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POSITIVITY OF LYAPUNOV EXPONENTS FOR
ANDERSON-TYPE MODELS ON TWO COUPLED STRINGS

HAKIM BOUMAZA, GÜNTER STOLZ

Abstract. We study two models of Anderson-type random operators on two

deterministically coupled continuous strings. Each model is associated with
independent, identically distributed four-by-four symplectic transfer matrices,

which describe the asymptotics of solutions. In each case we use a criterion
by Gol’dsheid and Margulis (i.e. Zariski denseness of the group generated by

the transfer matrices in the group of symplectic matrices) to prove positivity

of both leading Lyapunov exponents for most energies. In each case this im-
plies almost sure absence of absolutely continuous spectrum (at all energies in

the first model and for sufficiently large energies in the second model). The

methods used allow for singularly distributed random parameters, including
Bernoulli distributions.

1. Introduction

Localization for one-dimensional Anderson models is well understood, while im-
portant physical conjectures remain open in dimension d ≥ 2. In particular, there
is no proof yet of the physical conjecture that, as for d = 1, localization (in spectral
or dynamical sense) holds at all energies and arbitrary disorder for d = 2. It is
physically even more convincing that localization should hold for Anderson models
on strips, which should behave like one-dimensional models.

In fact, Anderson localization has been established rigorously for discrete strips
of arbitrary width in [18], for related work see also [10]. However, an interesting
open problem is to understand the localization properties of Anderson-models on
continuum strips. Consider, for example, the operator

−∆ +
∑
n∈Z

ωnf(x− n, y) (1.1)

on L2(R × [0, 1]) with, say, Dirichlet boundary conditions on R × {0} and R ×
{1}, i.i.d. random couplings ωn and a single site potential f supported in [0, 1] ×
[0, 1]. Under weak additional assumptions on f and the distribution of the ωn,
this operator, describing a physically one-dimensional disordered system, should be
localized at all energies. But, with the exception of the easily separable case of y-
independent f , this question is open. Technically, the main problem arising is that,
while physically one-dimensional, the model is mathematically multi-dimensional
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in the sense that the underlying PDE can not be easily reduced to ODEs. Thus the
rich array of tools for ODEs (coming mostly from dynamical systems) isn’t available.
PDE methods like multiscale analysis will show localization at the bottom of the
spectrum (e.g. by adapting the general approach described in [21]), but can’t fully
grasp the consequences of physical one-dimensionality.

Thus, one reason for writing this note is to promote the further study of Anderson
models on continuum strips.

Concretely, we take a rather modest step in this direction by studying two par-
ticular models of Anderson-type random operators on a semi-discretized strip, i.e.
models of the form

− d2

dx2
+
∑
n∈Z

V (x− n, ωn) (1.2)

acting on vector-valued functions in L2(R, CN ) for some positive integer N . Here
V (·, ω) is a compactly supported, N × N -symmetric-matrix-valued random po-
tential, and ω = (ωn)n∈Z is a (generally vector-valued) sequence of i.i.d. random
variables, to be specified more explicitly in the models below.

Compared to (1.1), model (1.2) is discretized in the y-direction, remaining con-
tinuous in the x-direction. This allows to use ODE methods, in particular trans-
fer matrices and the theory of Lyapunov exponents of products of independent
random matrices. Here the transfer matrices are 2N -dimensional and symplectic,
leading to N pairs of Lyapunov exponents γ1(E) ≥ · · · ≥ γN (E) ≥ 0 ≥ −γN (E) ≥
· · · ≥ −γ1(E). Kotani-theory for such operators was developed in [19]. For a non-
deterministic random potential, in particular for model (1.2), the general theory of
[19] implies that γ1(E) > 0 for almost every E ∈ R. However, for Anderson-type
models one expects that all of the first N Lyapunov exponents are positive for most
energies. This incompleteness of Kotani-theory on the strip is also pointed out as
Problem 3 in the recent review of Kotani theory in [6].

An abstract criterion for the latter in terms of the groups generated by the
random transfer matrices has been provided by Gol’dsheid and Margulis [11]. It
is exactly this criterion which allowed to prove Anderson localization for discrete
strips [18].

To the best of our knowledge, our results below are the first applications of the
Gol’dsheid-Margulis criterion to continuum models. We depend on very explicit
calculations and can so far only handle the case of two coupled strings, i.e. N = 2.
Our first model involves random point interactions, where we can show γ2(E) >
γ1(E) > 0 for all but an explicitly characterized discrete set of exceptional energies
(Section 3). For our second model, two deterministically coupled single string
Anderson models, we get in Section 4 that γ2(E) > γ1(E) > 0 for all but a countable
set of energies E > 2. As explained at the end of Section 4.1, the latter is a technical
restriction and we expect the same to hold for energies less than 2.

For both models we conclude the absence of absolutely continuous spectrum as
a consequence of Kotani theory. Discreteness of the set of exceptional energies,
established here for the point interaction model, should imply that the spectrum
is almost surely pure point. This should follow by extending existing methods, e.g.
[4, 18, 9], but we leave this to a future work.

We start in Section 2 with a discussion of the necessary background on products
of i.i.d. symplectic matrices and, in particular, with a statement of the Gol’dsheid-
Margulis criterion.
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We mention that quite different methods, going back to the works [20] and [16],
have been used to prove localization properties for random operators on strips in
[17]. While [17] only considers discrete strips, the methods used have potential to
be applicable to the continuum strip model (1.1). One difference between these
methods and the ones used here is that we have aimed at handling singular dis-
tributions of the random parameters, in particular Bernoulli distributions. This
excludes the use of spectral averaging techniques, which are quite central to the
approach in [17].

The examples studied here are of a very special nature and we hope to get
further reaching results in the future. Still, our simple examples should be of
some interest from the point of view of exceptional energies where one or several
Lyapunov exponents vanish.

It seems that larger N will lead to richer sets of exceptional energies, as might
be expected physically due to the added (at least partial) transversal degree of
freedom of a particle in a strip. Our examples show that the discrete strip is
somewhat untypical in having no exceptional energies. It has been shown (for
models with N = 1) that the existence of exceptional energies leads to weaker
localization properties or, more precisely, stronger transport [14, 7]. A further
study of the models proposed here for larger N , with the possibility of observing
how this weakens localization effects, would be quite interesting.

2. Separability of Lyapunov exponents

We will first review the main results which allow to prove simplicity of the Lya-
punov spectrum of a sequence of i.i.d. symplectic matrices, and thus, in particular,
positivity of the first N Lyapunov exponents.

2.1. Lyapunov exponents. Let N be a positive integer. Let SpN (R) denote the
group of 2N × 2N real symplectic matrices. It is the subgroup of GL2N (R) of
matrices M satisfying

tMJM = J,

where J is the matrix of order 2N defined by J =
(

0 −I
I 0

)
. Here, I is the identity

matrix of order N .
Recall that for p ∈ {1, . . . , N}, ∧pRN is the vector space of alternating p-linear

forms on (RN )∗. For u1, . . . , up in RN and f1, . . . , fp in (RN )∗, set

(u1 ∧ · · · ∧ up)(f1, . . . , fp) = det((fi(uj))i,j)

We call u1 ∧ · · · ∧ up a decomposable p-vector. We define a basis of ∧pRN with
those decomposable p-vectors in the following way : if (u1, . . . , uN ) is a basis of
RN , {ui1 ∧ · · · ∧ uip

: 1 ≤ i1 < . . . ip ≤ N} is a basis of ∧pRN . This allows to define
all linear operations on ∧pRN on the set of decomposable p-vectors.

First, we define a scalar product on ∧pRN by the formula

(u1 ∧ · · · ∧ up, v1 ∧ · · · ∧ vp) = det((〈ui, vj〉)i,j)

where 〈·, ·〉 denotes the usual scalar product on RN . The norm associated with (·, ·)
will be denoted by ‖ · ‖.

Now we define how an element of the linear group GLN (R) acts on ∧pRN . If
M ∈ GLN (R), an automorphism ∧pM of ∧pRN is given by

(∧pM)(u1 ∧ · · · ∧ up) = Mu1 ∧ · · · ∧Mup.
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We have ∧p(MN) = (∧pM)(∧pN). We also introduce the p-Lagrangian manifold.
Let (e1, . . . , e2N ) be the canonical basis of R2N . For any p in {1, . . . , N} let Lp

be the subspace of ∧pR2N spanned by {Me1 ∧ · · · ∧ Mep : M ∈ SpN (R)}. It is
called the p-Lagrangian submanifold of R2N . The projective space P(Lp) is the set
of isotropic spaces of dimension p in R2N .

We can now define the Lyapunov exponents.

Definition 2.1. Let (Aω
n)n∈N be a sequence of i.i.d. random matrices in SpN (R)

with
E(log+ ‖Aω

0 ‖) < ∞.

The Lyapunov exponents γ1, . . . , γ2N associated with (Aω
n)n∈N are defined induc-

tively by
p∑

i=1

γi = lim
n→∞

1
n

E(log ‖ ∧p (Aω
n−1 . . . Aω

0 )‖).

One has γ1 ≥ · · · ≥ γ2N and, due to symplecticity of the random matrices
(An)n∈N, the symmetry property γ2N−i+1 = −γi, ∀i ∈ {1, . . . , N} (see [3] p.89,
Prop. 3.2).

2.2. A criterion for separability of Lyapunov exponents. In this section we
will follow Bougerol and Lacroix [3]. For the definitions of Lp-strong irreducibility
and p-contractivity we refer to [3], definitions A.IV.3.3 and A.IV.1.1, respectively.

Let µ be a probability measure on SpN (R). We denote by Gµ the smallest closed
subgroup of SpN (R) which contains the topological support of µ, suppµ.

Now we can set forth the main result on separability of Lyapunov exponents,
which is a generalization of Furstenberg’s theorem to the case N > 1.

Proposition 2.2. Let (Aω
n)n∈N be a sequence of i.i.d. random symplectic matrices

of order 2N and p be an integer in {1, . . . , N}. We denote by µ the common
distribution of the Aω

n. Suppose that Gµ is p-contracting and Lp-strongly irreducible
and that E(log ‖Aω

0 ‖) < ∞. Then the following holds :
(i) γp > γp+1

(ii) For any non zero x in Lp :

lim
n→∞

1
n

log ‖ ∧p (Aω
n−1 . . . Aω

0 )x‖ =
p∑

i=1

γi .

This is [3, Proposition 3.4], where a proof can be found. As a corollary we have
that if Gµ is p-contracting and Lp-strongly irreducible for all p ∈ {1, . . . , N} and if
E(log ‖Aω

0 ‖) < ∞, then γ1 > γ2 > · · · > γN > 0 (using the symmetry property of
Lyapunov exponents).

For explicit models (that is, explicit µ) it will typically be quite difficult to check
p-contractivity and Lp-strong irreducibility for all p. That is why we will use the
Gol’dsheid-Margulis theory presented in [11] which gives us an algebraic argument
to verify these assumptions. The idea is that if the group Gµ is large enough in an
algebraic sense then it is p-contractive and Lp-strongly irreducible for all p.

We recall that the algebraic closure or Zariski closure of a subset G of an algebraic
manifold is the smallest algebraic submanifold that contains G. We denote it by
ClZ(G). In other words, if G is a subset of an algebraic manifold, its Zariski closure
ClZ(G) is the set of the zeros of polynomials vanishing on G. A subset G′ ⊂ G is
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said to be Zariski-dense in G if ClZ(G′) = ClZ(G), i.e. each polynomial vanishing
on G′ vanishes on G. More precisely, from the results of Gol’dsheid and Margulis
one easily gets

Proposition 2.3 (Gol’dsheid-Margulis criterion). If Gµ is Zariski dense in the
group SpN (R), then for all p, Gµ is p-contractive and Lp-strong irreducible.

Proof. According to Lemma 6.2 and Theorem 6.3 on page 57 of [11], it suffices to
prove that the connected component of the identity of SpN (R) is irreducible in Lp

and that SpN (R) has the p-contracting property, for all p. For the p-contractivity it
suffices to say that SpN (R) contains an element whose eigenvalues have all distincts
moduli (as an example, diag(2, 3, . . . , N + 1, 1

2 , 1
3 , . . . , 1

N+1 ) ∈ SpN (R)) and to use
Corollary 2.2 in [3], p. 82. Next we recall that SpN (R) is connected and so its
connected component of the identity is itself. And so we have to prove that SpN (R)
is irreducible in Lp for all p. This is exactly what is proven in [3, Proposition 3.5,
p. 91.]. �

Now we will adopt this algebraic point of view to study two explicit models.

3. A model with random point interactions

3.1. The model. First, we will study a model of two deterministically coupled
strings with i.i.d. point interactions at all integers on both strings. Formally, this
model is given by the random Schrödinger operator

HP
ω = − d2

dx2
+ V0 +

∑
n∈Z

(
ω

(n)
1 δ0(x− n) 0

0 ω
(n)
2 δ0(x− n)

)
(3.1)

acting on L2(R, C2). Here V0 is the constant-coefficient multiplication operator by(
0 1
1 0

)
and δ0 is the Dirac distribution at 0. Also, ω(n) = (ω(n)

1 , ω
(n)
2 ), n ∈ Z, is

a sequence of i.i.d. R2-valued random variables with common distribution ν on R2

such that supp ν ⊂ R2 is bounded and not co-linear, i.e.

{x− y : x, y ∈ supp ν} (3.2)

spans R2. For example, this holds if the components ω
(n)
1 and ω

(n)
2 are independent

non-trivial real random variables (i.e. each supported on more than one point).
More rigorously,

HP
ω = Hω1 ⊕Hω2 + V0 (3.3)

acting on L2(R, C2) = L2(R)⊕ L2(R), where Hωi
, i = 1, 2, are operators in L2(R)

with domain
D(Hωi) = {f ∈ L2(R) : f, f ′ are absolutely continuous on R \ Z, f ′′ ∈ L2(R),

f is continuous on R, f ′(n+) = f ′(n−) + ω
(n)
i f(n) for all n ∈ Z},

(3.4)
where existence of the left and right limits f ′(n−) and f ′(n+) at all integers is
assumed. On this domain the operator acts by Hωi

f = −f ′′. These operators
are self-adjoint and bounded from below, see e.g. [1], where boundedness of the
distribution ν is used. The matrix operator V0 is bounded and self-adjoint. Thus
HP

ω in (3.3) is self-adjoint for all ω.
Note here that this model, containing point interactions, is not covered by the

assumptions made in [19], but that the proofs easily extend to our setting. Also, [19]
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considers R-ergodic systems, while our model is Z-ergodic. However, the suspension
method provided in [15] to extend Kotani-theory to Z-ergodic operators, also applies
to the systems in [19] and our model. In particular, non-vanishing of all Lyapunov
exponents allows to conclude absence of absolutely continuous spectrum via an
extended version of Theorem 7.2 of [19].

In order to study the Lyapunov exponents associated with this operator we need
to introduce the sequence of transfer matrices associated to the equation

HP
ω u = Eu, E ∈ R. (3.5)

Here, we incorporate the point interactions into the concept of solution. Thus
a function u = (u1, u2) : R → C2 (not necessarily square-integrable) is called a
solution of (3.5) if

−
(

u1

u2

)′′
+ V0

(
u1

u2

)
= E

(
u1

u2

)
(3.6)

on R \Z and u satisfies the same “interface conditions” as the elements of D(HP
ω ),

i.e. it is continuous on R and

u′i(n
+) = u′i(n

−) + ω
(n)
i ui(n) (3.7)

for i = 1, 2 and all n ∈ Z.
If u = (u1, u2) is a solution of (3.5), we define the transfer matrix Aω

(n,n+1](E)
from n to n + 1 by the relation

u1((n + 1)+)
u2((n + 1)+)
u′1((n + 1)+)
u′2((n + 1)+)

 = Aω
(n,n+1](E)


u1(n+)
u2(n+)
u′1(n

+)
u′2(n

+)

 .

Thus we include the effect of the point interaction at n + 1, but not at n, insur-
ing the usual multiplicative property of transfer matrices over multiple intervals.
The sequence of i.i.d. random matrices Aω

(n,n+1](E) will determine the Lyapunov
exponents at energy E.

By first solving the system (3.6) over (0, 1) and then accounting for the interface
condition (3.7) one can see that the matrix Aω

(n,n+1](E) splits into a product of two
matrices:

Aω
(n,n+1](E) = M(diag(ω(n)

1 , ω
(n)
2 ))A(0,1)(E) . (3.8)

Here, for any 2× 2-matrix Q, we define the 4× 4-matrix M(Q) :=
(

I 0
Q I

)
, where

I is the 2×2-unit matrix. Thus the first factor in (3.8) depends only on the random
parameters and

A(0,1)(E) = exp




0 0 1 0
0 0 0 1
−E 1 0 0
1 −E 0 0


 (3.9)

depends only on the energy E.
The matrices Aω

(n,n+1](E) are symplectic, which in our case can be seen directly
from their explicit form (but also is part of the general theory built up in [19]).
The distribution µE of Aω

(0,1](E) in Sp2(R) is given by

µE(Γ) = ν({ω(0) ∈ R2 : M(diag(ω(0)
1 , ω

(0)
2 ))A(0,1)(E) ∈ Γ}) . (3.10)
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The closed group generated by the support of µE is

GµE
= 〈M(diag(ω(0)

1 , ω
(0)
2 ))A(0,1)(E)| ω(0) ∈ supp ν〉 . (3.11)

The following is our main result for model (3.1):

Theorem 3.1. There exists a discrete set S ⊂ R such that for all E ∈ R \ S, GµE

is Zariski-dense in Sp2(R). Therefore we have γ1(E) > γ2(E) > 0 for all E ∈ R\S
and the operator HP

ω almost surely has no absolutely continuous spectrum.

All we have to prove below is the first statement of Theorem 3.1 about Zariski-
denseness. Positivity of Lyapunov exponents then follows from the results reviewed
in Section 2. As discussed above, Theorem 7.2 of [19] applies to our model. Thus
the essential support of the a.c. spectrum of HP

ω is contained in the discrete set S,
implying that the a.c. spectrum is almost surely empty.

The exponential (3.9) will have different forms for E > 1, E ∈ (−1, 1) and
E < −1. Below we will consider the case E > 1 in detail and then briefly discuss
the necessary changes for the other cases. We don’t discuss the energies E = ±1,
as we can include them in the discrete set S.

3.2. Proof of Theorem 3.1 for E > 1. To study the group GµE
we begin by

giving an explicit expression for the transfer matrices. To do this we have to
compute the exponential defining A(0,1)(E). We assume now that E > 1. We begin
by diagonalizing the real symmetric matrix V0 in an orthonormal basis:(

0 1
1 0

)
= U

(
1 0
0 −1

)
U .

Here U = 1√
2

(
1 1
1 −1

)
is orthogonal as well as symmetric. By computing the

successive powers of 
0 0 1 0
0 0 0 1
−E 1 0 0
1 −E 0 0


with each block expressed in the orthonormal basis defined by U one gets

A(0,1)(E) =
(

U 0
0 U

)
Rα,β

(
U 0
0 U

)
, (3.12)

where α =
√

E − 1, β =
√

E + 1, and

Rα,β =


cos(α) 0 1

α sin(α) 0
0 cos(β) 0 1

β sin(β)
−α sin(α) 0 cos(α) 0

0 −β sin(β) 0 cos(β)

 .

Now that we have an explicit form for our transfer matrices let us explain the
strategy for proving the Zariski-denseness of GµE

in Sp2(R). As Sp2(R) is a con-
nected Lie group, to show Zariski-denseness it is enough to prove that the Lie
algebra of ClZ(GµE

) is equal to the Lie algebra of Sp2(R). The latter is explicitly
given by

sp2(R) = {
(

a b1

b2 −ta

)
, a ∈ M2(R), b1 and b2 symmetric} ,
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which is of dimension 10. So our strategy will be to prove that the Lie algebra of
ClZ(GµE

), which will be denoted by S2(E), is of dimension 10 and to do that we
will explicitly construct 10 linearly independent elements in this Lie algebra. First
we prove

Lemma 3.2. For a two-by-two matrix Q one has M(Q) ∈ ClZ(GµE
) if and only

if
(

0 0
Q 0

)
∈ S2(E).

Proof. If
(

0 0
Q 0

)
∈ S2(E), then M(Q) = exp (M(Q)− I) ∈ ClZ(GµE

). Con-

versely, if M(Q) ∈ ClZ(GµE
), consider the subgroup GQ := {M(nQ) = M(Q)n :

n ∈ Z} of ClZ(GµE
). It follows that M(xQ) ∈ ClZ(GQ) for all x ∈ R. To

see this, let p be a polynomial in 4 × 4 variables such that p(A) = 0 for all
A ∈ GQ. Then the polynomial in one variable p̃(x) := p(M(xQ)) has roots in
all integers and must therefore vanish identically. Thus p(M(xQ)) = 0 for all
x ∈ R. M(xQ) ∈ ClZ(GQ) ⊂ GlZ(GµE

) now follows from the definition of Zariski
closure. Then, by differentiating at the identity element of ClZ(GµE

), we find(
0 0
Q 0

)
∈ S2(E). �

Proof of Theorem 3.1 for E > 1. Step 1. By (3.8),

Aω̃(0)

(0,1](E)Aω(0)

(0,1](E)−1 = M(diag(ω̃(0)
1 − ω

(0)
1 , ω̃

(0)
2 − ω

(0)
2 )) ∈ GµE

(3.13)

for all ω(0), ω̃(0) ∈ supp ν. As S2(E) is an algebra, Lemma 3.2 and assumption

(3.2) imply that
(

0 0
Q 0

)
∈ S2(E) for arbitrary diagonal matrices Q.

Step 2. Using Step 1 and Lemma 3.2 shows that M(Q) ∈ ClZ(GµE
) for arbitrary

diagonal Q. In particular, we conclude

A(0,1)(E) = M(diag(ω(0)
1 , ω

(0)
2 ))−1A(0,1](E) ∈ ClZ(GµE

).

Step 3. By a general property of matrix Lie groups we know that

XMX−1 ∈ S2(E) (3.14)

whenever M ∈ S2(E) and X ∈ GµE
. Thus, by Steps 1 and 2, for l ∈ Z,(

U 0
0 U

)
Rl

α,β

(
0 0

UQU 0

)
R−l

α,β

(
U 0
0 U

)
= A(0,1)(E)l

(
0 0
Q 0

)
A(0,1)(E)−l ∈ S2(E),

(3.15)

where Q = diag(ω(0)
1 , ω

(0)
2 ). But we also have, as U is orthogonal and symmetric,

S2(E) = sp2(R) ⇔ S̃2(E) :=
(

U 0
0 U

)
S2(E)

(
U 0
0 U

)
= sp2(R)

Thus we are left with having to show the latter. To this end, we know from
(3.15) that

S(l, Q) := Rl
α,β

(
0 0

UQU 0

)
R−l

α,β ∈ S̃2(E) (3.16)

for all l ∈ Z and all four matrices Q = diag(ω(0)
1 , ω

(0)
2 ).
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Step 4. By Step 3, for (ω(0)
1 , ω

(0)
2 ) = (1, 1) and all l ∈ Z,

A1(l) := S(l, I)

=


1
α sin(lα) cos(lα) 0 − 1

α2 sin2(lα) 0
0 1

β sin(lβ) cos(lβ) 0 − 1
β2 sin2(lβ)

cos2(lα) 0 − 1
α sin(lα) cos(lα) 0

0 cos2(lβ) 0 − 1
β sin(lβ) cos(lβ)


∈ S̃2(E).

Also, as S̃2(E) is an algebra, A2(l) := 2S(l,
(

1 0
0 0

)
) − S(l, I) ∈ S̃2(E) for all

l ∈ Z. These matrices take the form

A2(l) =
0 1

α sin(lα) cos(lβ) 0 − 1
αβ sin(lα) sin(lβ)

1
β cos(lα) sin(lβ) 0 − 1

αβ sin(lα) sin(lβ) 0
0 cos(lα) cos(lβ) 0 − 1

β cos(lα) sin(lβ)
cos(lα) cos(lβ) 0 − 1

α sin(lα) cos(lβ) 0


∈ S̃2(E).

Step 5. We remark that the space generated by the family (A1(l))l∈Z is orthogonal
to the one generated by (A2(l))l∈Z in sp2(R). We can work independently with
each of these two families to find enough linearly independent matrices in S̃2(E) to
generate a subspace of dimension 10. We begin with the family (A2(l))l∈Z. We want
to prove that for all but a discrete set of energies E ∈ R, A2(0), A2(1), A2(2), A2(3)
are linearly independent. Because of the symmetries in the coefficients of these
matrices, their linear independence is equivalent to the linear independence of the
vectors

1
0
0
0

 ,


cos(α) cos(β)

− 1
αβ sin(α) sin(β)
1
α sin(α) cos(β)
1
β sin(β) cos(α)

 ,


cos(2α) cos(2β)

− 1
αβ sin(2α) sin(2β)
1
α sin(2α) cos(2β)
1
β sin(2β) cos(2α)

 ,


cos(3α) cos(3β)

− 1
αβ sin(3α) sin(3β)
1
α sin(3α) cos(3β)
1
β sin(3β) cos(3α)

 .

The determinant of the matrix generated by those four vectors, best found with
the help of a computer algebra system, is

4
α2β2

sin2(α) sin2(β)(cos2(α)− cos2(β)) . (3.17)

This function is real-analytic in E > 1 with roots not accumulating at 1, thus it
vanishes only for a discrete set S1 of energies E > 1.
Step 6. By Step 5 we know that (A2(0), A2(1), A2(2), A2(3)) generate a subspace
of dimension four of S̃2(E) for E ∈ (1,∞) \ S1, i.e. they generate all matrices of
the form 

0 a 0 d
b 0 d 0
0 c 0 −b
c 0 −a 0

 ,
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with a, b, c, d ∈ R. In particular, for a = 1, b = c = d = 0,

B0 :=


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 ∈ S̃2(E) .

It follows that B := 1
2 [B0, A2(0)] ∈ S̃2(E), with [·, ·] denoting the matrix commu-

tator bracket. We calculate

B =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 .

Step 7. In this step we will prove that A1(0), A1(1), A1(2), A1(3), A1(4), B are
linearly independent for all but a discrete set of energies. Due to the symmetries
and zeros in matrices of the form A1(l), it suffices to show linear independence of
the vectors formed by the entries (3, 1), (4, 2), (1, 1), (2, 2), (1, 3), (2, 4) of these six
matrices. The determinant of the matrix spanned by these six columns is found to
be

64
α3β3

sin3(α) sin3(β) cos(α) cos(β)(cos2(α)− cos2(β))2 . (3.18)

Similar to Step 5 one argues that this vanishes only for E in a discrete subset
S2 ⊂ (1,∞). Thus, for E ∈ (1,+∞) \ S2, A1(0), A1(1), A1(2), A1(3), A1(4), B are
linearly independent.
Step 8. First we can see that S1 ⊂ S2. Having complementary sets of non-zero
entries, the subspaces generated by A1(0), A1(1), A1(2), A1(3), A1(4), B as well as
A2(0), A2(1), A2(2), A2(3) are orthogonal. If E ∈ (1,∞) \ S2, then both sets of
matrices are linearly independent and contained in S̃2(E). Thus the latter has at
least dimension 10 and therefore is equal to sp2(R). This concludes the proof of
Theorem 3.1 for the case E > 1. �

3.3. The cases E ∈ (−1, 1) and E < −1. We now turn to the proof of the
Theorem for E ∈ (−1, 1). Here the expression for the matrix A(0,1)(E) changes
slightly. We now set α =

√
1− E and, as before, β =

√
E + 1. Also, U remains

unchanged. But we replace Rα,β by

R̃α,β =


cosh(α) 0 1

α sinh(α) 0
0 cos(β) 0 1

β sin(β)
α sinh(α) 0 cosh(α) 0

0 −β sin(β) 0 cos(β)

 .

Proof of Theorem 3.1 for E ∈ (−1, 1). In fact, we can follow the proof for the
first case very closely. We will briefly comment on the changes. Steps 1 and 2
remain unchanged. In the Step 3 we replace Rα,β by R̃α,β and so in Step 4 we get
that for all l ∈ Z,

Ã1(l) :=0BB@
1
α

sinh(lα) cosh(lα) 0 − 1
α2 sinh2(lα) 0

0 1
β

sin(lβ) cos(lβ) 0 − 1
β2 sin2(lβ)

cosh2(lα) 0 − 1
α

cosh(lα) sinh(lα) 0
0 cos2(lβ) 0 − 1

β
sin(lβ) cos(lβ)

1CCA
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is in S̃2(E), and

Ã2(l) :=0BB@
0 1

α
sinh(lα) cos(lβ) 0 − 1

αβ
sinh(lα) sin(lβ)

1
β

cosh(lα) sin(lβ) 0 − 1
αβ

sinh(lα) sin(lβ) 0

0 cosh(lα) cos(lβ) 0 − 1
β

cosh(lα) sin(lβ)

cosh(lα) cos(lβ) 0 − 1
α

sinh(lα) cos(lβ) 0

1CCA
is in S̃2(E). In Step 5 we again get that for all but a discrete set of energies,

Ã2(0), Ã2(1), Ã2(2), Ã2(3) are linearly independent. The determinant set up from
the entries in exactly the same way as in Step 5 above is now

4
α2β2

sinh2(α) sin2(β)(cosh2(α)− cos2(β)) , (3.19)

which vanishes only on a finite set S3 of values E ∈ (−1, 1).
Step 6 remains unchanged except we now get B ∈ S̃2(E) for all E ∈ (−1, 1) \ S3.
In Step 7 we set up a 6×6-matrix from the entries of Ã1(0), . . . , Ã1(4), B in exactly
the same way as in Step 7 above and find for its determinant

64
α3β3

sinh3(α) sin3(β) cosh(α) cos(β)(cosh2(α)− cos2(β))2 . (3.20)

The roots of this function are a discrete subset S4 of (−1, 1), which contains S3. As
in Step 8 we conclude that for all energies E ∈ (−1, 1)\S4, ClZ(GµE

) = Sp2(R). �

Finally, without providing further details, we note that very similar changes can
be used to cover the remaining case E < −1.

4. Matrix-valued continuum Anderson model

While in our first model the randomness acted through point interactions on a
discrete set, we now turn to a model with more extensive randomness. We consider
two independent continuum Anderson models on single strings, with the single site
potentials given by characteristic functions of unit intervals, and couple the two
strings with the deterministic off-diagonal matrix V0 already used above.

4.1. The model. Let

HA
ω = − d2

dx2
+ V0 +

∑
n∈Z

(
ω

(n)
1 χ[0,1](x− n) 0

0 ω
(n)
2 χ[0,1](x− n)

)
(4.1)

be a random Schrödinger operator acting in L2(R, C2), where χ[0,1] is the charac-
teristic function of the interval [0, 1], V0 is as in the previous model, and (ω(n)

1 )n∈Z

and (ω(n)
2 )n∈Z are two sequences of i.i.d. random variables (also independent from

each other) with common distribution ν̃ such that {0, 1} ⊂ supp ν̃.
This operator is a bounded perturbation of (− d2

dx2 )⊕(− d2

dx2 ) and thus self-adjoint
on the C2-valued second order L2-Sobolev space.

For this model we have the following result:

Theorem 4.1. There exists a countable set C such that for all E ∈ (2,∞) \ C,
γ1(E) > γ2(E) > 0. Therefore, HA

ω has no absolutely continuous spectrum in the
interval (2,∞).
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The transfer matrices Aω
n,2(E), mapping (u1(n), u2(n), u′1(n), u′2(n)) to (u1(n +

1), u2(n+1), u′1(n+1), u′2(n+1)) for solutions u = (u1, u2) of the equation HA
ω u =

Eu, are i.i.d. and symplectic [19]. Denote the distribution of Aω
0,2(E) in Sp2(R)

by µ̃E . As before, by Gµ̃E
we denote the closed subgroup of Sp2(R) generated by

supp µ̃E . As {0, 1} ⊂ supp ν̃ we have that

{A(0,0)
0,2 (E), A(1,0)

0,2 (E), A(0,1)
0,2 (E), A(1,1)

0,2 (E)} ⊂ Gµ̃E
.

Here we also write Aω(0)

0,2 (E) for the transfer matrices from 0 to 1, where ω(0) =

(ω(0)
1 , ω

(0)
2 ). We will denote the Lie algebra of the Zariski closure ClZ(Gµ̃E

) of Gµ̃E

by A2(E).
To give an explicit description of the matrices Aω(0)

0,2 (E) we define,

Mω(0) =

(
ω

(0)
1 1
1 ω

(0)
2

)
= Sω(0)

(
λω(0)

1 0
0 λω(0)

2

)
S−1

ω(0) ,

with orthogonal matrices Sω(0) and the real eigenvalues λω(0)

2 ≤ λω(0)

1 of Mω(0) .
Explicitly, we get

S(0,0) =
1√
2

(
1 1
1 −1

)
, λ

(0,0)
1 = 1, λ

(0,0)
2 = −1,

S(1,1) = S(0,0) , λ
(1,1)
1 = 2, λ

(1,1)
2 = 0,

S(1,0) =

 2√
10−2

√
5

2√
10+2

√
5

−1+
√

5√
10−2

√
5

−1−
√

5√
10+2

√
5

 , λ
(1,0)
1 =

1 +
√

5
2

, λ
(1,0)
2 =

1−
√

5
2

.

We do not compute S(0,1), λ
(0,1)
1 , λ

(0,1)
2 because we will not use them in the following.

We also introduce the block matrices

Rω(0) =
(

Sω(0) 0
0 Sω(0)

)
.

Let E > 2 (and thus larger than all eigenvalues of all Mω(0)). With the ab-

breviation ri = ri(E,ω(0)) :=
√

E − λω(0)

i , i = 1, 2, the transfer matrices become

Aω(0)

0,2 (E) = Rω(0)


cos(r1) 0 1

r1
sin(r1) 0

0 cos(r2) 0 1
r2

sin(r2)
−r1 sin(r1) 0 cos(r1) 0

0 −r2 sin(r2) 0 cos(r2)

R−1
ω(0) . (4.2)

For E < 2 one can still write explicit expressions for the transfer matrices, where
some of the sines and cosines are replaced by the respective hyperbolic functions,
depending on the relative location of E to the various λω(0)

i . This would lead to
various cases, for each of which the arguments of the following subsection are not
quite as easily adjustable as in the cases of Section 3. We therefore left the nature
of Lyapunov exponents for E ∈ (−1, 2) open, even if we fully expect similar results.
As in Section 3 it is seen that the minimum of the almost sure spectrum of HA

ω is
again −1.
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4.2. Proof of Theorem 4.1. Using the Gol’dsheid-Margulis criterion and the
results from [19] and [15] as in Section 3 above, it will suffice to prove the following:

Proposition 4.2. There exists a countable set C such that for all E ∈ (2,∞) \ C,
Gµ̃E

is Zariski-dense in Sp2(R).

Proof. Step 1. We fix E ∈ (2,∞). For ω(0) = (0, 0) we have

A
(0,0)
0,2 (E) = R(0,0)


cos(α1) 0 1

α1
sin(α1) 0

0 cos(α2) 0 1
α2

sin(α2)
−α1 sin(α1) 0 cos(α1) 0

0 −α2 sin(α2) 0 cos(α2)

R−1
(0,0)

(4.3)

where α1 =
√

E − λ
(0,0)
1 =

√
E − 1 and α2 =

√
E − λ

(0,0)
2 =

√
E + 1.

Let C1 be the set of energies such that (2π, α1, α2) is a rationally dependent set.
It is easily checked that C1 is countable.

We now assume that E ∈ (2,∞) \ C1. Rational independence of (2π, α1, α2)
implies that there exists a sequence (nk) ∈ NN, such that

(nkα1, nkα2) −−−−→
k→∞

(
π

2
, 0)

with convergence in R2/(2πZ)2. There also exists (mk) ∈ NN, such that

(mkα1,mkα2) −−−−→
k→∞

(0,
π

2
) .

Then, as Gµ̃E
is closed, we conclude that

(
A

(0,0)
0,2 (E)

)nk

−−−−→
k→∞

R(0,0)


0 0 1

α1
0

0 1 0 0
−α1 0 0 0

0 0 0 1

R−1
(0,0) ∈ Gµ̃E

(4.4)

and (
A

(0,0)
0,2 (E)

)mk

−−−−→
k→∞

R(0,0)


1 0 0 0
0 0 0 1

α2

0 0 1 0
0 −α2 0 0

R−1
(0,0) ∈ Gµ̃E

. (4.5)

For ω(0) = (1, 1) we have

A
(1,1)
0,2 (E) = R(0,0)


cos(β1) 0 1

β1
sin(β1) 0

0 cos(β2) 0 1
β2

sin(β2)
−β1 sin(β1) 0 cos(β1) 0

0 −β2 sin(β2) 0 cos(β2)

R−1
(0,0) ,

(4.6)

where β1 =
√

E − λ
(1,1)
1 =

√
E − 2 and β2 =

√
E − λ

(1,1)
2 =

√
E. Similarly, work-

ing with powers of A
(1,1)
0,2 (E), we see that for E such that (2π, β1, β2) is rationally

independent (which occurs away from a countable set C2)

R(0,0)


0 0 1

β1
0

0 1 0 0
−β1 0 0 0
0 0 0 1

R−1
(0,0) ∈ Gµ̃E

(4.7)
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and

R(0,0)


1 0 0 0
0 0 0 1

β2

0 0 1 0
0 −β2 0 0

R−1
(0,0) ∈ Gµ̃E

. (4.8)

Step 2. Multiplying (4.4) by the inverse of (4.7) we get

R(0,0)


β1
α1

0 0 0
0 1 0 0
0 0 α1

β1
0

0 0 0 1

R−1
(0,0) ∈ Gµ̃E

.

As α1 > β1 > 0, by an argument similar to the one used in the proof of Lemma 3.2,
this implies that for all x > 0,

C1(x) = R(0,0)


x 0 0 0
0 1 0 0
0 0 1

x 0
0 0 0 1

R−1
(0,0) ∈ ClZ(Gµ̃E

) .

We remark that C1(1) = I. Thus, by differentiating at I,

C1 := R(0,0)


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

R−1
(0,0) ∈ A2(E) .

In the same way, using (4.5) and (4.8),

C2 := R(0,0)


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

R−1
(0,0) ∈ A2(E) .

Step 3. Now we conjugate C1 by A
(0,0)
0,2 (E) to find

A
(0,0)
0,2 (E) C1 (A(0,0)

0,2 (E))−1

= R(0,0)


cos2(α1)− sin2(α1) 0 − 2

α1
sin(α1) cos(α1) 0

0 0 0 0
−2α1 sin(α1) cos(α1) 0 sin2(α1)− cos2(α1) 0

0 0 0 0

R−1
(0,0) ∈ A2(E)

by (3.14). We can subtract from this a multiple of C1, (cos2(α1)− sin2(α1))C1, and
divide the result by 2α1 sin(α1) cos(α1) 6= 0 to find

C3 := R(0,0)


0 0 1

α1
0

0 0 0 0
α1 0 0 0
0 0 0 0

R−1
(0,0) ∈ A2(E) .
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Conjugating C1 by A
(1,1)
0,2 (E) and repeating the same arguments we find

C4 := R(0,0)


0 0 1

β1
0

0 0 0 0
β1 0 0 0
0 0 0 0

R−1
(0,0) ∈ A2(E) .

Conjugating C2 in the same way shows that

C5 := R(0,0)


0 0 0 0
0 0 0 1

α2

0 0 0 0
0 α2 0 0

R−1
(0,0) ∈ A2(E)

and

C6 := R(0,0)


0 0 0 0
0 0 0 1

β2

0 0 0 0
0 β2 0 0

R−1
(0,0) ∈ A2(E) .

Step 4. As |α1| 6= |β1| and |α2| 6= |β2| it is clear that the matrices C1, . . . , C6 are
linearly independent. It follows that

R(0,0)


a 0 b 0
0 ã 0 b̃
c 0 −a 0
0 c̃ 0 −ã

R−1
(0,0) ∈ A2(E) (4.9)

for all (a, ã, b, b̃, c, c̃) ∈ R6.
Step 5. Let C3 be the countable set of energies E such that (2π,

q
E − 1+

√
5

2 ,

q
E − 1−

√
5

2 )

is rationally dependent. Then for E ∈ (2,+∞) \ C3, using the same argument as in
(4.4) for the powers of A

(1,0)
0,2 (E), we have

M1 := R(1,0)


0 0 1

α 0
0 1 0 0
−α 0 0 0
0 0 0 1

R−1
(1,0) ∈ Gµ̃E

where α :=
√

E − 1+
√

5
2 .

In addition to C1, . . . , C6, we will find four more linearly independent elements
of A2(E) by conjugating particular matrices of the form (4.9) with M1. Let X be
an arbitrary matrix of the form (4.9). First we remark that

R(1,0) = R(0,0)

(
S−1

(0,0)S(1,0) 0
0 S−1

(0,0)S(1,0)

)
.

Then a calculation shows that

M1XM−1
1 = R(0,0)

(
B 1

αA
−αA B

)
a 0 b 0
0 ã 0 b̃
c 0 −a 0
0 c̃ 0 −ã

( B − 1
αA

αA B

)
R−1

(0,0) ,

(4.10)

where A = T−1

(
1 0
0 0

)
T , B = T−1

(
0 0
0 1

)
T and T = S(1,0)S

−1
(0,0).
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To construct our last four elements we will take particular values for a, ã, b, b̃, c, c̃.
Letting X1 be the special case of X where c = 1, a = 0, ã = 0, b = 0, b̃ = 0, c̃ = 0,
we get, after tedious calculations,

C7 := M1X1M
−1
1

=
1

4(5−
√

5)2
R(0,0)


∗ − 2+2

√
5

α ∗ ∗
−22+10

√
5

α ∗ −2+2
√

5
α2 ∗

∗ 22− 10
√

5 ∗ ∗
∗ ∗ ∗ ∗

R−1
(0,0) ∈ A2(E).

Here we only keep track of the four matrix elements which are crucial for estab-
lishing linear independence from C1, . . . , C6 as the corresponding matrix-elements
of these matrices all vanish. Similarly to X1 we choose X2 such that c̃ = 1 and all
other parameters are 0. This gives

C8 := M1X2M
−1
1

=
1

4(5−
√

5)2
R(0,0)


∗ 2+2

√
5

α ∗ ∗
22−10

√
5

α ∗ 22−10
√

5
α2 ∗

∗ −2− 2
√

5 ∗ ∗
∗ ∗ ∗ ∗

R−1
(0,0) ∈ A2(E).

Under the assumption that (2π,

√
E − 1+

√
5

2 ,

√
E − 1−

√
5

2 ) is rationally indepen-

dent, as in (4.5), for the powers of A
(1,0)
0,2 (E) we can prove that

M2 := R(1,0)


1 0 0 0
0 0 0 1

β

0 0 1 0
0 −β 0 0

R−1
(1,0) ∈ Gµ̃E

,

where β :=
√

E − 1−
√

5
2 ). Then, as before, we have

M2XM−1
2 = R(0,0)

(
A 1

β B

−βB A

)
a 0 b 0
0 ã 0 b̃
c 0 −a 0
0 c̃ 0 −ã

( A − 1
β B

βB A

)
R−1

(0,0)

with the same A and B as in (4.10). Let X3 be the special case of X with b = 1
and all the other parameters equal to 0 and, similarly, X4 with b̃ = 1 instead of
b = 1. This gives

C9 := M2X3M
−1
2

=
1

4(5−
√

5)2
R(0,0)


∗ −β 1+

√
5

8 ∗ ∗
β 125−41

√
5

8 ∗ 1+
√

5
8 ∗

∗ β2 125−41
√

5
8 ∗ ∗

∗ ∗ ∗ ∗

R−1
(0,0) ∈ A2(E)



EJDE-2007/47 POSITIVITY OF LYAPUNOV EXPONENTS 17

and

C10 := M2X4M
−1
2

=
1

4(5−
√

5)2
R(0,0)


∗ β 95−29

√
5

8 ∗ ∗
β 11−5

√
5

8 ∗ −11+5
√

5
8 ∗

∗ β2 95−29
√

5
8 ∗ ∗

∗ ∗ ∗ ∗

R−1
(0,0) ∈ A2(E).

Step 6. It can be verified that for most E the four R4-vectors composed of the four
tracked matrix-elements of C7, C8, C9 and C10 are linearly independent. In fact we
have ∣∣∣∣∣∣∣∣∣

− 1
α (2 + 2

√
5) 1

α (2 + 2
√

5) −β 1+
√

5
8 β 95−29

√
5

8
1
α (−22 + 10

√
5) 1

α (22− 10
√

5) β 125−41
√

5
8 β 11−5

√
5

8

22− 10
√

5 −2− 2
√

5 β2 125−41
√

5
8 β2 95−29

√
5

8

− 1
α2 (2 + 2

√
5) 1

α2 (22− 10
√

5) 1+
√

5
8

−11+5
√

5
8

∣∣∣∣∣∣∣∣∣
=

2β(780− 349
√

5(α + β)(121α− 13664
√

5β − 71805β))
121(4(5−

√
5)2)4α3

.

The right hand side is algebraic as a function of E and therefore has a discrete set
C4 of zeros.

Let C = C1 ∪ C2 ∪ C3 ∪ C4. We fix E ∈ (2,+∞) \ C. Then C1, . . . , C6 are
linearly independent and so are C7, . . . , C10. As the corresponding matrix-elements
of C1, . . . , C6 all vanish, it follows that (C1, . . . , C10) is linearly independent. Thus

10 ≤ dim A2(E) ≤ dim Sp2(R) = 10

and therefore A2(E) = sp2(R). Then by connectedness of Sp2(R) we have that
ClZ(Gµ̃E

) = Sp2(R). We have proved the proposition. �
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