Electronic Journal of Differential Equations, Vol. 2007(2007), No. 43, pp. 1-5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR BOUNDARY-VALUE PROBLEMS

LI XIA, ZHENGAN YAO

Abstract. Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions.

1. Introduction

This note concerns the existence of positive solutions to the boundary-value problem (BVP)

$$
\begin{gather*}
y^{\prime \prime}=-\frac{\beta}{t} y^{\prime}+\frac{\gamma}{y}\left|y^{\prime}\right|^{2}-f(t, y), \quad 0<t<1 \tag{1.1}\\
y(0)=y(1)=0 \tag{1.2}\\
y^{\prime}(0)=y^{\prime}(1)=0 \tag{1.3}
\end{gather*}
$$

where $\beta>0, \gamma>\beta+1$ are constants, and f satisfies
(H1) $f(t, y) \in C^{1}\left([0,1] \times[0, \infty),\left[c_{0}, \infty\right)\right)$ for sufficiently small $c_{0}>0$, and f is non-increasing with respect to y.
Equation (1.1) with the nonlinear right-hand side independent of y^{\prime} has been discussed extensively in the literature; see for example [1, 7] and the references therein. Because of its background in applied mathematics and physics, problem (1.1) with right-hand side depending on y^{\prime} has attracted the attention of many authors; see for instance [6, 8] and their references.

Guo et al. 6] studied the existence of positive solutions for the singular boundaryvalue problem with nonlinear boundary conditions

$$
\begin{gathered}
y^{\prime \prime}+q(t) f\left(t, y, y^{\prime}\right)=0, \quad 0<t<1 \\
y(0)=0, \quad \theta\left(y^{\prime}(1)\right)+y(1)=0
\end{gathered}
$$

where $f\left(t, y, y^{\prime}\right) \geq 0$ is singular at $y=0$. They use a nonlinear alternative of Leray-Schauder type and Urysohn's lemma.

[^0]This work is motivated by [4] where the authors studied the problem

$$
\begin{gathered}
y^{\prime \prime}+\frac{N-1}{t} y^{\prime}-\frac{\gamma}{y}\left|y^{\prime}\right|^{2}+1=0, \quad 0<t<1 \\
y(1)=0, \quad y^{\prime}(0)=0
\end{gathered}
$$

There N is a positive integer, and the problem corresponds to $\beta=N-1, f \equiv$ 1 in 1.1. Applying ordinary differential equation techniques, they obtained a decreasing positive solution which, subsequently, was used in [5] to study some properties of solutions for a class of degenerate parabolic equations (see [3] for further information).

In this note, we study problem (1.1) under boundary conditions that are mote complicated than those in [4]. By using a regularization method and constructing sub- and supersolutions, we obtain an existence result.

A function $y \in C^{2}(0,1) \cap C[0,1]$ is called a solution for 1.1$)$ if is positive in $(0,1)$ and satisfies 1.1 pointwise.

The main result of this note is as follows.
Theorem 1.1. Under assumption (H1), the boundary-value problem (1.1)-1.3) admits at least one solution.

Since we need to calculate the derivatives of f, we assume that $f \in C^{1}([0,1] \times$ $\left.[0, \infty),\left[c_{0}, \infty\right)\right)$. However, if $f \in C\left([0,1] \times[0, \infty),\left[c_{0}, \infty\right)\right)$, Theorem 1.1 remains valid.

2. Proof of Theorem 1.1

Since problem (1.1) is singular at point $t=0$, or $y(t)=0$, we need to regularize it. Precisely, we discuss positive solutions of the regularized problem

$$
\begin{equation*}
-y^{\prime \prime}-\frac{\beta}{t+\varepsilon} y^{\prime}+\frac{\gamma}{|y|+\varepsilon^{2}}\left|y^{\prime}\right|^{2}-f(t, y)=0, \quad 0<t<1 \tag{2.1}
\end{equation*}
$$

subject to the boundary conditions 1.2 , where $\varepsilon \in(0,1]$.
Denote $A y=-y^{\prime \prime}$ and

$$
b_{\varepsilon}(t, \xi, \eta)=\frac{\beta}{t+\varepsilon} \eta-\frac{\gamma}{|\xi|+\varepsilon^{2}}|\eta|^{2}+f(t, \xi)
$$

Note that $b_{\varepsilon}(\cdot, \xi, \eta) \in C^{\mu}[0,1]$ uniformly for (ξ, η) in bounded subsets of $\mathbb{R} \times \mathbb{R}$ for some $\mu \in(0,1], \partial b_{\varepsilon} / \partial \xi, \partial b_{\varepsilon} / \partial \eta$ exist and are continuous on $[0,1] \times \mathbb{R}^{2}$. Moreover, there exists some positive constant C dependent of ε^{-1}, σ such that

$$
\left|b_{\varepsilon}(t, \xi, \eta)\right| \leq C\left(1+|\eta|^{2}\right)
$$

for every $\sigma \geq 0$ and $(t, \xi, \eta) \in[0,1] \times[-\sigma, \sigma] \times \mathbb{R}$.
A function y is called a subsolution for BVP 2.1 1.2 if $y \in C^{2+\mu}[0,1]$ and

$$
\begin{gathered}
A y \leq b_{\varepsilon}\left(\cdot, y, y^{\prime}\right) \quad \text { in }[0,1] \\
y(0) \leq 0, \quad y(1) \leq 0
\end{gathered}
$$

Supersolutions are defined by reversing the above inequality signs. We call y a solution for (2.1) 1.2), if y is a subsolution and a supersolution of (2.1) 1.2).

Let $v(t)=\frac{1}{2} t-\frac{1}{2} t^{2}$, it is easy to see that v is a nonnegative solution for problem

$$
\begin{gathered}
-v^{\prime \prime}=1, \quad 0<t<1 \\
v(0)=v(1)=0
\end{gathered}
$$

Lemma 2.1. Let $y=C_{1} v^{2}, y_{1 \varepsilon}=C_{2}(t+\varepsilon)^{2}, y_{2 \varepsilon}=C_{2}(1+\varepsilon-t)^{2}, \bar{y}_{\varepsilon}=$ $\min \left\{y_{1 \varepsilon}, y_{2 \varepsilon}\right\}$, then 2.1 1.2 admits at least one solution $y_{\varepsilon} \in\left[\underline{y}, \bar{y}_{\varepsilon}\right]$. Here C_{1} and $C_{2} \geq 1$ are some positive constants.

Proof. By [2, Theorem 1.1], it suffices to prove $\underline{y}(\bar{y})$ is a subsolution (supersolution) for (2.1) (1.2). Hence we need to prove $A \underline{y} \leq b_{\varepsilon}\left(t, \underline{y}, \underline{y^{\prime}}\right), A y_{i \varepsilon} \geq b_{\varepsilon}\left(t, y_{i \varepsilon}, y_{i \varepsilon}^{\prime}\right)$ ($i=1,2$).

From $0 \leq v(t) \leq t$ and $\underline{y}^{\prime}=2 C_{1} v v^{\prime}, \underline{y}^{\prime \prime}=2 C_{1}\left|v^{\prime}\right|^{2}-2 C_{1} v$, we have

$$
\begin{aligned}
A \underline{y}-b_{\varepsilon}\left(t, \underline{y}, \underline{y}^{\prime}\right) & =2 C_{1}\left[v-\frac{\beta}{t+\varepsilon} v v^{\prime}+\left|v^{\prime}\right|^{2}\left(2 \gamma \frac{C_{1} v^{2}}{C_{1} v^{2}+\varepsilon^{2}}-1\right)\right]-f(t, \underline{y}) \\
& \leq 2 C_{1}\left[v+\beta\left|v^{\prime}\right|+(2 \gamma+1)\left|v^{\prime}\right|^{2}\right]-f(t, \underline{y})
\end{aligned}
$$

Since $f(t, \xi) \geq c_{0}>0$, we can choose

$$
C_{1} \leq \min \left\{\frac{c_{0}}{2 \max _{[0,1]}\left[v+\beta\left|v^{\prime}\right|+(2 \gamma+1)\left|v^{\prime}\right|^{2}\right]}, 1 / 2\right\}
$$

hence

$$
A \underline{y} \leq b_{\varepsilon}\left(t, \underline{y}, \underline{y}^{\prime}\right), \quad 0<t<1 .
$$

Since $C_{2}(t+\varepsilon)^{2} \geq \varepsilon^{2}$, it is easy to calculate that

$$
\begin{aligned}
A y_{1 \varepsilon}-b_{\varepsilon}\left(t, y_{1 \varepsilon}, y_{1 \varepsilon}^{\prime}\right) & =2 C_{2}\left[\gamma \frac{2 C_{2}(t+\varepsilon)^{2}}{C_{2}(t+\varepsilon)^{2}+\varepsilon^{2}}-\beta-1\right]-f\left(t, y_{1 \varepsilon}\right) \\
& \geq 2 C_{2}(\gamma-\beta-1)-f\left(t, y_{1 \varepsilon}\right)
\end{aligned}
$$

Choosing

$$
C_{2} \geq \max \left\{\frac{1}{2(\gamma-\beta-1)} \max _{[0,1]} f(t, \underline{y}(t)), 1\right\}
$$

we see that $y_{1 \varepsilon} \geq \underline{y}$ in $[0,1]$. It follows from (H1) that

$$
A y_{1 \varepsilon} \geq b_{\varepsilon}\left(t, y_{1 \varepsilon}, y_{1 \varepsilon}^{\prime}\right), \quad 0<t<1
$$

as asserted. The other inequality can be proved similarly. The proof is complete.

Lemma 2.2. For any $\tau \in(0,1)$, there exists a positive constant C_{τ} independent of ε such that

$$
\begin{equation*}
\left|y_{\varepsilon}^{\prime}\right| \leq C_{\tau}, \quad\left|y_{\varepsilon}^{\prime \prime}\right| \leq C_{\tau}, \quad \tau \leq t \leq 1-\tau \tag{2.2}
\end{equation*}
$$

Proof. From Lemma 2.1, BVP (2.1) 1.2) admits a solution $y_{\varepsilon} \in C^{2+\mu}[0,1]$ which satisfies 2.1 1.2 pointwise, hence it is also a solution of

$$
\left[(t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}\right]^{\prime}=\frac{\gamma(t+\varepsilon)^{\beta}}{y_{\varepsilon}+\varepsilon^{2}}\left|y_{\varepsilon}^{\prime}\right|^{2}-(t+\varepsilon)^{\beta} f\left(t, y_{\varepsilon}\right)
$$

Since $\gamma>0$, from (H1) and Lemma 2.1 we obtain

$$
\left[(t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}\right]^{\prime} \geq-(t+\varepsilon)^{\beta} f\left(t, y_{\varepsilon}\right) \geq-2^{\beta} \max _{[0,1]} f(t, \underline{y}(t)):=-M
$$

Therefore,

$$
\left[(t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}+M t\right]^{\prime} \geq 0, \quad 0<t<1
$$

which implies that the function $\varphi(t):=(t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}+M t$ is non-decreasing on $[0,1]$.

Since $y_{\varepsilon} \geq 0$ for all $t \in[0,1]$ and $y_{\varepsilon}(0)=y_{\varepsilon}(1)=0$, we have

$$
\begin{aligned}
& y_{\varepsilon}^{\prime}(0)=\lim _{t \rightarrow 0^{+}} \frac{y_{\varepsilon}(t)}{t} \geq 0 \\
& y_{\varepsilon}^{\prime}(1)=\lim _{t \rightarrow 1^{-}} \frac{y_{\varepsilon}(t)}{t-1} \leq 0
\end{aligned}
$$

From which, it follows that

$$
0 \leq \varphi(0) \leq \varphi(t) \leq \varphi(1) \leq M, \quad t \in[0,1]
$$

which implies

$$
\begin{equation*}
\left|(t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}(t)\right| \leq M \tag{2.3}
\end{equation*}
$$

Hence for any $\tau \in(0,1)$ there exists a positive constant C_{τ} independent of ε such that

$$
\left|y_{\varepsilon}^{\prime}\right| \leq C_{\tau}, \quad \tau \leq t \leq 1
$$

Multiplying 2.1 by $(t+\varepsilon)^{2 \beta+1}$, from (2.3) (H1) and Lemma 2.1 it follows

$$
\begin{aligned}
& \left|(t+\varepsilon)^{2 \beta+1} y_{\varepsilon}^{\prime \prime}\right| \\
= & \left|\gamma \frac{(t+\varepsilon)}{y_{\varepsilon}+\varepsilon^{2}}\left[(t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}\right]^{2}-(t+\varepsilon)^{2 \beta+1} f\left(t, y_{\varepsilon}\right)-(2 \beta+1)(t+\varepsilon)^{\beta}\left((t+\varepsilon)^{\beta} y_{\varepsilon}^{\prime}\right)\right| \\
\leq & C\left(1+\frac{t+\varepsilon}{\underline{y}+\varepsilon^{2}}+f(t, \underline{y})\right)
\end{aligned}
$$

where C is independent of ε. The second conclusion follows easily from the above inequality.

Now we complete the proof of Theorem 1.1. Differentiating formally (2.1) with respect to t, from (H1) and Lemma 2.1 we obtain

$$
\begin{aligned}
\left|y_{\varepsilon}^{\prime \prime \prime}\right|= & \left|\frac{\beta}{t+\varepsilon}\left(\frac{y_{\varepsilon}^{\prime}}{t+\varepsilon}-y_{\varepsilon}^{\prime \prime}\right)+\gamma \frac{2\left(y_{\varepsilon}+\varepsilon^{2}\right) y_{\varepsilon}^{\prime} y_{\varepsilon}^{\prime \prime}-y_{\varepsilon}^{\prime}\left|y_{\varepsilon}^{\prime}\right|^{2}}{\left(y_{\varepsilon}+\varepsilon^{2}\right)^{2}}-f_{t}^{\prime}\left(t, y_{\varepsilon}\right)-f_{y}^{\prime}\left(t, y_{\varepsilon}\right) y_{\varepsilon}^{\prime}(t)\right| \\
\leq & \frac{\beta}{t+\varepsilon}\left(\frac{\left|y_{\varepsilon}^{\prime}\right|}{t+\varepsilon}+\left|y_{\varepsilon}^{\prime \prime}\right|\right)+\gamma\left[\frac{2\left|y_{\varepsilon}^{\prime}\right|\left|y_{\varepsilon}^{\prime \prime}\right|}{\underline{y}+\varepsilon^{2}}+\frac{\left|y_{\varepsilon}^{\prime}\right|^{3}}{\left(\underline{y}+\varepsilon^{2}\right)^{2}}\right] \\
& +\max _{t \in[0,1], y \in[a, b]}\left|f_{t}^{\prime}(t, y)\right|+\left|y_{\varepsilon}^{\prime}\right| \cdot \max _{t \in[0,1], y \in[a, b]}\left|f_{y}^{\prime}(t, y)\right|,
\end{aligned}
$$

where $a=\min _{t \in[0,1]} \underline{y}(t), b=\left.\max _{t \in[0,1]} \bar{y}_{\varepsilon}(t)\right|_{\varepsilon=1}$. From 2.2) one infers that for any $\tau \in(0,1)$ there exists a positive constant C_{τ} independent of ε such that

$$
\left|y_{\varepsilon}^{\prime \prime \prime}\right| \leq C_{\tau}, \quad \tau \leq t \leq 1-\tau
$$

This implies that

$$
\left\|y_{\varepsilon}\right\|_{C^{2,1}[\tau, 1-\tau]} \leq C_{\tau}
$$

Using Arzelá-Ascoli theorem and diagonal sequential process, we obtain that there exists a subsequence $\left\{y_{\varepsilon_{n}}\right\}$ of $\left\{y_{\varepsilon}\right\}$ and a function $y \in C^{2}(0,1)$ such that

$$
y_{\varepsilon_{n}} \rightarrow y, \quad \text { uniformly in } C^{2}[\tau, 1-\tau]
$$

as $\varepsilon_{n} \rightarrow 0$. By Lemma 2.1 we obtain

$$
\begin{gathered}
C_{1} t^{2}(1-t)^{2} \leq y(t) \leq C_{2} t^{2}, \quad t \in[0,1] \\
C_{1} t^{2}(1-t)^{2} \leq y(t) \leq C_{2}(1-t)^{2}, \quad t \in[0,1]
\end{gathered}
$$

From this, it is not difficult to show that $y^{\prime}(0)=y^{\prime}(1)=0$ and $y \in C[0,1]$. Clearly, y solves BVP (1.1)- 1.3 , hence Theorem 1.1 is proved.

Example. Consider boundary-value problem

$$
\begin{gather*}
y^{\prime \prime}+\frac{N-1}{t} y^{\prime}-\frac{N+1}{y}\left|y^{\prime}\right|^{2}+t^{2}+e^{-y}+1=0, \quad 0<t<1, \tag{2.4}\\
y(0)=y(1)=y^{\prime}(0)=y^{\prime}(1)=0 .
\end{gather*}
$$

Let $N \geq 1, \beta=N-1, \gamma=N+1, f(t, y)=t^{2}+e^{-y}+1, c_{0}=1$. Clearly, all assumptions of Theorem 1.1 are satisfied. Hence the problem 2.4 has at least one positive solution $y \in C^{2}(0,1) \cap C[0,1]$. But the theorems in [6, 8 are not applicable to this example.

Acknowledgement. The authors are highly grateful for the referee's careful reading and comments on this note.

References

[1] R. P. Agarwal, D. O'Regan, V. Lakshmikantham, S. Leela; Nonresonant singular boundaryvalue problems with sign changing nonlinearities, Applied Mathematics and Computation, 167(2005), 1236-1248.
[2] Herbert Amann; Existence and multiplicity theorems for semi-linear elliptic boundary-value problems, Math. Z., 1976, 150: 281-295.
[3] G. I. Barenblatt, M. Bertsch, A. E. Chertock, V. M. Prostokishin; Self-similar intermediate asymptotic for a degenerate parabolic filtration-absorption equation, Proc. Nat. Acad. Sci. (USA), 2000, 18: 9844-9848.
[4] M. Bertsch, M. Ughi; Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal. TMA, 1990, 14: 571-592.
[5] M. Bertsch, R. D. Passo, M. Ughi; Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 1990, 320: 779-798.
[6] Guo Yanping, Shan Wenrui, Ge Weigao; Positive solutions of singular ordinary differential equations with nonlinear boundary conditions, Applied Mathematics Letters, 18(2005), 1-9.
[7] Johnny Henderson, Haiyan Wang; Positive Solutions for Nonlinear Eigenvalue Problems, J. Math. Appl. Anal., 208(1997), 252-259.
[8] A. Tineo; Existence theorems for a singular two point Dirichlet problem, Nonlinear Analysis, 19 (1992) 323-333.

Li Xia
Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
E-mail address: xaleysherry@163.com
Zhengan Yao
Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
E-mail address: mcsyao@mail.sysu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B16, 34B18.
 Key words and phrases. Upper and lower solution; existence; singular equation. (C) 2007 Texas State University - San Marcos.

 Submitted September 19, 2006. Published March 15, 2007.
 Supported by grants NNSFC-10171113 and NNSFC-10471156 from the National Natural Science Foundation of China, and by grant NSFGD-4009793 from the Natural Science
 Foundation of Guang Dong.

