the assumptions of Lemma 2.1 and Lemma 2.2 together.

Example 2.5. Let a < a2 < b2 = a1 < b1 < b. Let ω2 and θ1 be two numbers
satisfying (2.1) and (2.5). To simplify notation, let θ̃1, ω̃1, θ̃2, and ω̃2 be defined by

θ̃1 = ess sup
(a1,b1)

ϕ, ω̃1 = ess sup
(a1,b1)

ψ,

θ̃2 = ess inf
(a2,b2)

ϕ, ω̃2 = ess inf
(a2,b2)

ψ.

Next, let f(t, η, ξ) be a Caratheodory function defined by

f(t, η, ξ) =
πc(p)
sin π

4

[
(ω̃2 − θ̃2)p (η − ω̃2)−

(ω̃2 − ω2)2
sin( π

b2−a2
(t− a2))

(b2 − a2)p
K[a2,b2](t)

− (ω̃1 − θ̃1)p (η − θ̃1)+

(θ1 − θ̃1)2
sin( π

b1−a1
(t− a1))

(b1 − a1)p
K[a1,b1](t)

]
,
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where c(p) is the same as in Lemma 2.1 and Lemma 2.2, and where KA(t) denotes
as usually the characteristic function of a set A. Also, η− = max{0,−η} and
η+ = max{0, η}. Such defined f(t, η, ξ) satisfies the assumptions of Lemma 2.1.
and Lemma 2.2 together.

3. Lower bounds for dimM G(u) and Ms(G(u))

In this section, the statements (1.2)-(5) will be verified. It will be made by using
the following two lemmas. The first one is a version of [12, Lemma 2.1, p. 271]
which gives us some useful metric properties of the graph of rapidly oscillating
continuous functions. The second one deals with some sufficient conditions on the
nonlinearity f(t, η, ξ) such that each solution of (1.1) is rapid oscillating in the sense
of the first lemma. It is a consequence of the results obtained in previous section.

Lemma 3.1. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying

ak ↘ a and there is an ε0 > 0 such that for each ε ∈ (0, ε0)

there is a k(ε) ∈ N such that aj−1 − aj ≤ ε/2 for each j ≥ k(ε).
(3.1)

Let θ(t) and ω(t) be two measurable and bounded real functions on [a, b], θ(t) ≤ ω(t),
t ∈ [a, b], such that

ess inf
(a2k+2,a2k+1)

θ ≥ ess inf
(a2k+1,a2k)

θ,

ess sup
(a2k+1,a2k)

ω ≤ ess sup
(a2k,a2k−1)

ω, k ≥ 1. (3.2)

Let u be a continuous function on (a, b] such that there is a sequence σk ∈ (ak, ak−1)
satisfying

u(σ2k) ≥ ess sup
(a2k,a2k−1)

ω and u(σ2k+1) ≤ ess inf
(a2k+1,a2k)

θ, k ≥ 1.

Then

|Gε(u)| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt for each ε ∈ (0, ε0), (3.3)

where k(ε) and ε0 are appearing in (3.1). Moreover, if for a real number c ∈ (a, b)
there is an εc ∈ (0, ε0) such that ak(ε)−1 ∈ (a, c) for each ε ∈ (0, εc) then we have

|Gε(u|[a,c])| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt for each ε ∈ (0, εc). (3.4)

Let us remark that the condition (3.2) can be easy satisfied if for instance θ(t)
is decreasing and ω(t) is increasing on [a, b] . The proof of Lemma 3.1 is omitted
because it is very similar to the proof of [12, Lemma 2.1, p. 271].

Next, we want to find some conditions on f(t, η, ξ) such that each solution u of
(1.1) admits rapid oscillations in the sense of Lemma 3.1.

Lemma 3.2. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (3.1). Let for each k ≥ 1 the obstacles ϕ(t) and ψ(t) satisfy:

ess inf
(a2k,a2k−1)

ϕ < ess sup
(a2k,a2k−1)

ψ/2 < ess inf
(a2k,a2k−1)

ψ,

ess sup
(a2k+1,a2k)

ψ > ess inf
(a2k+1,a2k)

ϕ/2 > ess sup
(a2k+1,a2k)

ϕ.
(3.5)
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Let for each k ≥ 1 the sets Jk be defined by:

J2k = ( ess inf
(a2k,a2k−1)

ϕ, ess sup
(a2k,a2k−1)

ψ/2),

J2k+1 = ( ess inf
(a2k+1,a2k)

ϕ/2, ess sup
(a2k+1,a2k)

ψ).

Next, let for each k ≥ 1 the Caratheodory function f(t, η, ξ) satisfy:

f(t, η, ξ) ≥ 0, t ∈ (a2k, a2k−1), η ∈ J2k, ξ ∈ R, (3.6)∫
A2k

ess inf
(η,ξ)∈J2k×R

f(t, η, ξ)dt

>
c(p)

(a2k−1 − a2k)p−1

(ess inf(a2k,a2k−1) ψ − ess inf(a2k,a2k−1) ϕ)p

ess inf(a2k,a2k−1) ψ − ess sup(a2k,a2k−1)
ψ/2

,

(3.7)

and

f(t, η, ξ) ≤ 0, t ∈ (a2k+1, a2k), η ∈ J2k+1, ξ ∈ R, (3.8)∫
A2k+1

ess sup
(η,ξ)∈J2k+1×R

f(t, η, ξ)dt

< − c(p)
(a2k − a2k+1)p−1

(ess sup(a2k+1,a2k) ψ − ess sup(a2k+1,a2k) ϕ)p

ess inf(a2k+1,a2k) ϕ/2− ess sup(a2k+1,a2k) ϕ
,

(3.9)

where c(p) = 2[4(p− 1)]p−1 and Ak is a family of sets defined by

Ak = [ak +
1
4
(ak−1 − ak), ak−1 −

1
4
(ak−1 − ak)], k ≥ 1.

Then for any solution u of (1.1) there is a sequence σk ∈ (ak, ak−1) which satisfies

u(σ2k) ≥ ess sup
(a2k,a2k−1)

ψ/2 and u(σ2k+1) ≤ ess inf
(a2k+1,a2k)

ϕ/2, k ≥ 1. (3.10)

Proof. Let k be a fixed natural number, k ≥ 1, and let

ω2 = ess sup
(a2k,a2k−1)

ψ/2 and θ1 = ess inf
(a2k+1,a2k)

ϕ/2.

Regarding to the hypotheses (3.5) and (3.6)–(3.9), it is clear that the assumptions of
Lemma 2.1 and Lemma 2.2 are satisfied on the intervals [a2k, a2k−1] and [a2k+1, a2k]
respectively. Therefore, we may use these two lemmas and so, there is a σ2 = σ2k ∈
(a2k, a2k−1) and σ1 = σ2k+1 ∈ (a2k+1, a2k) satisfying (2.4) and (2.8) respectively.
Since k is arbitrarily fixed, it implies the existence of a sequence σk ∈ (ak+1, ak)
which satisfies the desired condition (3.10). �

Combining the preceding two lemmas we derive some new metric properties for
solutions of (1.1). It is the subject of the following result.

Theorem 3.3. For arbitrarily given real number s ∈ (1, 2), let the sequence ak and
the obstacles ϕ and ψ be given by:

ak = a+
b− a

2
(
1
k

)1/β , k ≥ 1,

ϕ(t) = −2(t− a) and ψ(t) = 2(t− a), t ∈ (a, b),
(3.11)
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where β satisfies 1 < β < ∞ and β = s
2−s . If the Caratheodory function f(t, η, ξ)

satisfies (3.6)–(3.9) in respect to such (ϕ,ψ, ak), then each solution u of (1.1) sat-
isfies:

|Gε(u)| ≥
1
26

(b− a)sε2−s for each ε ∈ (0, ε0 =
b− a

β
), (3.12)

|Gε(u|[a,c])| ≥
1
26

(c− a)sε2−s for each ε ∈ (0, εc), (3.13)

dimM G(u) ≥ s and Ms(G((y)) ≥ 1
27

(b− a)s, (3.14)

Ms(G(u) ∩Br(a, u(a))) ≥
1
27

(
r√
5
)s for any r ∈ (0, b− a), (3.15)

where εc = min{ε0, (c−a)β+1

β(b−a)β }.

Proof. The proof is done in a few steps.
Proof of (3.12). It is not difficult to check see the proof of [12, Corollary 5.2, p.

289], that the sequence ak given in (3.11) satisfies the hypothesis (3.1) in respect
to ε0 and k(ε) determined by

c0

(
1
ε

) β
β+1

≤ k(ε) ≤ 2c0

(
1
ε

) β
β+1

for each ε ∈ (0, ε0), (3.16)

where c0 = 2
(

b−a
β

) β
β+1

and ε0 = b−a
β .

Let us remark that double inequalities in (3.16) is needed to ensure k(ε) ∈ N.
Also, it is clear that the obstacles ϕ and ψ given in (3.11) satisfy the hypothesis
(3.5). Thus, the assumptions of Lemma 3.2 are fulfilled and therefore, we have that
each solution u of (1.1) has rapid oscillations in the sense of (3.10). Moreover, it
implies that each solution u of (1.1) satisfies the main assumption of Lemma 3.1,
where ω = ψ/2 and θ = ϕ/2. So, we obtain

|Gε(u)| ≥
1
2

∫ ak(ε)

a

(ψ(t)− ϕ(t))dt for each ε ∈ (0, ε0).

Putting the data from (3.11) in the right hand side of the preceding inequality, we
get

|Gε(u)| ≥
∫ ak(ε)

a

2(t− a)dt =
(b− a

2
)2( 1

k(ε)
)2/β for each ε ∈ (0, ε0). (3.17)

Let us remark that from the left inequality in (3.16) we have in particular

1
k(ε)

≥ 1
4
( β

b− a

) β
β+1 ε

β
β+1 for each ε ∈ (0, ε0).

Putting this inequality in (3.17), for any ε ∈ (0, ε0), we get

|Gε(u)| ≥
(b− a)2

4

(
1
4

) 2
β β

2
β+1

(b− a)
2

β+1
ε

2
β+1 ≥ 1

26
(b− a)sε2−s,

where we have used that β > 1 and 2β/(β + 1) = s. Thus, we have proved the
inequality (3.12).
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Proof of (3.13). For c ∈ (a, b), let

εc = min{ε0 =
b− a

β
,
1
β

(c− a)β+1

(b− a)β
}. (3.18)

It is easy to check that for any c ∈ (a, b) the number εc given by (3.18) satisfies

ak(ε)−1 ∈ (a, c) for each ε ∈ (0, εc),

where the sequence ak is given in (3.11) and the number k(ε) is given in (3.16).
Therefore, we may apply Lemma 3.1 again and so, for each c ∈ (a, b) and for any
solution u of (1.1) we have

|Gε(u|[a,c])| ≥
1
2

∫ ak(ε)

a

(ψ(t)− ϕ(t))dt for each ε ∈ (0, εc).

Putting the data from (3.11) in this inequality and using the same calculation as
in the proof of (3.12) we prove (3.13).

Proof of (3.14). According to the definition of dimM G(u), from (3.12) immedi-
ately follows that

dimM G(u) = lim sup
ε→0

(
2− log |Gε(u)|

log ε
)

≥ lim sup
ε→0

(
2− log[ε2−s(b− a)s/26]

log ε
]
)

= lim sup
ε→0

(
2− (2− s)

log ε
log ε

− log[(b− a)s/26]
log ε

)
= s.

It proves the first inequality in (3.14). Also, according to the definition ofMs(G(u)),
from (3.12) we get:

Ms(G(u)) = lim sup
ε→0

(2ε)s−2|Gε(u)| ≥ lim sup
ε→0

(2ε)s−2[
(b− a)s

26
ε2−s]

= 2s−2 (b− a)s

26
lim sup

ε→0
(εs−2ε2−s) ≥ 1

27
(b− a)s,

which proves the second inequality in (3.14).
Proof of (3.15). At the first, since u ∈ K(ϕ,ψ) we have in particular that

ϕ(t) ≤ u(t) ≤ ψ(t), t ∈ [a, b] and u(a) = 0.

Making intersections of ϕ(t) = −2(t − a) and ψ(t) = 2(t − a) with Br(a, 0), it is
easy to see that

G(u|[a,a+ r√
5
]) ⊆ G(u) ∩Br(a, 0) for any r ∈ (0,

√
5(b− a)),

and so, we have

Ms(G(u|[a,a+ r√
5
])) ≤Ms(G(u) ∩Br(a, 0)) for any r ∈ (0, (b− a)). (3.19)

On the other hand, using (3.13) for c = a+ r√
5
, we get

Ms(G(u|[a,a+ r√
5
])) ≥

1
27

(
r√
5
)s for any r ∈ (0, b− a).

Combining this inequality with (3.19) we get the proof of (3.15). Thus, we have
proved all statements of Theorem 3.3. �
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At the end of this section, we give an example of such a class of the nonlinearity
f(t, η, ξ) which satisfies the assumptions of Theorem 3.3.

Example 3.4. In order to simplify the notation, let θ̃2k+1, ω̃2k+1, θ̃2k, ω̃2k, θ2k+1,
and ω2k be defined by:

θ̃2k = ess inf
(a2k,a2k−1)

ϕ, ω̃2k = ess inf
(a2k,a2k−1)

ψ, ω2k = ess sup
(a2k,a2k−1)

ψ/2,

θ̃2k+1 = ess sup
(a2k+1,a2k)

ϕ, ω̃2k+1 = ess sup
(a2k+1,a2k)

ψ, θ2k+1 = ess inf
(a2k+1,a2k)

ϕ/2.

Let f = f(t, η, ξ) be a Caratheodory function

f =
πc(p)
sin π

4

∞∑
k=1

[
(ω̃2k − θ̃2k)p (η − ω̃2k)−

(ω̃2k − ω2k)2
sin( π

a2k−1−a2k
(t− a2k))

(a2k−1 − a2k)p
K[a2k,a2k−1](t)

− (ω̃2k+1 − θ̃2k+1)p (η − θ̃2k+1)+

(θ2k+1 − θ̃2k+1)2
sin( π

a2k−a2k+1
(t− a2k−1))

(a2k − a2k+1)p
K[a2k+1,a2k](t)

]
,

where c(p) is appearing in (3.7) and (3.9) , and where KA(t) denotes as usually the
characteristic function of a set A. Also, η− = max{0,−η} and η+ = max{0, η}.
It is not difficult to check that f(t, η, ξ) is continuous in all its variables and that
f(t, η, ξ) satisfies the hypotheses (3.6)–(3.9).

4. Lower bounds for dimM G(u′) and Ms(G(u′))

In this section, the inequalities (1.6) and (1.7) will be verified. As the first, we
give a discrete version of Lemma 3.1, which is a modification of [12, Lemma 6.3, p.
291].

Lemma 4.1. Let σk be a decreasing sequence of real numbers from interval (a, b)
satisfying

σk ↘ a and there is an ε0 > 0 such that for each ε ∈ (0, ε0)

there is a k(ε) ∈ N such that σj−1 − σj ≤ ε/2 for each j ≥ k(ε).
(4.1)

Let δk be a sequence of real numbers such that

δ2k+1 > 0 and δ2k < 0, k ≥ 1.

Let z be a continuous function on (a, b] for which there is a sequence sk ∈ (σk, σk−1)
such that

z(s2k+1) ≥ δ2k+1 and z(s2k) ≤ δ2k, k ≥ 1.

Then there holds true

|Gε(z)| ≥
∞∑

k=k(ε)

δ2k+1(σ2k − σ2k+1) for each ε ∈ (0, ε0),

where k(ε) and ε0 are appearing in (4.1).

The proof of the lemma above is exactly the same as the proof of [12, Lemma
2.1, p. 271].

As a basic result, we need the following lemma on the asymptotic behaviour of
|Gε(u′)| as ε ≈ 0, where u′ is the derivative in the classical sense of any smooth
enough real function u.
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Lemma 4.2. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (3.1). Let ω2k and θ2k+1 be two sequences of real numbers satisfying

ω2k > min{θ2k+1, θ2k−1}, k ≥ 1. (4.2)

Let u be a real function, u ∈ C((a, b]) ∩ C1(a, b), for which there is a sequence
σk ∈ (ak, ak−1) such that

u(σ2k) ≥ ω2k and u(σ2k+1) ≤ θ2k+1, k ≥ 1. (4.3)

Then

|Gε(u′)| ≥
∞∑

k=k(ε/2)

(ω2k − θ2k+1) for each ε ∈ (0, ε0), (4.4)

where k(ε) and ε0 are defined in (3.1).

Proof. Lagrange’s mean value theorem, applied on the interval (σk, σk−1), where the
sequence σk is defined in (4.3), we get the existence of a sequence sk ∈ (σk, σk−1),
k ≥ 1 such that

u′(s2k+1) =
u(σ2k)− u(σ2k+1)

σ2k − σ2k+1
, u′(s2k) =

u(σ2k−1)− u(σ2k)
σ2k−1 − σ2k

. (4.5)

Using (4.3) and the notation:

z(t) = u′(t), t ∈ (a, b), δ2k+1 =
ω2k − θ2k+1

σ2k − σ2k+1
, δ2k =

θ2k−1 − ω2k

σ2k−1 − σ2k
,

the statement (4.5) can be rewritten in the form: there is sk ∈ (σk, σk−1), k ≥ 1,
such that

z(s2k+1) ≥ δ2k+1 > 0 and z(s2k) ≤ δ2k < 0, k ≥ 1. (4.6)

On the other hand, it is easy to see that the sequence σk just like ak satisfies a very
similar condition to (3.1); that is,

σk ↘ a and σj−1 − σj ≤ ε/2 for each j ≥ k(
ε

2
), ε ∈ (0, ε0), (4.7)

where k(ε) and ε0 are exactly the same as in (3.1). Now, by means of (4.6) and
(4.7), we have that the function z satisfies the assumptions of Lemma 4.1 and so,
we get:

|Gε(u′)| = |Gε(z)| ≥
∞∑

k=k(ε/2)

δ2k+1(σ2k − σ2k+1)

=
∞∑

k=k(ε/2)

(ω2k − θ2k+1)
σ2k − σ2k+1

(σ2k − σ2k+1)

=
∞∑

k=k(ε/2)

(ω2k − θ2k+1) for each ε ∈ (0, ε0).

Thus, Lemma 4.2 is proved. �

Next, we give the main result of this section.
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Theorem 4.3. Let the hypotheses of Theorem 3.3 be still assumed; that is: for
arbitrarily given real number s ∈ (1, 2), let the sequence ak and the obstacles ϕ and
ψ be given by (3.11), and let the Caratheodory function f(t, η, ξ) satisfy (3.6)–(3.9)
in respect to such (ϕ,ψ, ak). Then each solution u of (1.1) satisfies:

|Gε(u′)| ≥
√

2
24

(b− a)s/2ε1−s/2 for each ε ∈ (0, ε0 =
b− a

β
), (4.8)

dimM G(u′) ≥ 1 +
s

2
and M1+s/2(G(u′)) ≥ 1

24
(b− a)s/2. (4.9)

The proof of the above theorem can be done with similar arguments as in [14,
Theorem 3.4 and Corollary 3.5].

5. Full control of ess inf and ess sup of solutions

In contrast to the method of control of ess inf and ess sup of solutions of (1.1)
which was presented in Section 2, here we involve on the nonlinearity f(t, η, ξ)
slightly stronger conditions than (2.3) and (2.7) to obtain some stronger conclusions
than (2.4) and (2.8). More precisely, for any solution u of (1.1) we need to estimate
from below the measure of sets where ess inf u and ess supu are exceeded. It will
play an important role in the following section, where the inequality (1.8) and
(1.9) will be proved. The so called full control of ess inf and ess sup of solutions
of corresponding equation (1.10) was considered in [12, Section 4]. Here, it is the
subject of the following two lemmas.

Lemma 5.1. Let (a2, b2) ⊂⊂ (a, b) be an open interval. Let ω2 be an arbitrarily
given real number such that

ess sup
(a2,b2)

ϕ < ω2 < ess inf
(a2,b2)

ψ. (5.1)

Let J2 be a set defined by J2 = (ess inf(a2,b2) ϕ, ω2) and let the Caratheodory function
f(t, η, ξ) satisfy:

f(t, η, ξ) ≥ 0, t ∈ (a2, b2), η ∈ J2, ξ ∈ R, (5.2)

ess inf
t∈A2

f(t, η, ξ) >
c(p)

(b2 − a2)p

(ess sup(a2,b2) ψ − ess inf(a2,b2) ϕ)p

ess inf(a2,b2) ψ − ω2
, η ∈ J2, ξ ∈ R,

(5.3)

where c(p) = 2(16p)(p− 1)p−1 and A2 is a set defined by

A2 = [a2 +
1
16

(b2 − a2), b2 −
1
16

(b2 − a2)].

Then for any solution u of (1.1) we have

u(t) ≥ ω2 for each t ∈ [a2 +
1
4
(b2 − a2), b2 −

1
4
(b2 − a2)]. (5.4)

The dual result of Lemma 5.1 is the following.

Lemma 5.2. Let (a1, b1) ⊂⊂ (a, b) be an open interval. Let θ1 be an arbitrarily
given real number such that

ess sup
(a1,b1)

ϕ < θ1 < ess inf
(a1,b1)

ψ.
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Let J1 be a set defined by J1 = (θ1, ess sup(a1,b1) ψ) and let the Caratheodory function
f(t, η, ξ) satisfy:

f(t, η, ξ) ≤ 0, t ∈ (a1, b1), η ∈ J1, ξ ∈ R,

ess sup
t∈A1

f(t, η, ξ) < − c(p)
(b1 − a1)p

(ess sup(a1,b1) ψ − ess inf(a1,b1) ϕ)p

θ1 − ess sup(a1,b1) ϕ
, η ∈ J1, ξ ∈ R,

where c(p) = 2(16p)(p− 1)p−1 and A1 is a set defined by

A1 = [a1 +
1
16

(b1 − a1), b1 −
1
16

(b1 − a1)].

Then for any solution u of (1.1) we have

u(t) ≤ θ1 for each t ∈ [a1 +
1
4
(b1 − a1), b1 −

1
4
(b1 − a1)]. (5.5)

The above lemma can be proved analogously as in the proof of Lemma 5.1 to
be shown below. For the proof we use the following two propositions that will be
shown later.

Proposition 5.3. Let (c, d) ⊆ (a2, b2) be an open interval. Let ω2 be an arbitrarily
given real number such that

ess sup
(c,d)

ϕ < ω2 < ess inf
(c,d)

ψ. (5.6)

Let J2 be a set defined by J2 = (ess inf(c,d) ϕ, ω2) and let the Caratheodory function
f(t, η, ξ) satisfy

f(t, η, ξ) ≥ 0, t ∈ (c, d), η ∈ J2, ξ ∈ R. (5.7)

Then for any solution u of (1.1) such that u(c) = u(d) = ω2 there is a t∗ ∈ (c, d)
satisfying

u(t∗) ≥ ω2. (5.8)

The condition u(c) = u(d) = ω2 can be avoided as follows.

Proposition 5.4. Let (c, d) ⊆ (a2, b2) be an open interval such that

N(c, d) ⊆ (a2, b2), where N(c, d) = (c− d− c

2
, d+

d− c

2
).

Let ω2 be an arbitrarily given real number such that

ess inf
N(c,d)

ϕ < ω2 < ess inf
N(c,d)

ψ. (5.9)

Let J2 be a set defined by J2 = (ess inf(a2,b2) ϕ, ω2) and let the Caratheodory function
f(t, η, ξ) satisfy:

f(t, η, ξ) ≥ 0, t ∈ N(c, d), η ∈ J2, ξ ∈ R, (5.10)

ess inf
t∈(c,d)

f(t, η, ξ) > 2p+1 (p− 1)p−1

(d− c)p

(ess sup(a2,b2) ψ − ess inf(a2,b2) ϕ)p

ess infN(c,d) ψ − ω2
, (5.11)

for η ∈ J2 and ξ ∈ R. Then for any solution u of (1.1) there is a t∗ ∈ N(c, d)
satisfying u(t∗) ≥ ω2.

The proof of these two propositions will be presented later; meanwhile we proceed
with the proof of Lemma 5.1.
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Proof of Lemma 5.1. Since for any (c, d) ⊆ (a2, b2) and a function g = g(t) we have

ess inf
(a2,b2)

g ≤ ess inf
(c,d)

g and ess sup
(c,d)

g ≤ ess sup
(a2,b2)

g,

one can show that the main hypotheses (5.1)–(5.2) guarantee that the conditions
(5.6)–(5.7) and (5.9)–(5.10) are satisfied, where (c, d) ⊆ a2, b2) such that N(c, d) ⊆
(a2, b2). Thus, Proposition 5.3 may be used here as well as Proposition 5.4 provided
the hypothesis (5.11) is satisfied too.

Next, we claim that:

for any (c, d) ⊆ A2 such that d− c = (b2 − a2)/8

there is t∗ ∈ (c− b2 − a2

16
, d+

b2 − a2

16
) such that u(t∗) ≥ ω2,

(5.12)

where

A2 = [a2 +
b2 − a2

16
, b2 −

b2 − a2

16
].

To prove (5.12), let (c, d) be an open interval such that (c, d) ⊆ A2 and d − c =
(b2 − a2)/8. It is clear that

N(c, d) = (c− b2 − a2

16
, d+

b2 − a2

16
) ⊆ (a2, b2),

where N(c, d) = (c − d−c
2 , d + d−c

2 ). Putting b2 − a2 = 8(d − c) in (5.3) and using
c(p) = 2(16p)(p− 1)p−1 we get

ess inf
t∈(c,d)

f(t, η, ξ) ≥ ess inf
t∈A2

f(t, η, ξ)

> 2p+1 (p− 1)p−1

(d− c)p

(ess sup(a2,b2) ψ − ess inf(a2,b2) ϕ)p

ess inf(a2,b2) ψ − ω2

≥ 2p+1 (p− 1)p−1

(d− c)p

(ess sup(a2,b2) ψ − ess inf(a2,b2) ϕ)p

ess infN(c,d) ψ − ω2
, η ∈ J2, ξ ∈ R.

Therefore, the assumption (5.11) is satisfied too and so, by Proposition 5.4 there is
t∗ ∈ N(c, d) such that u(t∗) ≥ ω2. Thus, the assertion (5.12) is verified.

Next, we define two intervals (c1, d1) and (c2, d2) by

(c1, d1) = (a2 +
1
16

(b2 − a2), a2 +
3
16

(b2 − a2))

(c2, d2) = (b2 −
3
16

(b2 − a2), b2 −
1
16

(b2 − a2)).

It is easy to check that

(ci, di) ⊆ A2 and di − ci = (b2 − a2)/8, for i = 1, 2.

So, applying (5.12) to both interval [c1, d1] and [c2, d2] we get two points t∗1 and t∗2
such that

t∗i ∈ (ci −
1
16

(b2 − a2), di +
1
16

(b2 − a2)) and u(t∗i ) ≥ ω2, for i = 1, 2. (5.13)

It is clear that[
a2 +

1
4
(b2 − a2), b2 −

1
4
(b2 − a2)

]
⊆ [t∗1, t

∗
2] ⊆ (a2, b2). (5.14)

Next, we claim that
u(t) ≥ ω2 for each t ∈ [t∗1, t

∗
2]. (5.15)
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On the contrary, if there is a point t0 ∈ [t∗1, t
∗
2] satisfying u(t0) < ω2 then by means of

(5.13) we can construct an open interval (c, d) ⊆ (t∗1, t
∗
2) such that u(c) = u(d) = ω2

and u(t) < ω2 in (c, d). For example, we can choose c and d by

c = max{t ∈ [t∗1, t0] : u(t) = ω2} and d = min{t ∈ [t0, t∗2] : u(t) = ω2}.

But, by Proposition 5.3 it is not possible and so, the assertion (5.15) holds true.
Because of (5.14), it gives us the desired conclusion (5.4). Thus, Lemma 5.1 is
proved. �

Proof of Proposition 5.3. Let us suppose the opposite claim to (5.8); that is,

u(c) = u(d) = ω2 and u(t) < ω2 for each t ∈ (c, d). (5.16)

We are going to prove that (5.16) is not possible. In this direction, let v be a test
function defined by

v(t) =

{
ω2 in (c, d),
u(t) otherwise.

Since u ∈ K(ϕ,ψ) and because of (5.6) and (5.16), we have also that v ∈ K(ϕ,ψ)
and

v(t)− u(t) =

{
ω2 − u(t) > 0 in (c, d),
0 otherwise.

Hence, this test function can be applied in (1.1) and so, we obtain

0 ≤
∫ d

c

|u′|pdt ≤ −
∫ d

c

f(t, u, u′)(ω2 − u(t))dt ≤ 0,

where the main assumption (5.7) is used. So, we get u′ = 0 in (c, d). But, it
contradicts (5.16). Thus, (5.16) is not possible and the desired conclusion (5.8) is
proved. �

Proof of Proposition 5.4. Let (c, d) ⊆ (a2, b2) be an interval such that N(c, d) ⊆
(a2, b2), where N(c, d) = (c − d−c

2 , d + d−c
2 ). Let ω2 be an arbitrarily given real

number satisfying (5.9) and let the Caratheodory function f(t, η, ξ) satisfy (5.10)
and (5.11). Immediately from (5.11) we get∫ d

c

ess inf
(η,ξ)∈J2×R

f(t, η, ξ)dt > 2p (p− 1)p−1

(d− c)p−1

(ess sup(a2,b2) ψ − ess inf(a2,b2) ϕ)p

ess infN(c,d) ψ − ω2
.

(5.17)
Let the numbers c2 and d2 and the set A2 be defined by

c2 = c− d− c

2
, d2 = d+

d− c

2
, A2 = [c, d].

Then

N(c, d) = (c2, d2),

A2 = [c2 +
1
4
(d2 − c2), d2 −

1
4
(d2 − c2)],

2(d− c) = d2 − c2.
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Therefore, from the inequalities (5.9), (5.10) and (5.17), we get

θ̃0 ≤ ess inf
(c2,d2)

ϕ < ω2 < ess inf
(c2,d2)

ψ ≤ ω̃0,

f(t, η, ξ) ≥ 0, t ∈ (c2, d2), η ∈ J2, ξ ∈ R,∫
A2

ess inf
(η,ξ)∈J2×R

f(t, η, ξ)dt >
c(p)

(d2 − c2)p−1

(ω̃0 − θ̃0)p

ess inf(c2,d2) ψ − ω2
,

where J2 = (θ̃0, ω2), θ̃0 = ess inf(a2,b2) ϕ, ω̃0 = ess sup(a2,b2) ψ, and c(p) = 2[4(p −
1)]p−1. Hence, the assumptions of Lemma 2.3 are satisfied especially on the open
interval (c2, d2) ⊂⊂ (a, b), it implies the existence of a t∗ ∈ (c2, d2) such that
u(t∗) ≥ ω2. Thus, Proposition 5.4 is shown. �

6. The asymptotic behaviour of ‖u′‖Lp as ε ≈ 0

In this section, we will study the asymptotic behaviour of ‖u′‖Lp as ε ≈ 0 which
was presented by the inequalities (1.8) and (1.9). It will be made for such continuous
functions which satisfy a ”jumping” condition in the sense of (5.4) and (5.5), as
follows.

Lemma 6.1. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying

ak ↘ a and ak − ak+1 ≤ ak−1 − ak, k ≥ 1 and

there is an ε2 > 0 such that for each ε ∈ (0, ε2)

there is a j(ε) ∈ N such that aj(ε) > a+ ε.

(6.1)

Let u be a real function defined on [a, b] such that u ∈W 1,p
loc ((a, b]) ∩ C([a, b]) and

u(t) > 0 for each t ∈ Λ2k,

u(t) < 0 for each t ∈ Λ2k+1, k ≥ 1,
(6.2)

where
Λk = [ak +

1
4
(ak−1 − ak), ak−1 −

1
4
(ak−1 − ak)], k ≥ 1.

Then there is a sequence xk ∈ (a, b), k ∈ N and a constants c only depending on
given data such that each solution u of (1.1) satisfies∫ b

a+ε

|u′(t)|pdt ≥ c

j(ε)∑
k=3

(maxΛk
|u|)p

(ak−2 − ak−1)p−1
for each ε ∈ (0, ε2), (6.3)

where j(ε) is appearing in (6.1).

Proof. First, it is well known (see for instance in [2, Theorem 9.12 pp.166]) that in
the space W 1,p

0 (Ω), Ω ⊆ RN , there is a constant cp > 0 such that for u ∈ W 1,p
0 (Ω)

and p > N ,
sup
Ω
|u| ≤ cp|Ω|1/N−1/p‖∇u‖p. (6.4)

Next, let u be a real function satisfying (6.2). Then there is a sequence xk of the
zero-points of u such that:

u(xk) = 0, xk ∈ (ak −
1
4
(ak − ak+1), ak +

1
4
(ak−1 − ak)),

Λk ⊆ (xk, xk−1), k ≥ 2 and |xk − xk−1| ≤
3
2
(ak−2 − ak−1), k ≥ 3.

(6.5)
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In particular for N = 1 and Ω = (xk, xk−1) we have u ∈ W 1,p
0 (xk, xk−1) and so,

from (6.4) follows

sup
(xk,xk−1)

|u| ≤ cp|xk − xk−1|1−1/p‖u′‖Lp(xk,xk−1);

that is to say

‖u′‖p
Lp(xk,xk−1)

≥ cp
1

|xk − xk−1|p−1

(
sup

(xk,xk−1)

|u|
)p
, k ≥ 2, (6.6)

where the constant c > 0 does not depend on k, only on p. Now, according to (6.2),
(6.5) and (6.6) we calculate that

‖u′‖p
Lp(a+ε,b) ≥

j(ε)∑
k=2

‖u′‖p
Lp(xk,xk−1)

≥ cp
j(ε)∑
k=2

1
|xk − xk−1|p−1

(
sup

(xk,xk−1)

|u|
)p

≥ cp(
2
3
)p

j(ε)∑
k=3

(maxΛk
|u|)p

(ak−2 − ak−1)p−1
for each ε ∈ (0, ε2).

Thus, Lemma 6.1 is proved. �

Combining Lemmas 5.1 and 5.2, we are able to derive a kind of rapid oscillations
for solutions of (1.1) in the sense of (5.4) and (5.5).

Lemma 6.2. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (3.1). Let for each k ≥ 1 the obstacles ϕ(t) and ψ(t) satisfy:

ess sup
(a2k,a2k−1)

ϕ < ess sup
(a2k,a2k−1)

ψ/2 < ess inf
(a2k,a2k−1)

ψ,

ess inf
(a2k+1,a2k)

ψ > ess inf
(a2k+1,a2k)

ϕ/2 > ess sup
(a2k+1,a2k)

ϕ.
(6.7)

Let the sets Jk be defined by:

J2k = ( ess inf
(a2k,a2k−1)

ϕ, ess sup
(a2k,a2k−1)

ψ/2),

J2k+1 = ( ess inf
(a2k+1,a2k)

ϕ/2, ess sup
(a2k+1,a2k)

ψ), k ≥ 1.

Next, let for each k ≥ 1 the Caratheodory function f(t, η, ξ) satisfy

f(t, η, ξ) ≥ 0, t ∈ (a2k, a2k−1), η ∈ J2k, ξ ∈ R, (6.8)

ess inf
t∈A2k

f(t, η, ξ) >
c(p)

(a2k−1 − a2k)p

(ess sup(a2k,a2k−1)
ψ − ess inf(a2k,a2k−1) ϕ)p

ess inf(a2k,a2k−1) ψ − ess sup(a2k,a2k−1)
ψ/2

,

(6.9)

where η ∈ J2k, ξ ∈ R and:

f(t, η, ξ) ≤ 0, t ∈ (a2k+1, a2k), η ∈ J2k+1, ξ ∈ R, (6.10)

ess sup
t∈A2k+1

f(t, η, ξ)dt < − c(p)
(a2k − a2k+1)p

(ess sup(a2k+1,a2k) ψ − ess inf(a2k+1,a2k) ϕ)p

ess inf(a2k+1,a2k) ϕ/2− ess sup(a2k+1,a2k) ϕ
,

(6.11)

where η ∈ J2k+1, ξ ∈ R and c(p) = 2(16p)(p − 1)p−1 and Ak is a family of sets
defined by

Ak = [ak +
1
16

(ak−1 − ak), ak−1 −
1
16

(ak−1 − ak)], k ≥ 1.
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Then for any solution u of (1.1) we have:

u(t) ≥ ess sup
(a2k,a2k−1)

ψ/2 for each t ∈ Λ2k, (6.12)

u(t) ≤ ess inf
(a2k+1,a2k)

ϕ/2 for each t ∈ Λ2k+1, k ≥ 1, (6.13)

where Λk is a family of sets defined by

Λk = [ak +
1
4
(ak−1 − ak), ak−1 −

1
4
(ak−1 − ak)], k ≥ 1.

Proof. It is clear that the assumptions of Lemmas 5.1 and 5.2 are fulfilled on the
intervals [a2, b2] = [a2k, a2k−1] and [a1, b1] = [a2k+1, a2k] respectively, where ω2 =
ess sup(a2k,a2k−1)

ψ/2 and θ1 = ess inf(a2k+1,a2k) ϕ/2. Therefore, from (5.4) and (5.5)
immediately follows (6.12) and (6.13)). �

Regarding Example 3.4 above, it is easy to construct a class of Caratheodory
functions f(t, η, ξ) which satisfies the assumptions of Lemma 6.2.

Next, we give the main result of the section.

Theorem 6.3. For arbitrarily given real number s ∈ (1, 2), let the sequence ak and
the obstacles ϕ and ψ be given by (3.11). If the Caratheodory function f(t, η, ξ) sat-
isfies (6.8)–(6.11) in respect to such (ϕ,ψ, ak) then there are two positive constants
c and ε2 depending only on given data such that each solution u of (1.1) satisfies( ∫ b

a+ε

|u′|pdt
)1/p ≥ c

(1
ε

)s−1 for each ε ∈ (0,min{ε2, 1}),

lim sup
ε→0

log
( ∫ b

a+ε
|u′|pdt

)1/p

log 1/ε
≥ s− 1.

Proof. It is easy to see that ϕ, ψ and ak given by (3.11) satisfy the assumptions
of Lemma 6.2. It implies that each solution u of (1.1) satisfies the assumptions of
Lemma 6.1, where j(ε) = k(ε), and k(ε) is given in (3.16), and

ε2 = min{b− a

β
,
(b− a

2
(

1
2c0

)
1
β
) β+1

β },

where c0 is appearing in (3.16). For the record, in order to prove that ak given in
(3.11) satisfies (6.1) in respect to ε2, it is used the following elementary inequalities

1
β

(1
k

)1+1/β ≤
( 1
k − 1

)1/β −
(1
k

)1/β ≤ 1
β

( 1
k − 1

)1+1/β ≤ 21+1/β

β

(1
k

)1+1/β
,

where k ≥ 2 and β > 0. Putting such (ϕ,ψ, ak) into (6.3), we obtain∫ b

a+ε

|u′(t)|pdt ≥ c

k(ε)∑
k=3

(
ak + ak−1

2
− a)p 1

(ak−2 − ak−1)p−1
for each ε ∈ (0, ε2).

Now, with the help of the same technical details as in the proof of [12, Theorem
8.1, p. 298-299], from (3.11) and previous inequality easy follows that

‖u′‖p
Lp(a+ε,b) ≥ c1

k(ε)∑
k=3

k(1+ 1
β )(p−1)− p

β ≥ c1(k(ε))(1+
1
β )(p−1)− p

β +1, ε ∈ (0, ε2).
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Taking the p-root in the preceding inequality and using (3.16), we obtain

‖u′‖Lp(a+ε,b) ≥ c1(k(ε))(1+
1
β )(1− 1

p )− 1
β + 1

p ≥ c1
(1
ε

) 2β
β+1−

1
p
(1
ε

)( 1
p−1) β

β+1

≥ c1
(1
ε

)s−1
, ε ∈ (0,min{ε2, 1}).

It proves Theorem 6.3 �
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