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A NEW PROOF OF HARNACK’S INEQUALITY FOR
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

IN DIVERGENCE FORM

RAQUEL CRESCIMBENI, LILIANA FORZANI, ALEJANDRA PERINI

Abstract. In this paper we give a new proof of Harnack’s inequality for
elliptic operator in divergence form. We imitate the proof given by Caffarelli

for operators in nondivergence form.

1. Introduction

At the end of the 1950’s De Giorgi [4] showed that weak solutions of the second
order elliptic partial differential equations in divergence form

Lu =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, (1.1)

satisfy pointwise estimations, which allowed him to prove that all weak solutions
of (1.1) are locally Hölder continuous. In 1961, Moser [9] proved that nonnegative
weak solutions of (1.1) satisfy the so called Harnack’s inequality: Let Ω ⊂ Rn be
an open set, for all Q′ and Q open cubes in Rn such that Q′ ⊂ Q ⊂ Ω, Q′ = 1

4Q,
there exists a constant C > 1, which depends on Q,Q′ and the uniform ellipticity
of (1.1), such that

sup
Q′

u ≤ C inf
Q′

u (Harnack inequality)

for any nonnegative weak solution u of (1.1) in Q. As a consequence of Harnack
inequality, Moser obtained Hölder regularity for all weak solutions of (1.1), and
so Moser’s method became the classical method for proving the regularity of weak
solutions. The next big step in the study of Hölder regularity was given by Krylov
and Safonov [7] in 1980. They proved the Harnack inequality for the case of strong
solutions of parabolic equations with elliptic part in nondivergence form. In 1986,
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Caffarelli [2] gave a proof of the Harnack inequality for nonnegative smooth solu-
tions of second order elliptic partial differential equations in nondivergence form

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
= 0. (1.2)

In this proof, and as a consequence of the Maximum Principle of Alexandroff-
Bakelman-Pucci (see [11]), Caffarelli used two properties of the nonnegative solu-
tions of the equation (1.2) on cubes of Rn; namely:

Property 1.1. There exist constants γ0 > 0 and 0 < C1 < 1 such that if u is a
nonnegative solution of Lu = 0 in Q2r,x0 and

|{x ∈ Qr,x0 : u(x) > 1}| > γ0r
n,

then infQ r
2 ,x0

u(x) > C1, where | · | is the Lebesgue measure in Rn and Qr,x0 an
open cube of size r and center x0, (i.e Qr,x0 = {x ∈ Rn : ‖x− x0‖∞ < r/2} where
‖x‖∞ = max1≤i≤n |xi|) .

Property 1.2. Let M > 2, there exists C2 > 0 such that if u is a nonnegative
solution of Lu = 0 in QMr,x0 and infQr,x0

u ≥ 1, then infQ Mr
2 ,x0

u(x) > C2.

These two properties and the Calderon-Zygmund decomposition are the main
tools that Caffarelli used to prove the weak Harnack inequality for nonnegative
solutions of (1.2). As a consequence of this inequality, Caffarelli obtained an oscil-
lation property for all solutions, which together with Property 1.2 allowed him to
prove the Harnack inequality.

Again, as a consequence of the Harnack inequality, Caffarelli proved the Hölder
continuity for all solutions in nondivergence form (see [2]).

To prove the Harnack inequality for nonnegative weak solutions of (1.1), Moser
used an iterative argument for the functions given by

Φ(p, h) =
( 1
|Qh,0|

∫
Qh,0

updx
)1/p

with p ∈ R, 0 < h < 1, where for fix h, Φ(p, h) tends to supQh,0
u and to infQh,0 u

when p tends to +∞ and −∞, respectively. Moreover, Moser used the Caccioppoli
inequality for subsolutions and supersolutions, the Poincar and Sobolev inequalities
to estimate the supremum and the infimum of u. Finally, to connect these estimates
he used the John-Niremberg inequality for the bounded mean oscillation functions.

The proof of the Harnack inequality, that Moser and Caffarelli obtained, are
completely different, because when the coefficients are not differentiable, these op-
erators must be treated in different forms. The reason of this follows from the
theory of equations in divergence form that is based on integral (energy) estimates,
while all the theory of equations in nondivergence form is based on pointwise esti-
mates, since when the coefficients are just measurable functions, the equation (1.2)
provides only pointwise information.

The purpose of this work is to present a Harnack inequality proof for operator in
divergence form, imitating the techniques applied by Caffarelli [2] for the operators
in nondivergence form. To arrive at our objective we use the Aimar, Forzani and
Toledano results [13] and [1], where they proved the weak Harnack inequality, in
more general spaces, as a consequence of the Property 1.1 and the Property 1.2.
The scheme of the proof that Aimar, Forzani and Toledano follow, is the same as
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Caffarellis scheme for the Harnack inequaltiy for operator in nondivergence form.
For this reason, to give a new proof of the Harnack inequality for nonnegative weak
solutions for operators in divergence form, our principal objective in this paper is
to prove the validity of Properties 1.1 and 1.2 for these operators.

In Section 2, we present some definitions, notations and general results of the
elliptics differential equations in the divergence form. In Section 3, we state the
main result of this work and we present the scheme to obtain the Harnack inequality
for operator in divergence form, using the Aimar, Forzani and Toledano results.
In Section 4, we prove some previous results of Sobolev Spaces and differential
equations. Finally in Section 5, we prove the main result of this paper, that is the
validity of the Property 1.1 and the Property 1.2 for operator in divergence form.

2. Definitions and Notations

We are interested in studying the operators given by (1.1) where the coefficients
aij(x) are measurable functions in Ω ⊂ Rn (Ω bounded domain) and A = (aij)
is the coefficient matrix which is symmetric. Therefore, throughout this work, we
will assume that all the eigenvalues of A are bounded for positive constants, that
is, there exist positive constants λ and Λ such that they satisfy the inequality

0 < λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2, (2.1)

for all ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn − {0} and x ∈ Ω. An operator L with a matrix
A = (aij) satisfying (2.1) is called uniformly elliptic in Ω and the constants λ and
Λ will be the ellipticity constants.

We shall define the concept of solution that we are going to use in this work,
that is, the solution of the operator in divergence form. A function u is called a
weak solution in Ω of the operator (1.1) if u ∈ W 1,2(Ω) and satisfies∫

Ω

n∑
i,j=1

ai,j(x)
∂u

∂xj

∂Φ
∂xi

dx = 0, (2.2)

for all Φ ∈ C1
0 (Ω). In the same way u is called a weak subsolution (Lu ≥ 0) (weak

supersolution (Lu ≤ 0)) in Ω of the same equation if u ∈ W 1,2(Ω) and satisfies∫
Ω

n∑
i,j=1

ai,j(x)
∂u

∂xj

∂Φ
∂xi

dx ≤ 0 (≥ 0),

for all nonnegative Φ such that Φ ∈ C1
0 (Ω).

In this work we use some well known results of the weak solutions of (1.1), the
proofs of which are not difficult (see [5] or [8]). They are:

(1) ∫
Ω

n∑
i,j=1

aij(x)
∂u

∂xj

∂Φ
∂xi

dx = 0

for all φ ∈ C1
0 (Ω) if and only if∫

Ω

n∑
i,j=1

aij(x)
∂u

∂xj

∂Φ
∂xi

dx = 0

for all φ ∈ W 1,2
0 (Ω).
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(2) Let v be a positive weak subsolution of Lu = 0 in Ω then vk with k ≥ 1 is
a weak subsolution of Lu = 0 in Ω.

(3) Scale argument: If u is a solution in Ω of the equation Lu = 0 then
ũ(y) = u(ry) is a solution in Ω̃ = {y = r−1x, x ∈ Ω} of the equation
L̃ũ = 0 where L̃ is the operator (1.1) with the coefficients ãij(y) = aij(ry),
y ∈ Ω̃ and aij the coefficients of L. Moreover L and L̃ have the same
ellipticity constants.

To use the Aimar, Forzani and Toledano result [1] for functions of the vectorial
space U , we need the following definitions:

A vectorial space of functions U satisfies Property 1.1 if there exist constants
γ0 > 0 and 0 < C1(λ, Λ, n) < 1 such that if u ∈ U is nonnegative in Q2r,x0 and
|{x ∈ Qr,x0 : u(x) > 1}| > γ0r

n then infQ r
2 ,x0

u > C1.
A vectorial space U , of functions, satisfies Property 1.2 if, given M > 2, there

exists C2 = C2(λ, Λ,M) > 0 such that if u ∈ U is nonnegative in QMr,x0 and
infQr,x0

u ≥ 1, then infQ Mr
2 ,x0

u > C2.
A vectorial space U , of functions, satisfies the weak Harnack inequality if

there exist p > 0 and C = C(λ, Λ, p) > 0 such that( 1
|Q2r,x0 |

∫
Q2r,x0

updx
)1/p

≤ C inf
Qr,x0

u (2.3)

for all u ∈ U , nonnegative in Q4r,x0 ⊂ Ω.
A set U is locally bounded if supQ |u| < ∞ for all u ∈ U and for each cube

Q in Ω, that is, if all u ∈ U belong to L∞loc(Ω). We will refer to this property by
saying that U ∈ L∞loc(Ω).

A vectorial space U ∈ L∞loc(Ω) satisfies the oscillation property if there exists
0 < θ < 1 such that

oscQr,x0
u ≤ θ oscQ4r,x0

u, (2.4)

for all u ∈ U and Qr,x0 such that Q4r,x0 ⊂ Ω, where oscQr,x0
u = supQr,x0

u −
infQr,x0

u.
A vectorial space U , of functions, satisfies the Hölder continuity property if

there exist positive constants C and α such that |u(x) − u(y)| ≤ C|x − y|α for all
u ∈ U and for all Q4r,x0 ⊂ Ω, with x, y ∈ Qr,x0 .

A vectorial space U , of functions, satisfies the Harnack inequality if there
exist β = β(λ, Λ, n) > 0 such that

sup
Qr,x0

u ≤ β inf
Qr,x0

u (2.5)

for all u ∈ U , nonnegative in Q4r,x0 ⊂ Ω.

3. Statement of the main result

In [1] the authors proved, that in the general setting of spaces of homogeneous
type, the Properties 1.1 and 1.2 mentioned above, are sufficient conditions to es-
tablish the weak Harnack inequality.

The technique used by Aimar, Forzani and Toledano for the weak Harnack in-
equality proof is like the Caffarelli’s steps to prove the weak Harnack inequality for
nonnegative solutions of the elliptic operator in nondivergence form given by (1.2).
More precisely they obtained the following theorem.
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Theorem 3.1. For U a vectorial space of functions, we have
(1) if U satisfies the Properties 1.1 and 1.2 then U satisfy the weak Harnack

inequality.
(2) if U satisfies the weak Harnack inequality then U satisfy the oscillation

property. Moreover if U ∈ L∞loc(Ω) then U satisfies the Hölder α- continuity.
(3) if U satisfies the Property 1.2 and the oscillation property then U satisfies

the Harnack inequality.

Now we present the main result of this work, where the vectorial space U in Rn

is
U = {u ∈ W 1,2(Ω) such that u is a weak solution of Lu = 0}, (3.1)

where L is given by (1.1).

Theorem 3.2. The vectorial space of functions U given by (3.1) satisfies the Prop-
erty 1.1 and the Property 1.2 defined in Section 2.

The proof of this Theorem will be given in Section 5. Using this result and
the Theorem 3.1 for our particular case of the vectorial space of functions U in Rn

given by (3.1), we obtain a new proof of the Harnack inequality for nonnegative weak
solutions of the operator in divergence form, that follows the lines of Caffarelli’s
proof for nonnegative smooth solutions of the operator in nondivergence form.

4. Previous Results

First of all, we present some classic results about Sobolev Spaces and differential
equations.

Theorem 4.1 (Sobolev Inequality). Let u ∈ W0
1,2(Ω). Then there exists a con-

stant β = β(n) such that( ∫
Ω

|u|2
∗
dx

)1/2∗

≤ β
( ∫

Ω

|∇u|2dx
)1/2

, (4.1)

where 2∗ = 2n/(n− 2).

For a proof the above theorem, see for example [5].

Theorem 4.2 (Caccioppoli Inequality). Let M > 1 and u a positive weak subso-
lution of Lu = 0 in QMr,x0 and Φ ∈ W 1,2

0 (QMr,x0). Then∫
QMr,x0

|∇u|2Φ2dx ≤ C

∫
QMr,x0

|∇Φ|2u2dx, (4.2)

where C = C(λ, Λ, n).

For a proof of the above theorem, see for example [9]. Caccioppoli estimates will
permit us to prove other results such as the boundedness of the norm L∞ of the
solutions.

Theorem 4.3. Let u be a positive weak subsolution of Lu = 0 in Q4r,x0 . Then

‖u‖L∞(Qr,x0 ) ≤
C

r
n
2
‖u‖L2(Q2r,x0 ), (4.3)

where C = C(λ, Λ).
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Proof. By the scale argument it is sufficient to prove

‖u‖L∞(Q1,
x0
r ) ≤ C‖u‖L2(Q2,

x0
r

), (4.4)

where C = C(Λ, n). For k = n
n−2 and for all j ∈ N we define the number

Nj =
( ∫

Q
rj,

x0
r

u2kj

dx
)1/(2kj)

, (4.5)

where the rj are such that the succession of cubes Qrj ,
x0
r

satisfying

Q2,
x0
r
⊃ Qr1,

x0
r
⊃ Qr2,

x0
r
⊃ · · · ⊃ Qrj−1,

x0
r
⊃ Qrj ,

x0
r
⊃ · · · ⊃ Q1,

x0
r

, (4.6)

with dist(∂Qrj ,
x0
r

, ∂Qrj−1,
x0
r

) ∼ j−2, where ∼ denote equivalent.
First we have to see that

‖u‖L∞(Q1,
x0
r

) ≤ lim sup
j→∞

Nj . (4.7)

In fact, let us suppose that ‖u‖L∞(Q1,
x0
r

) = M and let M ′ < M . We define

A = {x ∈ Q1,
x0
r

: |u(x)| > M ′}.

Then |A| > 0. By definitions of Nj and A we obtain

Nj =
( ∫

Q
rj,

x0
r

u2kj

dx
)1/(2kj)

≥
( ∫

A

u2kj

dx
)1/(2kj)

≥ M ′|A|1/(2kj).

Since limj→∞ |A|1/(2kj) = 1, then lim infj→∞Nj ≥ M and (4.7) follows.
Let Φ ∈ C1

0 (Qrj−1,
x0
r

) such that Φ ≡ 1 in Qrj ,
x0
r

and |∇Φ| ≤ c
rj−1−rj

in Qrj−1,
x0
r

.

Since u ∈ W 1,2(Q4,
x0
r

) then v = Φu ∈ W 1,2
0 (Qrj−1,

x0
r

). By the Sobolev inequality
(4.1) and the Caccioppoli inequality (4.2) we have∫

Q
rj,

x0
r

u2k ≤
∫

Q
rj−1,

x0
r

(Φu)2k
dx

≤ β
( ∫

Q
rj−1,

x0
r

|∇(Φu)|2dx
)k

≤ β
( ∫

Q
rj−1,

x0
r

|∇Φ|2u2dx +
∫

Q
rj−1,

x0
r

|Φ|2|∇u|2dx
)k

≤ β
(
(1 + C(n, λ,Λ))

∫
Q

rj−1,
x0
r

|∇Φ|2u2dx
)k

≤ β
(c2(1 + C(n, λ,Λ))

(rj−1 − rj)
2

∫
Q

rj−1,
x0
r

u2dx
)k

.

(4.8)
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By item 2) in Section 2 we have that ukj−1
is a positive subsolution. Applying

(4.8) to ukj−1
we have

N2kj−1

j =
( ∫

Q
rj,

x0
r

(
ukj−1)2k

dx
)1/k

≤ β1/kc2(1 + C(n, λ,Λ))
(rj−1 − rj)2

∫
Q

rj−1,
x0
r

(
ukj−1)2

dx

≤ Cj4N2kj−1

j−1 .

Then,

Nj ≤
(
Cj4

)1/(2kj−1)
Nj−1.

Iterating this last inequality we obtain

Nj ≤ N0

∞∏
i=1

(
Ci4

)1/(2ki−1);

so that

lnNj ≤ lnN0 +
∞∑

i=1

1
2ki−1

ln
(
Ci4

)
;

that is,

Nj ≤ e
P∞

i=1
1

2ki−1 ln
(
Ci4

)
N0 ≤ eCN0.

By (4.7) we have

‖u‖L∞(Q1,
x0
r

) ≤ lim sup
j→∞

Nj ≤ eCN0

= eC
( ∫

Q
r0,

x0
r

u2k0
)1/(2k0)

= c‖u‖L2(Q2,
x0
r

);

so we obtain (4.4). �

Our second step is to give another result which will provide us that the logarithm
of a weak solution of (1.1) is a weak subsolution. Furthermore, we will obtain an
estimate in the L2 norm of the∇(− log(u+ε)), with ε ∈ (0, 1) and u is a nonnegative
weak solutions of (1.1). The statement of this result is as follows.

Lemma 4.4. Let u be a nonnegative weak solution of Lu = 0 in Q2Mr,x0 and f is
defined for x ∈ R+

0 by f(x) = max{− log(x + ε), 0} with ε ∈ (0, 1), then
(1) v = f(u) is a nonnegative weak subsolution of (1.1) in Q2Mr,x0 , M ≥ 1.
(2)

1
|QMr,x0 |

∫
QMr,x0

|∇v|2dx ≤ C(Mr)−2, (4.9)

where C = C(λ, Λ, n) > 0.

Proof. The function f is differentiable in R+ ∪ {0}, except in x = 1 − ε. The first
derivative is

f ′(x) =

{
− 1

x+ε if 0 ≤ x < 1− ε

0 if x > 1− ε
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then for a fix ε we have f ′ ∈ L∞(R+
0 ). Moreover the second derivative is

f ′′(x) =

{
1

(x+ε)2 if 0 ≤ x < 1− ε

0 if x > 1− ε

then f ′′(x) = [f ′(x)]2 for x + ε 6= 1. For Ψ ∈ C1
0 (Q2Mr,x0), Ψ ≡ 1 onto QMr,x0 and

|∇Ψ| ≤ c(n)
Mr in Q2Mr,x0 , we consider w(x) = Ψ2(x)f ′(u(x)) if u(x) 6= 1− ε.

Since f is a piecewise smooth function with f ′ ∈ L∞(R+
0 ), we can deduce that

f ′(u) ∈ W 1,2(Q2Mr,x0) and ∇(f ′(u)) = f ′′(u)∇u at almost every point of Q2Mr,x0 ,
then w = Ψ2f ′(u) ∈ W 1,2

0 (Q2Mr,x0) and

0 = −〈Lu,w〉 = −
〈
Lu,Ψ2f ′(u)

〉
=

∫ n∑
i=1

aij(x)
∂u

∂xj

∂(Ψ2f ′(u))
∂xi

dx

=
∫ n∑

i=1

aij(x)
∂u

∂xj

(
2Ψ

∂Ψ
∂xi

f ′(u) + Ψ2f ′′(u)
∂u

∂xi

)
dx

=
∫ n∑

i=1

aij(x)
∂u

∂xj
2Ψ

∂Ψ
∂xi

f ′(u)dx +
∫ n∑

i=1

aij(x)
∂u

∂xj
Ψ2 ∂u

∂xi
f ′′(u)dx.

(4.10)

By the ellipticity property given by (2.1), the previous identity and the inequality
2ab ≤ δa2 + b2

δ for all δ > 0 we have

λ

∫
Ψ2f ′′(u)|∇u|2dx ≤

∫ n∑
i=1

aij(x)
∂u

∂xj
Ψ2 ∂u

∂xi
f ′′(u)dx

= −2
∫ n∑

i=1

aij(x)Ψf ′(u)
∂u

∂xj

∂Ψ
∂xi

dx

≤ 2
∫ n∑

i=1

∣∣∣aij(x)Ψf ′(u)
∂u

∂xj

∂Ψ
∂xi

∣∣∣dx

≤ Λ
( ∫

δ2Ψ2|f ′(u)|2|∇u|2dx +
∫

|∇Ψ|2

δ2
dx

)
.

Then we obtain

∫ [
λΨ2f ′′(u)− Λδ2Ψ2|f ′(u)|2

]
|∇u|2dx ≤

∫
|∇Ψ|2

δ2
dx.

If ∇u 6= 0, then f ′′(u) = |f ′(u)|2. Taking δ2 = λ
2Λ we have

∫
Ψ2|f ′(u)|2|∇u|2dx ≤ C(λ, Λ)

∫
|∇Ψ|2dx. (4.11)
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By (4.11) and the fact that Ψ ≡ 1 in QMr,x0 , it results that∫
QMr,x0

|∇v|2dx =
∫

QMr,x0

|∇(f(u))|2dx

=
∫

QMr,x0

|f ′(u)|2|∇u|2dx

≤
∫

Q2Mr,x0

Ψ2|f ′(u)|2|∇u|2dx

≤ C(λ, Λ)
∫

Q2Mr,x0

|∇Ψ|2dx

≤ C(λ, Λ)(Mr)n−2.

�

We remark that Lemma 4.4 is a necessary tool for the proof of Theorem 3.2.

5. Proof of Theorem 3.2

Property 1.1: It is sufficient to prove that v = f(u) = max{− log(u + ε), 0}
is bounded for all x ∈ Q r

2 ,x0 . In fact, if this is true we have that − log(u + ε) ≤
v(x) < C for all x ∈ Q r

2 ,x0 , then log(u + ε)−1 < C and so u > 1
10C = C1 in Q r

2 ,x0 .
Let A = {x ∈ Qr,x0 : u(x) > 1}. If x ∈ A, we have v(x) = 0, then

|Qr,x0 −A| = |{x ∈ Qr,x0 : u(x) ≤ 1}| < (1− γ0)rn. (5.1)

By Lemma 4.4 we have that v is a positive weak subsolution of Lu = 0 in Q2r,x0 ,
then by (4.3) we obtain that,

sup
Q r

2 ,x0

v2 ≤ c

rn

∫
Qr,x0

v2dx. (5.2)

Furthermore, if we prove that there exists a constant γ0 such that

c

rn

∫
Qr,x0

v2dx ≤ r2−n

∫
Qr,x0

|∇v|2dx, (5.3)

and we use the estimation (4.9) with M = 1 we have∫
Qr,x0

|∇v|2dx ≤ Crn−2; (5.4)

then by (5.2), (5.3) and (5.4) we have that supQ r
2 ,x0

v is bounded.
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Finally we have only to show (5.3). The Hölder’s inequality, estimate (5.1) and
the Sobolevs inequality allow us to obtain that

1
rn

∫
Qr,x0

v2dx =
1
rn

∫
Qr,x0−A

v2dx

≤ 1
rn

( ∫
Qr,x0−A

v
2n

n−2 dx
)(n−2)/n

|Qr,x0 −A|2/n

≤ c ((1− γ0)rn)2/n

rn

( ∫
Qr,x0

v
2n

n−2 dx
)(n−2)/n

≤ cβ2 ((1− γ0)rn)2/n

rn

( 1
r2

∫
Qr,x0

v2dx +
∫

Qr,x0

|∇v|2dx
)
.

Then we have(
1
rn

− cβ2(1− γ0)
n
2

rn

) ∫
Qr,x0

v2dx ≤ cβ2r2(1− γ0)2/n

rn

∫
Qr,x0

|∇v|2dx.

If we choose γ0 such that 1− cβ2(1− γ0)
n
2 ≥ 1

2 we obtain (5.3).

Property 1.2: The main estimate that we need is the following

1
(Mr)n

∫
QMr,x0

v2dx ≤ C̃(1−M−n+1)(Mr)2−n

∫
QMr,x0

|∇v|2 dx, (5.5)

where v = max{− log(u + ε), 0}. The above estimate, (4.3) and (4.9) allow us to
obtain the result in the following inequality

‖v‖2
L∞(Q Mr

2 ,x0
) ≤

c

(Mr)n
‖v‖2

L2(QMr,x0 )

=
c

(Mr)n

∫
QMr,x0

v2dx

≤ C̃(1−M−n+1)(Mr)2−n

∫
QMr,x0

|∇v|2 dx

≤ C̃(1−M−n+1)(Mr)2−n(Mr)n−2

= C̃(1−M−n+1).

Then supQ Mr
2 ,x0

v ≤ C. As in the proof of Property 1.1 we have infQ Mr
2 ,x0

u > C2.

Now we need only to prove (5.5). Since u ≥ 1 in Qr,x0 then v = max{− log(u +
ε), 0} = 0 in Qr,x0 . In particular v(x0) = 0 then for all x ∈ QMr,x0 −Qr,x0 and m
such that m > 1 we can write,

v(x) =
∫ 1

1
m

∂v

∂t
(tx + (1− t)x0)dt =

∫ 1

1
m

∇v(tx− (1− t)x0).(x− x0)dt.
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By the last identity, the chain rule and the Fubini’s Theorem, we obtain (5.5) as
follows∫

QMr,x0

|v(x)|2dx =
∫

QMr,x0−Qr,x0

|v(x)|2dx

≤
∫

QMr,x0−Qr,x0

∫ 1

1
m

|∇v(tx + (1− t)x0)|2 |x− x0|2 dtdx

≤ Cn
(Mr

2
)2

∫ 1

1
m

∫
QMr,x0−Qr,x0

|∇v(tx + (1− t)x0)|2 dxdt

= C(Mr)2
∫ 1

1
m

∫
QMrt,x0−Qrt,x0

|∇v(y)|2 dy

tn
dt

= C(Mr)2
∫

QMr,x0−Q r
m

,x0

|∇v(y)|2
[ ∫ 2‖y−x0‖∞

r

2‖y−x0‖∞
Mr

dt

tn

]
dy

≤ C(Mr)2(1−M−n+1)
∫

QMr,x0

|∇v(y)|2 dy.
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[1] H. Aimar , L. Forzani, R. Toledano; Hölder regularity of Pde’s: A geometrical view, Com-

munications in Partial Differential Equations, Marcel Dekker, 2001.
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