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POSITIVE SOLUTIONS OF A NONLINEAR HIGHER ORDER
BOUNDARY-VALUE PROBLEM

JOHN R. GRAEF, JOHNNY HENDERSON, BO YANG

Abstract. The authors consider the higher order boundary-value problem

u(n)(t) = q(t)f(u(t)), 0 ≤ t ≤ 1,

u(i−1)(0) = u(n−2)(p) = u(n−1)(1) = 0, 1 ≤ i ≤ n− 2,

where n ≥ 4 is an integer, and p ∈ (1/2, 1) is a constant. Sufficient conditions

for the existence and nonexistence of positive solutions of this problem are
obtained. The main results are illustrated with an example.

1. Introduction

We consider the problem of the existence and nonexistence of positive solutions
of the nonlinear n-th order ordinary differential equation

u(n)(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.1)

subject to boundary conditions

u(i−1)(0) = 0, 1 ≤ i ≤ n− 2,

u(n−2)(p) = 0, u(n−1)(1) = 0,
(1.2)

where
(H1) n ≥ 4 is a fixed integer, p ∈ (1/2, 1) is constant, and
(H2) f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous, and g(t) 6≡ 0 on

[0, 1].
Our interest here is in obtaining positive solutions to this boundary-value problem,
that is, solutions u(t) such that u(t) > 0 for t ∈ (0, 1).

The importance of boundary-value problems in a wide variety of applications
in the physical, biological and engineering sciences is now well documented in the
literature, and in the last ten years this has become an extremely active area of
research. The monographs of Agarwal [1] and Agarwal, O’Regan, and Wong [3]
contain excellent surveys of known results. Recent contributions to the study of
multipoint boundary-value problems can be found in the papers of Agarwal and
Kiguradze [2], Anderson and Davis [4], Cao and Ma [5], Graef, Henderson and
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Yang [6], Graef, Qian, and Yang [7, 8], Graef and Yang [9, 10], Hu and Wang [12],
Infante [13], Infante and Webb [14], Kong and Kong [15], Ma [17, 18, 19], Maroun
[20], Raffoul [21], Wang [22], Webb [23, 24], and Zhou and Xu [25]. The three-point
boundary conditions considered here, namely, conditions (1.2) above, have been
used by many authors in the study of existence of positive solutions of second order
problems. Here, we use these conditions but for problems involving higher order
(n ≥ 4) differential equations.

Let G3 : [0, 1]× [0, 1] → [0,∞) be defined by

G3(t, s) =


t(2s− t)/2, t ≤ s ≤ p,

s2/2, s ≤ t, and s ≤ p,

t(2p− t)/2, t ≤ s, and s ≥ p,

t(2p− t)/2 + (t− s)2/2, t ≥ s ≥ p.

For n ≥ 4, we define

Gn(t, s) =
∫ t

0

Gn−1(v, s)dv, (t, s) ∈ [0, 1]× [0, 1].

Then, for n ≥ 4, Gn(t, s) is the Green’s function for the equation

u(n)(t) = 0

subject to the boundary conditions (1.2). Moreover, solving the problem (1.1)–(1.2)
is equivalent to finding a solution to the integral equation

u(t) =
∫ 1

0

Gn(t, s)q(s)f(u(s)) ds, 0 ≤ t ≤ 1.

It is obvious that

Gn(t, s) > 0, for t, s ∈ (0, 1) and n ≥ 3.

Throughout this paper, we let

F0 = lim sup
x→0+

(f(x)/x), f0 = lim inf
x→0+

(f(x)/x),

F∞ = lim sup
x→+∞

(f(x)/x), f∞ = lim inf
x→+∞

(f(x)/x).

To prove our results, we will use the following fixed point theorem known as the
Guo-Krasnosel’skii fixed point theorem [11, 16].

Theorem 1.1. Let X be a Banach space over the reals, and let P ⊂ X be a cone in
X. Assume that Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let

L : P ∩ ( Ω2 − Ω1) → P

be a completely continuous operator such that, either one of the following two con-
ditions hold.

(K1) ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2,
(K2) ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ ( Ω2 − Ω1).

The next section contains some preliminary lemmas; our main results appear in
Sections 3 and 4.
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2. Preliminary Lemmas

The following lemmas will be used in the proofs of our main results.

Lemma 2.1. If u ∈ Cn[0, 1] satisfies the boundary conditions (1.2) and

u(n)(t) ≥ 0 for 0 ≤ t ≤ 1, (2.1)

then for each i = 0, 1, 2, . . . , n− 3, we have

u(i)(t) ≥ 0 for 0 ≤ t ≤ 1. (2.2)

Proof. If we define w(t) = u(n−3)(t) for 0 ≤ t ≤ 1, then we have

w′′′(t) ≥ 0 for 0 ≤ t ≤ 1,

w(0) = w′(p) = w′′(1) = 0.

Therefore,

u(n−3)(t) = w(t) =
∫ 1

0

G3(t, s)w′′′(t) dt ≥ 0, 0 ≤ t ≤ 1.

Since u(0) = u′(0) = · · · = u(n−4)(0) = 0, we have

u(i)(t) ≥ 0 for 0 ≤ t ≤ 1 and i = 0, 1, . . . , n− 3,

which completes the proof of the lemma. �

The next two lemmas give estimates on the growth of u(t).

Lemma 2.2. If u ∈ Cn[0, 1] satisfies (1.2) and (2.1), then

u(t) ≥ tn−2u(1) for 0 ≤ t ≤ 1.

Proof. If we define

h(t) = u(t)− tn−2u(1), 0 ≤ t ≤ 1, (2.3)

then
h(n)(t) = u(n)(t) ≥ 0, 0 ≤ t ≤ 1. (2.4)

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1. It is easy to
see from (2.3) that

h(0) = h′(0) = · · · = h(n−3)(0) = h(1) = 0.

Since h(0) = h(1) = 0, by the Mean Value Theorem, there exists r1 ∈ (0, 1) such
that h′(r1) = 0. Similarly, h′(0) = h′(r1) = 0 implies that there exists r2 ∈ (0, r1)
such that h′′(r2) = 0. Continuing this procedure, we can find a sequence of numbers

1 > r1 > r2 > · · · > rn−3 > 0

such that
h(i)(ri) = 0, 0 ≤ i ≤ n− 3.

It is also easy to see from (2.3) that h(n−1)(1) = 0. Since

h(n)(t) ≥ 0 for 0 ≤ t ≤ 1, (2.5)

we have
h(n−1)(t) ≤ 0 for 0 ≤ t ≤ 1. (2.6)

This implies that h(n−3)(t) is concave downward.
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Because h(n−3)(0) = h(n−3)(rn−3) = 0, we have

h(n−3)(t) ≥ 0 on [0, rn−3] and h(n−3)(t) ≤ 0 on [rn−3, 1]. (2.7)

In view of (2.7) and the fact that h(n−4)(0) = h(n−4)(rn−4) = 0, we have

h(n−4)(t) ≥ 0 on [0, rn−4] and h(n−4)(t) ≤ 0 on [rn−4, 1].

If we continue this procedure, we finally obtain

h′(t) ≥ 0 on [0, r1] and h′(t) ≤ 0 on [r1, 1]. (2.8)

Combining (2.8) with the fact that h(0) = h(1) = 0 yields

h(t) ≥ 0 for 0 ≤ t ≤ 1,

which completes the proof of the lemma. �

Lemma 2.3. If u ∈ Cn[0, 1] satisfies (1.2) and (2.1), then

u(t) ≤ tn−4u(1) for t ∈ [0, 1].

Proof. If we define

h(t) = tn−4u(1)− u(t), t ∈ [0, 1]. (2.9)

then
h(n)(t) = −u(n)(t) ≤ 0, 0 ≤ t ≤ 1. (2.10)

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1. It is easy to
see from (2.9) that

h(0) = h′(0) = · · · = h(n−5)(0) = h(1) = 0.

By the Mean Value Theorem, in view of the fact that h(0) = h(1) = 0, there exists
r1 ∈ (0, 1) such that h′(r1) = 0. Because h′(0) = h′(r1) = 0, there exists r2 ∈ (0, r1)
such that h′′(r2) = 0. If we continue this procedure, then we can find a sequence
of numbers

1 > r1 > r2 > · · · > rn−4 > 0
such that

h(i)(ri) = 0, 0 ≤ i ≤ n− 4.

We can also see from (2.9) that

h(n−3)(0) = h(n−2)(p) = h(n−1)(1) = 0.

Therefore, we have

h(n−3)(t) =
∫ 1

0

G3(t, s)h(n)(s) ds ≤ 0, 0 ≤ t ≤ 1.

This means that h(n−4)(t) is nonincreasing. Since h(n−4)(rn−4) = 0, we have

h(n−4)(t) ≥ 0 on [0, rn−4] and h(n−4)(t) ≤ 0 on [rn−4, 1].

Since h(n−5)(0) = h(n−5)(rn−5) = 0, we have

h(n−5)(t) ≥ 0 on [0, rn−5] and h(n−5)(t) ≤ 0 on [rn−5, 1].

If we continue this procedure, we finally obtain

h′(t) ≥ 0 on [0, r1] and h′(t) ≤ 0 on [r1, 1]. (2.11)

Combining (2.11) with the fact that h(0) = h(1) = 0 yields

h(t) ≥ 0 for 0 ≤ t ≤ 1,



EJDE-2007/45 POSITIVE SOLUTIONS 5

which completes the proof of the lemma. �

The next theorem is a direct consequence of Lemmas 2.1, 2.2, and 2.3.

Theorem 2.4. If u ∈ Cn[0, 1] satisfies (1.2) and (2.1), then 0 ≤ u(t) ≤ u(1) for
0 ≤ t ≤ 1, and

tn−4u(1) ≥ u(t) ≥ tn−2u(1) for 0 ≤ t ≤ 1. (2.12)

In particular, if u(t) is a nonnegative solution to the problem (1.1)–(1.2), then u(t)
satisfies (2.12).

Note that Theorem 2.4 provides both an upper and a lower estimate to each
positive solution to the problem (1.1)–(1.2).

3. Existence of Positive Solutions

We begin by introducing some notation. Define

A =
∫ 1

0

Gn(1, s)g(s)sn−2 ds and B =
∫ 1

0

Gn(1, s)g(s)sn−4 ds.

Let X = C[0, 1] with the supremum norm

‖v‖ = max
t∈[0,1]

|v(t)|, v ∈ X,

and let

P =
{
v ∈ X : v(1) ≥ 0, tn−2v(1) ≤ v(t) ≤ v(1)tn−4 on [0, 1]

}
.

Obviously X is a Banach space and P is a positive cone of X. Define the operator
T : P → X by

Tu(t) =
∫ 1

0

Gn(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1, u ∈ P.

By a standard argument we can show that T : P → X is a completely continuous
operator. It is obvious that if u ∈ P , then u(1) = ‖u‖. We see from Theorem 2.4
that if u(t) is a nonnegative solution to the problem (1.1)–(1.2), then u ∈ P . In a
similar fashion to the proof of Theorem 2.4, we can show that T (P ) ⊂ P . To find
a positive solution to the problem (1.1)–(1.2), we only need to find a fixed point u
of T such that u ∈ P and u(1) = ‖u‖ > 0.

We now give our first existence result.

Theorem 3.1. If BF0 < 1 < Af∞, then the problem (1.1)–(1.2) has at least one
positive solution.

Proof. Choose ε > 0 such that (F0 + ε)B ≤ 1. There exists H1 > 0 such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.
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For each u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =
∫ 1

0

Gn(1, s)g(s)f(u(s)) ds

≤ (F0 + ε)
∫ 1

0

Gn(1, s)g(s)u(s) ds

≤ (F0 + ε)‖u‖
∫ 1

0

Gn(1, s)g(s)sn−4ds

≤ (F0 + ε)‖u‖B ≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. If we let Ω1 = {u ∈ X : ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

Next we construct Ω2. Since 1 < Af∞, we can choose c ∈ (0, 1/4) and δ > 0 such
that

(f∞ − δ)
∫ 1

c

Gn(1, s)g(s)sn−2 ds > 1.

There exists H3 > 0 such that

f(x) ≥ (f∞ − δ)x for x ≥ H3.

Let H2 = max{H3c
2−n, 2H1}. Now if u ∈ P with ‖u‖ = H2, then for c ≤ t ≤ 1, we

have

u(t) ≥ tn−2‖u‖ ≥ cn−2H2 ≥ H3,

and

(Tu)(1) ≥
∫ 1

c

Gn(1, s)g(s)f(u(s))ds

≥ (f∞ − δ)
∫ 1

c

Gn(1, s)g(s)u(s)ds

≥ (f∞ − δ)‖u‖
∫ 1

c

Gn(1, s)g(s)sn−2 ds ≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. So, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then Ω1 ⊂ Ω2

and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Since the condition (K1) of Theorem 1.1 is satisfied, there exists a fixed point of T
in P , and this completes the proof of the theorem. �

Theorem 3.2. If BF∞ < 1 < Af0, then the problem (1.1)–(1.2) has at least one
positive solution.

Proof. Choose ε > 0 such that (f0 − ε)A ≥ 1. There exists H1 > 0 such that

f(x) ≥ (f0 − ε)x for 0 < x ≤ H1.
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So, for each u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =
∫ 1

0

Gn(1, s)g(s)f(u(s)) ds

≥ (f0 − ε)
∫ 1

0

Gn(1, s)g(s)u(s) ds

≥ (f0 − ε)‖u‖
∫ 1

0

Gn(1, s)g(s)sn−2 ds

≥ A(f0 − ε)‖u‖ ≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. If we let Ω1 = {u ∈ X : ‖u‖ < H1}, then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose δ ∈ (0, 1) such that ((F∞ + δ)B + δ) ≤ 1. There exists
H3 > 0 such that

f(x) ≤ (F∞ + δ)x for x ≥ H3.

If we let M = max0≤x≤H3 f(x), then f(x) ≤ M + (F∞ + δ)x for x ≥ 0. Let

K = M

∫ 1

0

G(1, s)g(s)ds

and let H2 = max{2H1,K(1− (F∞+δ)B)−1}. Now for each u ∈ P with ‖u‖ = H2,
we have

(Tu)(1) =
∫ 1

0

Gn(1, s)g(s)f(u(s)) ds

≤
∫ 1

0

Gn(1, s)g(s)(M + (F∞ + δ)u(s)) ds

≤ K + (F∞ + δ)
∫ 1

0

Gn(1, s)g(s)u(s) ds

≤ K + (F∞ + δ)H2

∫ 1

0

Gn(1, s)g(s)sn−4 ds

≤ K + (F∞ + δ)BH2

≤ (1− (F∞ + δ)B)H2 + (F∞ + δ)BH2 = H2,

which means ‖Tu‖ ≤ ‖u‖. So, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then Ω1 ⊂ Ω2

and
‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2.

By Theorem 1.1, T has a fixed point in P∩( Ω2−Ω1). Therefore, problem (1.1)–(1.2)
has at least one positive solution. This completes the proof of the theorem. �

4. Nonexistence Results and Example

In this section, we establish some nonexistence results for the positive solutions
of the problem (1.1)–(1.2).

Theorem 4.1. Suppose that (H1) and (H2) hold. If Bf(x) < x for all x > 0, then
problem (1.1)–(1.2) has no positive solutions.
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Proof. Assume to the contrary that u(t) is a positive solution of the problem (1.1)–
(1.2). Then u ∈ P , u(t) > 0 for 0 < t ≤ 1, and

u(1) =
∫ 1

0

Gn(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

Gn(1, s)g(s)u(s) ds

≤ B−1u(1)
∫ 1

0

Gn(1, s)g(s)sn−4 ds = u(1),

which is a contradiction. �

Similarly, we have the following result.

Theorem 4.2. Suppose that (H1) and (H2) hold. If Af(x) > x for all x > 0, then
problem (1.1)–(1.2) has no positive solutions.

The proof of Theorem 4.2 is quite similar to that of Theorem 4.1 and is therefore
omitted.

In [6], the present authors considered this same boundary-value problem and
obtained sufficient conditions for the existence of at least one positive solution and
sufficient conditions for there to be no positive solutions. The approach used in [6]
was an adaptation of the technique used in [10]. The following example not only
illustrates the main results in this paper but in fact shows that the results here are
better than those obtained in [6].

Example 4.3. Consider the boundary-value problem

u(6)(t) = (2t + t2)
λu(t)(1 + 3u(t))

1 + u(t)
, 0 < t < 1, (4.1)

u(0) = u′(0) = u′′(0) = u′′′(0) = u(4)(3/4) = u(5)(1) = 0. (4.2)

This problem is a special case of the problem (1.1)–(1.2), in which n = 6, p = 3/4,
g(t) = 2t + t2, and

f(u) = λu(1 + 3u)/(1 + u) for u ≥ 0.

Here λ > 0 is a parameter. It is easy to see that F0 = f0 = λ, F∞ = f∞ = 3λ, and
λu ≤ f(u) ≤ 3λu for u ≥ 0. For the problem (4.1)–(4.2), calculations show that

A = 1926477939/70000000000 and B = 1284866333/35000000000.

By Theorem 3.1, we have that if

12.1120 ≈ 1
3A

< λ <
1
B
≈ 27.2401,

then problem (1.1)–(1.2) has at least one positive solution. By Theorems 4.1 and
4.2, we see that if either

λ <
1

3B
≈ 9.0800 or λ >

1
A
≈ 36.3358

then (4.1)–(4.2) has no positive solutions.
If we use the definitions for A and B in [6], then

A =
3445801

314572800
and B =

717
2560

.
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It is easy to see that Theorems 3.1 and 3.2 of [6] do not apply to problem (4.1)–(4.2).
If we apply [6, Theorem 4.1] to (4.1)–(4.2), we have that if either

λ <
1

3B
≈ 1.1901 or λ >

1
A
≈ 91.2917,

then (4.1)–(4.2) has no positive solutions. Clearly, the results obtained in this paper
improve those obtained in [6].

We wish to point out that Maroun [20] also considered the problem of existence
of positive solutions of the problem (1.1)–(1.2) in the cases where g(t) is singular
at t = 0 and t = 1 and where f(u) is singular at u = 0.
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