Electronic Journal of Differential Equations, Vol. 2007(2007), No. 48, pp. 1-19. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE AND ASYMPTOTIC EXPANSION OF SOLUTIONS TO A NONLINEAR WAVE EQUATION WITH A MEMORY CONDITION AT THE BOUNDARY

NGUYEN THANH LONG, LE XUAN TRUONG

$$
\begin{aligned}
& \text { AbSTRACT. We study the initial-boundary value problem for the nonlinear } \\
& \text { wave equation } \\
& \qquad \begin{array}{r}
u_{t t}-\frac{\partial}{\partial x}\left(\mu(x, t) u_{x}\right)+K|u|^{p-2} u+\lambda\left|u_{t}\right|^{q-2} u_{t}=f(x, t) \\
u(0, t)=0 \\
-\mu(1, t) u_{x}(1, t)=Q(t) \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x)
\end{array}
\end{aligned}
$$

where $p \geq 2, q \geq 2, K, \lambda$ are given constants and u_{0}, u_{1}, f, μ are given functions. The unknown function $u(x, t)$ and the unknown boundary value $Q(t)$ satisfy the linear integral equation

$$
Q(t)=K_{1}(t) u(1, t)+\lambda_{1}(t) u_{t}(1, t)-g(t)-\int_{0}^{t} k(t-s) u(1, s) d s
$$

where K_{1}, λ_{1}, g, k are given functions satisfying some properties stated in the next section. This paper consists of two main sections. First, we prove the existence and uniqueness for the solutions in a suitable function space. Then, for the case $K_{1}(t)=K_{1} \geq 0$, we find the asymptotic expansion in K, λ, K_{1} of the solutions, up to order $N+1$.

1. Introduction

In this paper, we consider the following problem: Find a pair of functions (u, Q) satisfying

$$
\begin{gather*}
u_{t t}-\frac{\partial}{\partial x}\left(\mu(x, t) u_{x}\right)+F\left(u, u_{t}\right)=f(x, t), \quad 0<x<1,0<t<T \tag{1.1}\\
u(0, t)=0 \tag{1.2}\\
-\mu(1, t) u_{x}(1, t)=Q(t) \tag{1.3}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \tag{1.4}
\end{gather*}
$$

where $F\left(u, u_{t}\right)=K|u|^{p-2} u+\lambda\left|u_{t}\right|^{q-2} u_{t}$, with $p, q \geq 2, K, \lambda$ are given constants and u_{0}, u_{1}, f, μ are given functions satisfying conditions specified later; the unknown

[^0]function $u(x, t)$ and the unknown boundary value $Q(t)$ satisfy the integral equation
\[

$$
\begin{equation*}
Q(t)=K_{1}(t) u(1, t)+\lambda_{1}(t) u_{t}(1, t)-g(t)-\int_{0}^{t} k(t-s) u(1, s) d s \tag{1.5}
\end{equation*}
$$

\]

where g, k, K_{1}, λ_{1} are given functions. Santos [10] studied the asymptotic behavior of solution of problem 1.1, 1.2 and (1.4) associated with a boundary condition of memory type at $x=1$ as follows

$$
\begin{equation*}
u(1, t)+\int_{0}^{t} g(t-s) \mu(1, s) u_{x}(1, s) d s=0, \quad t>0 \tag{1.6}
\end{equation*}
$$

To make such a difficult condition simpler, Santos transformed (1.6) into (1.3), 1.5) with $K_{1}(t)=\frac{g^{\prime}(0)}{g(0)}$, and $\lambda_{1}(t)=\frac{1}{g(0)}$ positive constants.

In the case $\lambda_{1}(t) \equiv 0, K_{1}(t)=h \geq 0, \mu(x, t) \equiv 1$, the problem (1.1)-(1.5) is formed from the problem (1.1)-1.4) wherein, the unknown function $u(x, t)$ and the unknown boundary value $\overline{Q(t)}$ satisfy the following Cauchy problem for ordinary differential equations

$$
\begin{gather*}
Q^{\prime \prime}(t)+\omega^{2} Q(t)=h u_{t t}(1, t), \quad 0<t<T \\
Q(0)=Q_{0}, \quad Q^{\prime}(0)=Q_{1} \tag{1.7}
\end{gather*}
$$

where $h \geq 0, \omega>0, Q_{0}, Q_{1}$ are given constants [6].
An and Trieu [1] studied a special case of problem 1.1-(1.4) and 1.7 with $u_{0}=u_{1}=Q_{0}=0$ and $F\left(u, u_{t}\right)=K u+\lambda u_{t}$, with $K \geq 0, \lambda \geq 0$ are given constants. In the later case the problem (1.1) and (1.7) is a mathematical model describing the shock of a rigid body and a linear viscoelastic bar resting on a rigid base [1].

From (1.7) we represent $Q(t)$ in terms of $Q_{0}, Q_{1}, \omega, h, u_{t t}(1, t)$ and then by integrating by parts, we have

$$
\begin{equation*}
Q(t)=h u(1, t)-g(t)-\int_{0}^{t} k(t-s) u(1, s) d s \tag{1.8}
\end{equation*}
$$

where

$$
\begin{gather*}
g(t)=-\left(Q_{0}-h u_{0}(1)\right) \cos \omega t-\frac{1}{\omega}\left(Q_{1}-h u_{1}(1)\right) \sin \omega t \tag{1.9}\\
k(t)=h \omega \sin \omega t . \tag{1.10}
\end{gather*}
$$

Bergounioux, Long and Dinh [2] studied problem (1.1), 1.4) with the mixed boundary conditions 1.2 , 1.3) standing for

$$
\begin{gather*}
u_{x}(0, t)=h u(0, t)+g(t)-\int_{0}^{t} k(t-s) u(0, s) d s \tag{1.11}\\
u_{x}(1, t)+K_{1} u(1, t)+\lambda_{1} u_{t}(1, t)=0 \tag{1.12}
\end{gather*}
$$

where

$$
\begin{gather*}
g(t)=\left(Q_{0}-h u_{0}(0)\right) \cos \omega t+\frac{1}{\omega}\left(Q_{1}-h u_{1}(0)\right) \sin \omega t \tag{1.13}\\
k(t)=h \omega \sin \omega t \tag{1.14}
\end{gather*}
$$

where $h \geq 0, \omega>0, Q_{0}, Q_{1}, K, \lambda, K_{1}, \lambda_{1}$ are given constants.
Long, Dinh and Diem [7] obtained the unique existence, regularity and asymptotic behavior of the problem (1.1), 1.4) in the case of $\mu(x, t) \equiv 1, Q(t)=$
$K_{1} u(1, t)+\lambda u_{t}(1, t), u_{x}(0, t)=P(t)$ where $P(t)$ satisfies 1.7$)$ with $u_{t t}(1, t)$ is replaced by $u_{t t}(0, t)$.

Long, Ut and Truc [9] gave the unique existence, stability, regularity in time variable and asymptotic behavior for the solution of problem (1.1)-1.5 when $F\left(u, u_{t}\right)=K u+\lambda u_{t}$. In this case, the problem (1.1)-1.5) is the mathematical model describing a shock problem involving a linear viscoelastic bar.

The present paper consists of two main parts. In Part 1 we prove a theorem of global existence and uniqueness of weak solutions (u, Q) of problem (1.1) - 1.5). The proof is based on a Galerkin type approximation associated to various energy estimates-type bounds, weak-convergence and compactness arguments. The main difficulties encountered here are the boundary condition at $x=1$ and with the advent of the nonlinear term of $F\left(u, u_{t}\right)$. In order to solve these particular difficulties, stronger assumptions on the initial conditions u_{0}, u_{1} and parameters K, λ will be modified. We remark that the linearization method in the papers [3, 7] cannot be used in $[2,5,6]$. In addition, in the case of $K_{1}(t) \equiv K_{1} \geq 0$, we receive a theorem related to the asymptotic expansion of the solutions with respect to K, λ, K_{1} up to order $N+1$. The results obtained here may be considered as the generalizations of those in An and Trieu [1] and in Long, Dinh, Ut and Truc [2, 3], [5-10].

2. The existence and uniqueness theorem of solution

Put $\Omega=(0,1), Q_{T}=\Omega \times(0, T), T>0$. We omit the definitions of usual function spaces: $C^{m}(\bar{\Omega}), L^{p}(\Omega), W^{m, p}(\Omega)$. We denote $W^{m, p}=W^{m, p}(\Omega), L^{p}=W^{0, p}(\Omega)$, $H^{m}=W^{m, 2}(\Omega), 1 \leq p \leq \infty, m=0,1, \ldots$ The norm in L^{2} is denoted by $\|\cdot\|$. We also denote by $\langle\cdot, \cdot\rangle$ the scalar product in L^{2} or pair of dual scalar product of continuous linear functional with an element of a function space. We denote by $\|\cdot\|_{X}$ the norm of a Banach space X and by X^{\prime} the dual space of X. We denote by $L^{p}(0, T ; X), 1 \leq p \leq \infty$ for the Banach space of the real functions $u:(0, T) \rightarrow X$ measurable, such that

$$
\|u\|_{L^{p}(0, T ; X)}=\left(\int_{0}^{T}\|u(t)\|_{X}^{p} d t\right)^{1 / p}<\infty \quad \text { for } 1 \leq p<\infty
$$

and

$$
\|u\|_{L^{\infty}(0, T ; X)}=\underset{0<t<T}{\operatorname{ess} \sup }\|u(t)\|_{X} \quad \text { for } p=\infty
$$

Let $u(t), u^{\prime}(t)=u_{t}(t), u^{\prime \prime}(t)=u_{t t}(t), u_{x}(t)$, and $u_{x x}(t)$ denote $u(x, t), \frac{\partial u}{\partial t}(x, t)$, $\frac{\partial^{2} u}{\partial t^{2}}(x, t), \frac{\partial u}{\partial x}(x, t)$, and $\frac{\partial^{2} u}{\partial x^{2}}(x, t)$, respectively. We put

$$
\begin{gather*}
V=\left\{v \in H^{1}(0,1): v(0)=0\right\} \tag{2.1}\\
a(u, v)=\int_{0}^{1} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} d x \tag{2.2}
\end{gather*}
$$

The set V is a closed subspace of H^{1} and on $V,\|v\|_{H^{1}}$ and $\|v\|_{V}=\sqrt{a(v, v)}=\left\|v_{x}\right\|$ are two equivalent norms. Then we have the following result.

Lemma 2.1. The imbedding $V \hookrightarrow C^{0}([0,1])$ is compact and

$$
\begin{equation*}
\|v\|_{C^{0}([0,1])} \leq\|v\|_{V}, \text { for all } v \in V \tag{2.3}
\end{equation*}
$$

The proof is straightforward and we omit the details. We make the following assumptions:
(H1) $K, \lambda \geq 0$,
(H2) $u_{0} \in V \cap H^{2}, u_{1} \in H^{1}$,
(H3) $g, K_{1}, \lambda_{1} \in H^{1}(0, T), \lambda_{1}(t) \geq \lambda_{0}>0, K_{1}(t) \geq 0$,
(H4) $k \in H^{1}(0, T)$,
(H5) $\mu \in C^{1}\left(\overline{Q_{T}}\right), \mu_{t t} \in L^{1}\left(0, T ; L^{\infty}\right), \mu(x, t) \geq \mu_{0}>0$, for all $(x, t) \in \overline{Q_{T}}$,
(H6) $f, f_{t} \in L^{2}\left(Q_{T}\right)$.
Then we have the following theorem.
Theorem 2.2. Let (H1)-(H6) hold. Then, for every $T>0$, there exists a unique weak solution (u, Q) of problem (1.1)-1.5 such that

$$
\begin{gather*}
u \in L^{\infty}\left(0, T ; V \cap H^{2}\right) \\
u_{t} \in L^{\infty}(0, T ; V), \quad u_{t t} \in L^{\infty}\left(0, T ; L^{2}\right) \tag{2.4}\\
u(1, \cdot) \in H^{2}(0, T), \quad Q \in H^{1}(0, T)
\end{gather*}
$$

Remark 2.3. (i) Noting that with the regularity obtained by (2.4), it follows that the component u in the weak solution (u, Q) of problem 1.1-1.5) satisfies

$$
\begin{gather*}
u \in L^{\infty}\left(0, T ; V \cap H^{2}\right) \cap C^{0}(0, T ; V) \cap C^{1}\left(0, T ; L^{2}\right), \tag{2.5}\\
u_{t} \in L^{\infty}(0, T ; V), u_{t t} \in L^{\infty}\left(0, T ; L^{2}\right), \quad u(1, \cdot) \in H^{2}(0, T) .
\end{gather*}
$$

(ii) From (2.4) we can see that $u, u_{x}, u_{t}, u_{x x}, u_{x t}, u_{t t} \in L^{\infty}\left(0, T ; L^{2}\right) \subset L^{2}\left(Q_{T}\right)$. Also if $\left(u_{0}, u_{1}\right) \in\left(V \cap H^{2}\right) \times H^{1}$, then the component u in the weak solution (u, Q) of problem (1.1)-1.5) belongs to $H^{2}\left(Q_{T}\right) \cap L^{\infty}\left(0, T ; V \cap H^{2}\right) \cap C^{0}(0, T ; V) \cap$ $C^{1}\left(0, T ; L^{2}\right)$. So the solution is almost classical which is rather natural since the initial data u_{0} and u_{1} do not belong necessarily to $V \cap C^{2}(\bar{\Omega})$ and $C^{1}(\bar{\Omega})$, respectively.
Proof of the Theorem 2.2. The proof consists of Steps four steps.
Step 1. The Galerkin approximation. Let $\left\{w_{j}\right\}$ be a denumerable base of $V \cap H^{2}$. We find the approximate solution of problem (1.1)- (1.5) in the form

$$
\begin{equation*}
u_{m}(t)=\sum_{j=1}^{m} c_{m j}(t) w_{j} \tag{2.6}
\end{equation*}
$$

where the coefficient functions $c_{m j}$ satisfy the system of ordinary differential equations as follows

$$
\begin{align*}
& \left\langle u_{m}^{\prime \prime}(t), w_{j}\right\rangle+\left\langle\mu(t) u_{m x}(t), w_{j x}\right\rangle+Q_{m}(t) w_{j}(1)+\left\langle F\left(u_{m}(t), u_{m}^{\prime}(t)\right), w_{j}\right\rangle \\
& =\left\langle f(t), w_{j}\right\rangle, 1 \leq j \leq m \tag{2.7}\\
& Q_{m}(t)=K_{1}(t) u_{m}(1, t)+\lambda_{1}(t) u_{m}^{\prime}(1, t)-\int_{0}^{t} k(t-s) u_{m}(1, s) d s-g(t) \tag{2.8}\\
& u_{m}(0)=u_{0 m}=\sum_{j=1}^{m} \alpha_{m j} w_{j} \rightarrow u_{0} \quad \text { strongly in } V \cap H^{2} \tag{2.9}\\
& u_{m}^{\prime}(0)=u_{1 m}=\sum_{j=1}^{m} \beta_{m j} w_{j} \rightarrow u_{1} \quad \text { strongly in } H^{1} .
\end{align*}
$$

From the assumptions of Theorem 2.2, system 2.7-2.9 has solution $\left(u_{m}, Q_{m}\right)$ on an interval $\left[0, T_{m}\right]$. The following estimates allow one to take $T_{m}=T$ for all m. Step 2. A priori estimates: A priori estimates I. Substituting (2.8) into (2.7), then multiplying the $j^{\text {th }}$ equation of 2.7 by $c_{m j}^{\prime}(t)$, summing up with respect to j and
afterwards integrating with respect to the time variable from 0 to t, we get after some rearrangements

$$
\begin{align*}
S_{m}(t)= & S_{m}(0)+\int_{0}^{t} d s \int_{0}^{1} \mu^{\prime}(x, s) u_{m x}^{2}(x, s) d x+\int_{0}^{t} K_{1}^{\prime}(s) u_{m}^{2}(1, s) d s \\
& +2 \int_{0}^{t} g(s) u_{m}^{\prime}(1, s) d s+2 \int_{0}^{t} u_{m}^{\prime}(1, s)\left(\int_{0}^{s} k(s-\tau) u_{m}(1, \tau) d \tau\right) d s \tag{2.10}\\
& +2 \int_{0}^{t}\left\langle f(s), u_{m}^{\prime}(s)\right\rangle d s
\end{align*}
$$

where

$$
\begin{align*}
S_{m}(t)= & \left\|u_{m}^{\prime}(t)\right\|^{2}+\left\|\sqrt{\mu(t)} u_{m x}(t)\right\|^{2}+K_{1}(t) u_{m}^{2}(1, t)+\frac{2 K}{p}\left\|u_{m}(t)\right\|_{L^{p}}^{p} \\
& +2 \lambda \int_{0}^{t}\left\|u_{m}^{\prime}(s)\right\|_{L^{q}}^{q} d s+2 \int_{0}^{t} \lambda_{1}(s)\left|u_{m}^{\prime}(1, s)\right|^{2} d s \tag{2.11}
\end{align*}
$$

Using the inequality

$$
\begin{equation*}
2 a b \leq \beta a^{2}+\frac{1}{\beta} b^{2}, \quad \forall a, b \in \mathbb{R}, \forall \beta>0 \tag{2.12}
\end{equation*}
$$

and the following inequalities

$$
\begin{gather*}
S_{m}(t) \geq\left\|u_{m}^{\prime}(t)\right\|^{2}+\mu_{0}\left\|u_{m x}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|u_{m}^{\prime}(1, s)\right|^{2} d s \tag{2.13}\\
\left|u_{m}(1, t)\right| \leq\left\|u_{m}(t)\right\|_{C^{0}(\bar{\Omega})} \leq\left\|u_{m x}(t)\right\| \leq \sqrt{\frac{S_{m}(t)}{\mu_{0}}} \tag{2.14}
\end{gather*}
$$

we shall estimate respectively the following terms on the right-hand side of 2.10 as follows

$$
\begin{gather*}
\int_{0}^{t} d s \int_{0}^{1} \mu^{\prime}(x, s) u_{m x}^{2}(x, s) d x \leq \frac{1}{\mu_{0}}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)} \int_{0}^{t} S_{m}(s) d s \tag{2.15}\\
\int_{0}^{t} K_{1}^{\prime}(s) u_{m}^{2}(1, s) d s \leq \frac{1}{\mu_{0}} \int_{0}^{t}\left|K_{1}^{\prime}(s)\right| S_{m}(s) d s \tag{2.16}\\
2 \int_{0}^{t} g(s) u_{m}^{\prime}(1, s) d s \leq \frac{1}{\beta}\|g\|_{L^{2}(0, T)}^{2}+\frac{\beta}{2 \lambda_{0}} S_{m}(t) \tag{2.17}\\
2 \int_{0}^{t} u_{m}^{\prime}(1, s)\left(\int_{0}^{s} k(s-\tau) u_{m}(1, \tau) d \tau\right) d s \tag{2.18}\\
\quad \leq \frac{\beta}{2 \lambda_{0}} S_{m}(t)+\frac{1}{\beta \mu_{0}} T\|k\|_{L^{2}(0, T)}^{2} \int_{0}^{t} S_{m}(s) d s \\
2 \int_{0}^{t}\left\langle f(s), u_{m}^{\prime}(s)\right\rangle d s \leq\|f\|_{L^{2}\left(Q_{T}\right)}^{2}+\int_{0}^{t} S_{m}(s) d s \tag{2.19}
\end{gather*}
$$

In addition, from the assumptions (H1), (H2), (H5) and the embedding $H^{1}(0,1) \hookrightarrow$ $L^{p}(0,1), p>1$, there exists a positive constant C_{1} such that for all m,

$$
\begin{equation*}
S_{m}(0)=\left\|u_{1 m}\right\|^{2}+\left\|\sqrt{\mu(0)} u_{0 m x}\right\|^{2}+K_{1}(0) u_{0 m}^{2}(1)+\frac{2 K}{p}\left\|u_{0 m}\right\|_{L^{p}}^{p} \leq C_{1} \tag{2.20}
\end{equation*}
$$

Combining 2.10, 2.11, 2.15-2.20 and choosing $\beta=\frac{\lambda_{0}}{2}$, we obtain

$$
\begin{equation*}
S_{m}(t) \leq M_{T}^{(1)}+\int_{0}^{t} N_{T}^{(1)}(s) S_{m}(s) d s \tag{2.21}
\end{equation*}
$$

where

$$
\begin{gather*}
M_{T}^{(1)}=2 C_{1}+\frac{4}{\lambda_{0}}\|g\|_{L^{2}(0, T)}^{2}+2\|f\|_{L^{2}\left(Q_{T}\right)}^{2} \\
N_{T}^{(1)}(s)=2\left[1+\frac{2}{\lambda_{0} \mu_{0}} T\|k\|_{L^{2}(0, T)}^{2}+\frac{1}{\mu_{0}}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}+\frac{1}{\mu_{0}}\left|K_{1}^{\prime}(s)\right|\right] \tag{2.22}\\
N_{T}^{(1)} \in L^{1}(0, T)
\end{gather*}
$$

By Gronwall's lemma, we deduce from (2.21, , 2.22), that

$$
\begin{equation*}
S_{m}(t) \leq M_{T}^{(1)} \exp \left(\int_{0}^{t} N_{T}^{(1)}(s) d s\right) \leq C_{T}, \quad \text { for all } t \in[0, T] \tag{2.23}
\end{equation*}
$$

A priori estimates II. Now differentiating (2.7) with respect to t, we have

$$
\begin{align*}
& \left\langle u_{m}^{\prime \prime \prime}(t), w_{j}\right\rangle+\left\langle\mu(t) u_{m x}^{\prime}(t)+\mu^{\prime}(t) u_{m x}(t), w_{j x}\right\rangle+Q_{m}^{\prime}(t) w_{j}(1) \\
& \left.\left.+\left.K(p-1)\langle | u_{m}\right|^{p-2} u_{m}^{\prime}, w_{j}\right\rangle+\left.\lambda(q-1)\langle | u_{m}^{\prime}\right|^{q-2} u_{m}^{\prime \prime}, w_{j}\right\rangle \tag{2.24}\\
& =\left\langle f^{\prime}(t), w_{j}\right\rangle
\end{align*}
$$

for all $1 \leq j \leq m$. Multiplying the $j^{t h}$ equation of (2.24) by $c_{m j}^{\prime \prime}(t)$, summing up with respect to j and then integrating with respect to the time variable from 0 to t, we have after some rearrangements

$$
\begin{align*}
X_{m}(t)= & X_{m}(0)+2\left\langle\mu^{\prime}(0) u_{0 m x}, u_{1 m x}\right\rangle-2\left\langle\mu^{\prime}(t) u_{m x}(t), u_{m x}^{\prime}(t)\right\rangle \\
& +2 \int_{0}^{t}\left\langle\mu^{\prime \prime}(s) u_{m x}(s), u_{m x}^{\prime}(s)\right\rangle d s+3 \int_{0}^{t} d s \int_{0}^{1} \mu^{\prime}(x, s)\left|u_{m x}^{\prime}(x, s)\right|^{2} d x \\
& -2 \int_{0}^{t}\left(K_{1}^{\prime}(s)-k(0)\right) u_{m}(1, s) u_{m}^{\prime \prime}(1, s) d s \\
& -2 \int_{0}^{t}\left(K_{1}(s)+\lambda_{1}^{\prime}(s)\right) u_{m}^{\prime}(1, s) u_{m}^{\prime \prime}(1, s) d s \\
& +2 \int_{0}^{t} u_{m}^{\prime \prime}(1, s)\left(g^{\prime}(s)+\int_{0}^{s} k^{\prime}(s-\tau) u_{m}(1, \tau) d \tau\right) d s \\
& \left.-\left.2(p-1) K \int_{0}^{t}\langle | u_{m}(s)\right|^{p-2} u_{m}^{\prime}(s), u_{m}^{\prime \prime}(s)\right\rangle d s+2 \int_{0}^{t}\left\langle f^{\prime}(s), u_{m}^{\prime \prime}(s)\right\rangle d s \tag{2.25}
\end{align*}
$$

where

$$
\begin{align*}
X_{m}(t)= & \left\|u_{m}^{\prime \prime}(t)\right\|^{2}+\left\|\sqrt{\mu(t)} u_{m x}^{\prime}(t)\right\|^{2}+2 \int_{0}^{t} \lambda_{1}(s)\left|u_{m}^{\prime \prime}(1, s)\right|^{2} d s \tag{2.26}\\
& +\frac{8}{q^{2}}(q-1) \lambda \int_{0}^{t}\left\|\frac{\partial}{\partial s}\left(\left|u_{m}^{\prime}(s)\right|^{\frac{q-2}{2}} u_{m}^{\prime}(s)\right)\right\|^{2} d s
\end{align*}
$$

From the assumptions (H1), (H2) , (H5), (H6) and the imbedding $H^{1}(0,1) \hookrightarrow$ $L^{p}(0,1), p>1$, there exists positive constant \widetilde{D}_{1} depending on $\mu, u_{0}, u_{1}, K, \lambda, p$,
q, f such that

$$
\begin{align*}
& X_{m}(0)+2\left\langle\mu^{\prime}(0) u_{0 m x}, u_{1 m x}\right\rangle \\
& =\left\|u_{m}^{\prime \prime}(0)\right\|^{2}+\left\|\sqrt{\mu(0)} u_{1 m x}\right\|^{2}+2\left\langle\mu^{\prime}(0) u_{0 m x}, u_{1 m x}\right\rangle \\
& \leq\left\|\mu(0) u_{0 m x x}+\mu_{x}(0) u_{0 m x}-K\left|u_{0 m}\right|^{p-2} u_{0 m}-\lambda\left|u_{1 m}\right|^{q-2} u_{1 m}+f(0)\right\|^{2} \tag{2.27}\\
& \quad+\left\|\sqrt{\mu(0)} u_{1 m x}\right\|^{2}+2\left\|\mu^{\prime}(0)\right\|_{L^{\infty}(\Omega)}\left\|u_{0 m x}\right\|\left\|u_{1 m x}\right\| \leq \widetilde{D}_{1},
\end{align*}
$$

for all m. Using the inequality 2.12 where β is replaced by β_{1} and the following inequalities

$$
\begin{gather*}
X_{m}(t) \geq\left\|u_{m}^{\prime \prime}(t)\right\|^{2}+\mu_{0}\left\|u_{m x}^{\prime}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|u_{m}^{\prime \prime}(1, s)\right|^{2} d s \tag{2.28}\\
\left|u_{m}(1, t)\right| \leq\left\|u_{m}(t)\right\|_{C^{0}(\bar{\Omega})} \leq\left\|u_{m x}(t)\right\| \leq \sqrt{\frac{S_{m}(t)}{\mu_{0}}} \leq \sqrt{\frac{C_{T}}{\mu_{0}}} \tag{2.29}\\
\left|u_{m}^{\prime}(1, t)\right| \leq\left\|u_{m}^{\prime}(t)\right\|_{C^{0}(\bar{\Omega})} \leq\left\|u_{m x}^{\prime}(t)\right\| \leq \sqrt{\frac{X_{m}(t)}{\mu_{0}}} \tag{2.30}
\end{gather*}
$$

we estimate, without difficulty the following terms in the right-hand side of 2.25 as follows

$$
\begin{gather*}
\quad-2\left\langle\mu^{\prime}(t) u_{m x}(t), u_{m x}^{\prime}(t)\right\rangle \leq \beta_{1} X_{m}(t)+\frac{1}{\beta_{1} \mu_{0}} C_{T}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}^{2}, \tag{2.31}\\
2 \int_{0}^{t}\left\langle\mu^{\prime \prime}(s) u_{m x}(s), u_{m x}^{\prime}(s)\right\rangle d s \\
\leq 2 \int_{0}^{t}\left\|\mu^{\prime \prime}(s)\right\|_{L^{\infty}}\left\|u_{m x}(s)\right\|\left\|u_{m x}^{\prime}(s)\right\| d s \tag{2.32}\\
\leq \beta_{1} \frac{1}{\mu_{0}} \int_{0}^{t}\left\|\mu^{\prime \prime}(s)\right\|_{L^{\infty}}\left\|u_{m x}(s)\right\|^{2} d s+\beta_{1} \mu_{0} \int_{0}^{t}\left\|\mu^{\prime \prime}(s)\right\|_{L^{\infty}}\left\|u_{m x}^{\prime}(s)\right\|^{2} d s \\
\leq \beta_{1} \int_{0}^{t}\left\|\mu^{\prime \prime}(s)\right\|_{L^{\infty}} X_{m}(s) d s+\frac{C_{T}}{\beta_{1} \mu_{0}}\left\|\mu^{\prime \prime}\right\|_{L^{1}\left(0, T ; L^{\infty}\right)} \\
\quad 3 \int_{0}^{t} d s \int_{0}^{1} \mu^{\prime}(x, s)\left|u_{m x}^{\prime}(x, s)\right|^{2} d x \leq \frac{3}{\mu_{0}}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)} \int_{0}^{t} X_{m}(s) d s, \tag{2.33}\\
-2 \int_{0}^{t}\left(K_{1}^{\prime}(s)-k(0)\right) u_{m}(1, s) u_{m}^{\prime \prime}(1, s) d s \leq \frac{\beta_{1}}{2 \lambda_{0}} X_{m}(t)+\frac{C_{T}}{\beta_{1} \mu_{0}}\left\|K_{1}^{\prime}-k(0)\right\|_{L^{2}(0, T)}^{2}, \tag{2.34}\\
\quad-2 \int_{0}^{t}\left(K_{1}(s)+\lambda_{1}^{\prime}(s)\right) u_{m}^{\prime}(1, s) u_{m}^{\prime \prime}(1, s) d s \tag{2.35}\\
\beta_{1} \mu_{0} \int_{0}^{t}\left(\left|K_{1}(s)\right|^{2}+\left|\lambda_{1}^{\prime}(s)\right|^{2}\right) X_{m}(s) d s+\frac{\beta_{1}}{2 \lambda_{0}} X_{m}(t),
\end{gather*}
$$

$$
\begin{gather*}
2 \int_{0}^{t} u_{m}^{\prime \prime}(1, s)\left(g^{\prime}(s)+\int_{0}^{s} k^{\prime}(s-\tau) u_{m}(1, \tau) d \tau\right) d s \\
\leq \frac{\beta_{1}}{2 \lambda_{0}} X_{m}(t)+\frac{2}{\beta_{1}}\left[\left\|g^{\prime}\right\|_{L^{2}(0, T)}^{2}+\frac{C_{T}}{\mu_{0}} T\left\|k^{\prime}\right\|_{L^{1}(0, T)}^{2}\right], \tag{2.36}\\
\left.-\left.2(p-1) K \int_{0}^{t}\langle | u_{m}(s)\right|^{p-2} u_{m}^{\prime}(s), u_{m}^{\prime \prime}(s)\right\rangle d s \leq 2 \frac{p-1}{\sqrt{\mu_{0}}} K\left(\frac{C_{T}}{\mu_{0}}\right)^{\frac{p-2}{2}} \int_{0}^{t} X_{m}(s) d s, \tag{2.37}\\
2 \int_{0}^{t}\left\langle f^{\prime}(s), u_{m}^{\prime \prime}(s)\right\rangle d s \leq \beta_{1} \int_{0}^{t} X_{m}(s) d s+\frac{1}{\beta_{1}}\left\|f^{\prime}\right\|_{L^{2}\left(Q_{T}\right)}^{2} . \tag{2.38}
\end{gather*}
$$

In terms of (2.25, (2.27), 2.31)-(2.38) and by the choice of $\beta_{1}>0$ such that

$$
\beta_{1}\left(1+\frac{3}{2 \lambda_{0}}\right) \leq \frac{1}{2},
$$

we obtain

$$
\begin{equation*}
X_{m}(t) \leq \widetilde{M}_{T}^{(2)}+\int_{0}^{t} N_{T}^{(2)}(s) X_{m}(s) d s, \tag{2.39}
\end{equation*}
$$

where

$$
\begin{gather*}
\widetilde{M}_{T}^{(2)}=2 \widetilde{D}_{1}+\frac{2 C_{T}}{\beta_{1} \mu_{0}}\left[\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}^{2}+\left\|\mu^{\prime \prime}\right\|_{L^{1}\left(0, T ; L^{\infty}\right)}+\left\|K_{1}^{\prime}-k(0)\right\|_{L^{2}(0, T)}^{2}\right] \\
+\frac{2}{\beta_{1}}\left[2\left\|g^{\prime}\right\|_{L^{2}(0, T)}^{2}+\frac{2 C_{T}}{\mu_{0}} T\left\|k^{\prime}\right\|_{L^{1}(0, T)}^{2}+\left\|f^{\prime}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right], \\
N_{T}^{(2)}(s)=2 \beta_{1}+4 \frac{p-1}{\sqrt{\mu_{0}}} K\left(\frac{C_{T}}{\mu_{0}}\right)^{\frac{p-2}{2}}+\frac{6}{\mu_{0}}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}+2 \beta_{1}\left\|\mu^{\prime \prime}(s)\right\|_{L^{\infty}} \tag{2.40}\\
\quad+\frac{4}{\beta_{1} \mu_{0}}\left(\left|K_{1}(s)\right|^{2}+\left|\lambda_{1}^{\prime}(s)\right|^{2}\right), \\
N_{T}^{(2)} \in L^{1}(0, T) .
\end{gather*}
$$

From 2.39-2.40 and applying Gronwall's inequality, we obtain that

$$
\begin{equation*}
X_{m}(t) \leq M_{T}^{(2)} \exp \left(\int_{0}^{t} N_{T}^{(2)}(s) d s\right) \leq C_{T} \quad \text { for all } t \in[0, T] . \tag{2.41}
\end{equation*}
$$

On the other hand, we deduce from (2.8), 2.11), 2.23, (2.26) and 2.41), that

$$
\begin{align*}
\left\|Q_{m}^{\prime}\right\|_{L^{2}(0, T)}^{2} \leq & \frac{5 D_{T}}{2 \lambda_{0}}\left\|\lambda_{1}\right\|_{\infty}^{2}+\frac{5 T^{2} C_{T}}{\mu_{0}}\left\|k^{\prime}\right\|_{L^{2}(0, T)}^{2}+5\left\|g^{\prime}\right\|_{L^{2}(0, T)}^{2} \tag{2.42}\\
& +\frac{5 D_{T}}{\mu_{0}}\left(\left\|K_{1}+\lambda_{1}^{\prime}\right\|_{L^{2}(0, T)}^{2}+\left\|K_{1}^{\prime}-k(0)\right\|_{L^{2}(0, T)}^{2}\right)
\end{align*}
$$

where $\left\|\lambda_{1}\right\|_{\infty}=\left\|\lambda_{1}\right\|_{L^{\infty}(0, T)}$. From the assumptions (H3) and (H4), we deduce from (2.42), that

$$
\begin{equation*}
\left\|Q_{m}\right\|_{H^{1}(0, T)} \leq C_{T} \quad \text { for all } m, \tag{2.43}
\end{equation*}
$$

where C_{T} is a positive constant depending only on T.

Step 3. Limiting process. From (2.11), 2.23), 2.26, 2.41 and 2.43), we deduce the existence of a subsequence of $\left\{\left(u_{m}, Q_{m}\right)\right\}$ still also so denoted, such that

$$
\begin{gather*}
u_{m} \rightarrow u \quad \text { in } L^{\infty}(0, T ; V) \quad \text { weak* } \\
u_{m}^{\prime} \rightarrow u^{\prime} \quad \text { in } L^{\infty}(0, T ; V) \quad \text { weak* }^{*} \\
u_{m}^{\prime \prime} \rightarrow u^{\prime \prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}\right) \quad \text { weak }^{*} \tag{2.44}\\
u_{m}(1, \cdot) \rightarrow u(1, \cdot) \quad \text { in } H^{2}(0, T) \quad \text { weakly, } \\
Q_{m} \rightarrow \widetilde{Q} \quad \text { in } H^{1}(0, T) \quad \text { weakly. }
\end{gather*}
$$

By the compactness lemma in Lions [4: p.57] and the imbedding $H^{2}(0, T) \hookrightarrow$ $C^{1}([0, T])$, we can deduce from $2.44{ }_{1,2,3,4,5}$ the existence of a subsequence still denoted by $\left\{\left(u_{m}, Q_{m}\right)\right\}$ such that

$$
\begin{align*}
u_{m} & \rightarrow u \quad \text { strongly in } L^{2}\left(Q_{T}\right) \\
u_{m}^{\prime} & \rightarrow u^{\prime} \quad \text { strongly in } L^{2}\left(Q_{T}\right) \\
u_{m}(1, \cdot) & \rightarrow u(1, \cdot) \quad \text { strongly in } C^{1}([0, T]), \tag{2.45}\\
Q_{m} & \rightarrow \widetilde{Q} \quad \text { strongly in } C^{0}([0, T]) .
\end{align*}
$$

From 2.8 and 2.45$)_{3}$ we have that

$$
\begin{equation*}
Q_{m}(t) \rightarrow K_{1}(t) u(1, t)+\lambda_{1}(t) u^{\prime}(1, t)-g(t)-\int_{0}^{t} k(t-s) u(1, s) d s \equiv Q(t) \tag{2.46}
\end{equation*}
$$

strongly in $C^{0}([0, T])$.
Combining 2.45 4 and 2.46, we conclude that

$$
\begin{equation*}
Q(t)=\widetilde{Q}(t) \tag{2.47}
\end{equation*}
$$

By means of the inequality

$$
\begin{equation*}
\left||x|^{\delta-2} x-|y|^{\delta-2} y\right| \leq(\delta-1) R^{\delta-2}|x-y| q u a d \forall x, y \in[-R ; R] \tag{2.48}
\end{equation*}
$$

for all $R>0, \delta \geq 2$, it follows from (2.39), that

$$
\begin{equation*}
\left|\left|u_{m}\right|^{p-2} u_{m}-|u|^{p-2} u\right| \leq(p-1) R^{p-2}\left|u_{m}-u\right| \quad \text { with } R=\sqrt{\frac{C_{T}}{\mu_{0}}} \tag{2.49}
\end{equation*}
$$

Hence, it follows from 2.45$)_{1}$ and 2.49 , that

$$
\begin{equation*}
\left|u_{m}\right|^{p-2} u_{m} \rightarrow|u|^{p-2} u \quad \text { strongly in } L^{2}\left(Q_{T}\right) . \tag{2.50}
\end{equation*}
$$

By the same way, we deduce from (2.48), with $R=\sqrt{\frac{C_{T}}{\mu_{0}}}$ and $\left.2.443_{3}, 2.45\right)_{2}$, that

$$
\begin{equation*}
\left|u_{m}^{\prime}\right|^{q-2} u_{m}^{\prime} \rightarrow\left|u^{\prime}\right|^{q-2} u^{\prime} \quad \text { strongly in } L^{2}\left(Q_{T}\right) \tag{2.51}
\end{equation*}
$$

Passing to the limit in $2.7-2.9$ by $2.44{ }_{1,5}, 2.46,2.47,2.50$ and 2.51 we have (u, Q) satisfying

$$
\begin{align*}
& \left.\left\langle u^{\prime \prime}(t), v\right\rangle+\left\langle\mu(t) u_{x}(t), v_{x}\right\rangle+Q(t) v(1)+\left.\langle K| u\right|^{p-2} u+\lambda\left|u^{\prime}\right|^{q-2} u^{\prime}, v\right\rangle \\
& =\langle f(t), v\rangle, \quad \forall v \in V, \tag{2.52}\\
& \quad u(0)=u_{0}, \quad u^{\prime}(0)=u_{1}, \tag{2.53}\\
& Q(t)=K_{1}(t) u(1, t)+\lambda_{1}(t) u_{t}(1, t)-g(t)-\int_{0}^{t} k(t-s) u(1, s) d s, \tag{2.54}
\end{align*}
$$

On the other hand, from 2.44$)_{5}, 2.52$ and assumptions (H5)-(H6) we have

$$
\begin{equation*}
u_{x x}=\frac{1}{\mu(x, t)}\left(u^{\prime \prime}-\mu_{x} u_{x}+K|u|^{p-2} u+\lambda\left|u^{\prime}\right|^{q-2} u^{\prime}-f\right) \in L^{\infty}\left(0, T ; L^{2}\right) \tag{2.55}
\end{equation*}
$$

Thus $u \in L^{\infty}\left(0, T ; V \cap H^{2}\right)$ and the existence of the theorem is proved completely.
Step 4. Uniqueness of the solution. Let $\left(u_{1}, Q_{1}\right),\left(u_{2}, Q_{2}\right)$ be two weak solutions of problem (1.1)-(1.5), such that

$$
\begin{gather*}
u_{i} \in L^{\infty}\left(0, T ; V \cap H^{2}\right), \quad u_{i}^{\prime} \in L^{\infty}\left(0, T ; H^{1}\right), \quad u_{i}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}\right), \tag{2.56}\\
u_{i}(1, \cdot) \in H^{2}(0, T), \quad Q_{i} \in H^{1}(0, T), \quad i=1,2 .
\end{gather*}
$$

Then (u, Q) with $u=u_{1}-u_{2}$ and $Q=Q_{1}-Q_{2}$ satisfy the variational problem

$$
\begin{gather*}
\left.\left\langle u^{\prime \prime}(t), v\right\rangle+\left\langle\mu(t) u_{x}(t), v_{x}\right\rangle+Q(t) v(1)+\left.K\langle | u_{1}\right|^{p-2} u_{1}-\left|u_{2}\right|^{p-2} u_{2}, v\right\rangle \\
\left.+\left.\lambda\langle | u_{1}^{\prime}\right|^{q-2} u_{1}^{\prime}-\left|u_{2}^{\prime}\right|^{q-2} u_{2}^{\prime}, v\right\rangle=0 \quad \forall v \in V \tag{2.57}\\
u(0)=\quad u^{\prime}(0)=0,
\end{gather*}
$$

and

$$
\begin{equation*}
Q(t)=K_{1}(t) u(1, t)+\lambda_{1}(t) u^{\prime}(1, t)-\int_{0}^{t} k(t-s) u(1, s) d s \tag{2.58}
\end{equation*}
$$

We take $v=u^{\prime}$ in 2.571 1_{1}, and integrating with respect to t, we obtain

$$
\begin{align*}
\sigma(t) \leq & \int_{0}^{t}\left\|\sqrt{\left|\mu^{\prime}(s)\right|} u_{x}(s)\right\|^{2} d s+\int_{0}^{t} K_{1}^{\prime}(s) u^{2}(1, s) d s \\
& +2 \int_{0}^{t} u^{\prime}(1, s) d s \int_{0}^{s} k(s-\tau) u(1, \tau) d \tau \tag{2.59}\\
& \left.-\left.2 K \int_{0}^{t}\langle | u_{1}\right|^{p-2} u_{1}-\left|u_{2}\right|^{p-2} u_{2}, u^{\prime}\right\rangle d s
\end{align*}
$$

where

$$
\begin{equation*}
\sigma(t)=\left\|u^{\prime}(t)\right\|^{2}+\left\|\sqrt{\mu(t)} u_{x}(t)\right\|^{2}+K_{1}(t) u^{2}(1, t)+2 \int_{0}^{t} \lambda_{1}(s)\left|u^{\prime}(1, s)\right|^{2} d s \tag{2.60}
\end{equation*}
$$

Noting that

$$
\begin{gather*}
\sigma(t) \geq\left\|u^{\prime}(t)\right\|^{2}+\mu_{0}\left\|u_{x}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|u^{\prime}(1, s)\right|^{2} d s \tag{2.61}\\
|u(1, t)| \leq\|u(t)\|_{C^{0}(\bar{\Omega})} \leq\left\|u_{x}(t)\right\| \leq \sqrt{\frac{\sigma(t)}{\mu_{0}}} \tag{2.62}
\end{gather*}
$$

We again use inequalities $\sqrt{2.12}$) and 2.48 with $\delta=p, R=\max _{i=1,2}\left\|u_{i}\right\|_{L^{\infty}(0, T ; V)}$, then, it follows from $2.59-2.62$, that

$$
\begin{align*}
\sigma(t) \leq & \frac{1}{\mu_{0}} \int_{0}^{t}\left(\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}+\left|K_{1}^{\prime}(s)\right|\right) \sigma(s) d s+\frac{\beta}{2 \lambda_{0}} \sigma(t) \\
& +\frac{T}{\beta \mu_{0}}\|k\|_{L^{2}(0, T)}^{2} \int_{0}^{t} \sigma(\tau) d \tau+\frac{1}{\sqrt{\mu_{0}}}(p-1) K R^{p-2} \int_{0}^{t} \sigma(s) d s \tag{2.63}
\end{align*}
$$

Choosing $\beta>0$, such that $\beta \frac{1}{2 \lambda_{0}} \leq 1 / 2$, we obtain from 2.63, that

$$
\begin{equation*}
\sigma(t) \leq \int_{0}^{t} q_{1}(s) \sigma(s) d s \tag{2.64}
\end{equation*}
$$

where

$$
\begin{gather*}
q_{1}(s)=\frac{2}{\mu_{0}}\left(\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}+\left|K_{1}^{\prime}(s)\right|\right)+\frac{2 T}{\beta \mu_{0}}\|k\|_{L^{2}(0, T)}^{2}+\frac{2}{\sqrt{\mu_{0}}}(p-1) K R^{p-2} \tag{2.65}\\
q_{1} \in L^{2}(0, T)
\end{gather*}
$$

By Gronwall's lemma, we deduce that $\sigma \equiv 0$ and Theorem 2.2 is completely proved.

Remark 2.4. In the case $p, q>2, K<0$, and $\lambda<0$, the question of existence for the solutions of problem $\sqrt{1.1}-\sqrt{1.5}$ is still open. However we have also obtained the answer of problem (1.1)-(1.5) when $p=q=2$ and $K, \lambda \in \mathbb{R}$ published in [9].

3. Asymptotic expansion of the solution

In this part, we consider two given functions u_{0}, u_{1} as $\widetilde{u}_{0}, \widetilde{u}_{1}$, respectively. Then we assume that $K_{1}(t)=K_{1}$ is a nonnegative constant and ($\widetilde{u}_{0}, \widetilde{u}_{1}, f, \mu, g, k, \lambda_{1}$) satisfy the assumptions (H2)-(H6). Let $\left(K, \lambda, K_{1}\right) \in \mathbb{R}_{+}^{3}$. By Theorem 2.2, the problem (1.1)-(1.5) has a unique weak solution (u, Q) depending on $\left(K, \lambda, K_{1}\right)$:

$$
u=u\left(K, \lambda, K_{1}\right), \quad Q=Q\left(K, \lambda, K_{1}\right)
$$

We consider the following perturbed problem, where K, λ, K_{1} are small parameters such that, $0 \leq K \leq K_{*}, 0 \leq \lambda \leq \lambda_{*}, 0 \leq K_{1} \leq K_{1 *}$:

$$
\begin{gather*}
A u \equiv u_{t t}-\frac{\partial}{\partial x}\left(\mu(x, t) u_{x}\right)=-K F(u)-\lambda G\left(u_{t}\right)+f(x, t), \quad 0<x<1,0<t<T \\
u(0, t)=0 \\
B u \equiv-\mu(1, t) u_{x}(1, t)=Q(t) \\
u(x, 0)=\widetilde{u}_{0}(x), \quad u_{t}(x, 0)=\widetilde{u}_{1}(x) \\
Q(t)=K_{1} u(1, t)+\lambda_{1}(t) u_{t}(1, t)-g(t)-\int_{0}^{t} k(t-s) u(1, s) d s \tag{3.1}
\end{gather*}
$$

where $F(u)=|u|^{p-2} u, G\left(u_{t}\right)=\left|u_{t}\right|^{q-2} u_{t}, p>N \geq 2, q>N \geq 2$. We shall study the asymptotic expansion of the solution of problem $\left(P_{K, \lambda, K_{1}}\right)$ with respect to (K, $\left.\lambda, K_{1}\right)$. We use the following notation. For a multi-index $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{Z}_{+}^{3}$ and $\vec{K}=\left(K, \lambda, K_{1}\right) \in \mathbb{R}_{+}^{3}$, we put

$$
\begin{gathered}
|\gamma|=\gamma_{1}+\gamma_{2}+\gamma_{3}, \quad \gamma!=\gamma_{1}!\gamma_{2}!\gamma_{3}! \\
\|\vec{K}\|=\sqrt{K^{2}+\lambda^{2}+K_{1}^{2}}, \quad \overrightarrow{K^{\gamma}}=K^{\gamma_{1}} \lambda^{\gamma_{2}} K_{1}^{\gamma_{3}} \\
\alpha, \beta \in \mathbb{Z}_{+}^{3}, \quad \beta \leq \alpha \Longleftrightarrow \beta_{i} \leq \alpha_{i} \quad \forall i=1,2,3
\end{gathered}
$$

First, we shall need the following Lemma.
Lemma 3.1. Let $m, N \in \mathbb{N}$ and $v_{\alpha} \in \mathbb{R}, \alpha \in \mathbb{Z}_{+}^{3}, 1 \leq|\alpha| \leq N$. Then

$$
\begin{equation*}
\left(\sum_{1 \leq|\alpha| \leq N} v_{\alpha} \vec{K}^{\alpha}\right)^{m}=\sum_{m \leq|\alpha| \leq m N} T^{(m)}[v]_{\alpha} \vec{K}^{\alpha} \tag{3.2}
\end{equation*}
$$

where the coefficients $T^{(m)}[v]_{\alpha}, m \leq|\alpha| \leq m N$ depending on $v=\left(v_{\alpha}\right), \alpha \in \mathbb{Z}_{+}^{3}$, $1 \leq|\alpha| \leq N$ are defined by the recurrence formulas

$$
\begin{gather*}
T^{(1)}[v]_{\alpha}=v_{\alpha}, \quad 1 \leq|\alpha| \leq N \\
T^{(m)}[v]_{\alpha}=\sum_{\beta \in A_{\alpha}^{(m)}} v_{\alpha-\beta} T^{(m-1)}[v]_{\beta}, \quad m \leq|\alpha| \leq m N, m \geq 2 \tag{3.3}\\
A_{\alpha}^{(m)}=\left\{\beta \in \mathbb{Z}_{+}^{3}: \beta \leq \alpha, 1 \leq|\alpha-\beta| \leq N, m-1 \leq|\beta| \leq(m-1) N\right\} .
\end{gather*}
$$

The proof of the above lemma can be found in [11]. Let $\left(u_{0}, Q_{0}\right) \equiv\left(u_{0,0,0}\right.$, $Q_{0,0,0}$) be a unique weak solution of the following problem (as in Theorem 2.2) corresponding to $\left(K, \lambda, K_{1}\right)=(0,0,0)$; i.e.,

$$
\begin{gathered}
A u_{0}=P_{0,0,0} \equiv f(x, t), \quad 0<x<1,0<t<T, \\
u_{0}(0, t)=0, \quad B u_{0}=Q_{0}(t), \\
u_{0}(x, 0)=\widetilde{u}_{0}(x), \quad u_{0}^{\prime}(x, 0)=\widetilde{u}_{1}(x), \\
Q_{0}(t)=-g(t)+\lambda_{1}(t) u_{0}^{\prime}(1, t)-\int_{0}^{t} k(t-s) u_{0}(1, s) d s, \\
u_{0} \in C^{0}(0, T ; V) \cap C^{1}\left(0, T ; L^{2}\right) \cap L^{\infty}\left(0, T ; V \cap H^{2}\right), \\
u_{0}^{\prime} \in L^{\infty}\left(0, T ; H^{1}\right), \quad u_{0}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}\right), \\
u_{0}(1, \cdot) \in H^{2}(0, T), \quad Q_{0} \in H^{1}(0, T)
\end{gathered}
$$

Let us consider the sequence of weak solutions $\left(u_{\gamma}, Q_{\gamma}\right), \gamma \in \mathbb{Z}_{+}^{3}, 1 \leq|\gamma| \leq N$, defined by the following problems $\left(\widetilde{P}_{\gamma}\right)$:

$$
\begin{gather*}
A u_{\gamma}=P_{\gamma}, \quad 0<x<1,0<t<T \\
u_{\gamma}(0, t)=0, \quad B u_{\gamma}=Q_{\gamma}(t), \\
u_{\gamma}(x, 0)=u_{\gamma}^{\prime}(x, 0)=0, \\
Q_{\gamma}(t)=\widehat{Q}_{\gamma}(t)+\lambda_{1}(t) u_{\gamma}^{\prime}(1, t)-\int_{0}^{t} k(t-s) u_{\gamma}(1, s) d s, \tag{3.4}\\
u_{\gamma} \in C^{0}(0, T ; V) \cap C^{1}\left(0, T ; L^{2}\right) \cap L^{\infty}\left(0, T ; V \cap H^{2}\right), \\
u_{\gamma}^{\prime} \in L^{\infty}\left(0, T ; H^{1}\right), \quad u_{\gamma}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}\right), \\
u_{\gamma}(1, \cdot) \in H^{2}(0, T), \quad Q_{\gamma} \in H^{1}(0, T),
\end{gather*}
$$

where $P_{\gamma}, \widehat{Q}_{\gamma},|\gamma| \leq N$ are defined by the recurrence formula

$$
\begin{gather*}
\widehat{Q}_{\gamma}(t)=0, \quad 1 \leq|\gamma| \leq N, \quad \gamma_{3}=0 \tag{3.5}\\
\widehat{Q}_{\gamma}(t)=u_{\gamma_{1}, \gamma_{2}, \gamma_{3}-1}(1, t), \quad 1 \leq|\gamma| \leq N, \quad \gamma_{3} \geq 1
\end{gather*}
$$

and

$$
\begin{gather*}
P_{1,0,0}=-F\left(u_{0}\right), \quad P_{0,1,0}=-G\left(u_{0}^{\prime}\right), \quad P_{0,0,1}=0, \\
P_{0,0, \gamma_{3}}=0, \quad 2 \leq \gamma_{3} \leq N, \\
P_{0, \gamma_{2}, \gamma_{3}}=-\sum_{m=1}^{|\gamma|-1} \frac{1}{m!} G^{(m)}\left(u_{0}^{\prime}\right) T^{(m)}\left[u^{\prime}\right]_{0, \gamma_{2}-1, \gamma_{3}}, \quad 2 \leq \gamma_{2}+\gamma_{3} \leq N, \gamma_{2} \geq 1, \\
P_{\gamma_{1}, 0, \gamma_{3}}=-\sum_{m=1}^{|\gamma|-1} \frac{1}{m!} F^{(m)}\left(u_{0}\right) T^{(m)}[u]_{\gamma_{1}-1,0, \gamma_{3}}, \quad 2 \leq \gamma_{1}+\gamma_{3} \leq N, \gamma_{1} \geq 1, \\
P_{\gamma}=-\sum_{m=1}^{|\gamma|-1} \frac{1}{m!}\left[F^{(m)}\left(u_{0}\right) T^{(m)}[u]_{\gamma_{1}-1, \gamma_{2}, \gamma_{3}}+G^{(m)}\left(u_{0}^{\prime}\right) T^{(m)}\left[u^{\prime}\right]_{\left.\gamma_{1}, \gamma_{2}-1, \gamma_{3}\right]},\right. \\
2 \leq|\gamma| \leq N, \gamma_{1} \geq 1, \gamma_{2} \geq 1, \tag{3.6}
\end{gather*}
$$

here we have used the notation $u=\left(u_{\gamma}\right), \gamma \in \mathbb{Z}_{+}^{3},|\gamma| \leq N$. Let $(u, Q)=$ $\left(u_{K, \lambda, K_{1}}, Q_{K, \lambda, K_{1}}\right)$ be a unique weak solution of problem 3.1). Then (v, R), with

$$
v=u-\sum_{|\gamma| \leq N} u_{\gamma} \vec{K}^{\gamma} \equiv u-h, \quad R=Q-\sum_{|\gamma| \leq N} Q_{\gamma} \vec{K}^{\gamma}
$$

satisfies the problem

$$
\begin{gather*}
A v \equiv v_{t t}-\frac{\partial}{\partial x}\left(\mu(x, t) v_{x}\right) \\
=-K[F(v+h)-F(h)]-\lambda\left[G\left(v_{t}+h_{t}\right)-G\left(h_{t}\right)\right] \\
\quad+\widetilde{E}_{N}(\vec{K}), \quad 0<x<1,0<t<T, \\
v(0, t)=0, \quad B v \equiv-\mu(1, t) v_{x}(1, t)=R(t), \\
R(t)=K_{1} v(1, t)+\lambda_{1}(t) v_{t}(1, t)+\widetilde{G}_{N}(\vec{K})-\int_{0}^{t} k(t-s) v(1, s) d s, \tag{3.7}\\
v(x, 0)=v_{t}(x, 0)=0, \\
v \in C^{0}(0, T ; V) \cap C^{1}\left(0, T ; L^{2}\right) \cap L^{\infty}\left(0, T ; V \cap H^{2}\right) \\
v^{\prime} \in L^{\infty}\left(0, T ; H^{1}\right), \quad v^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}\right) \\
v(1, \cdot) \in H^{2}(0, T), \quad R \in H^{1}(0, T),
\end{gather*}
$$

where

$$
\begin{gather*}
\widetilde{E}_{N}(\vec{K})=f(x, t)-K F(h)-\lambda G\left(h_{t}\right)-\sum_{|\gamma| \leq N} P_{\gamma} \vec{K}^{\gamma} \tag{3.8}\\
\widetilde{G}_{N}(\vec{K})=\sum_{|\gamma|=N+1, \gamma_{3} \geq 1} u_{\gamma_{1}, \gamma_{2}, \gamma_{3}-1}(1, t) \vec{K}^{\gamma} \tag{3.9}
\end{gather*}
$$

Then, we have the following lemma.
Lemma 3.2. Let (H2)-(H6) hold. Then

$$
\begin{gather*}
\left\|\widetilde{E}_{N}(\vec{K})\right\|_{L^{\infty}(0, T ; V)} \leq \widetilde{C}_{1 N}\|\vec{K}\|^{N+1} \tag{3.10}\\
\left\|\widetilde{G}_{N}(\vec{K})\right\|_{H^{2}(0, T)} \leq \widetilde{C}_{2 N}\|\vec{K}\|^{N+1} \tag{3.11}
\end{gather*}
$$

for all $\vec{K}=\left(K, \lambda, K_{1}\right) \in \mathbb{R}_{+}^{3},\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\|$ with $\overrightarrow{K_{*}}=\left(K_{*}, \lambda_{*}, K_{1 *}\right)$, where $\widetilde{C}_{1 N}$, $\widetilde{C}_{2 N}$ are positive constants depending only on the constants $\left\|\overrightarrow{K_{*}}\right\|,\left\|u_{\gamma}\right\|_{L^{\infty}(0, T ; V)}$, $\left\|u_{\gamma}^{\prime}\right\|_{L^{\infty}(0, T ; V)},(|\gamma| \leq N),\left\|u_{\gamma_{1}, \gamma_{2}, \gamma_{3}-1}(1, \cdot)\right\|_{H^{2}(0, T)},\left(|\gamma|=N+1, \gamma_{3} \geq 1\right)$.

Proof. In the case of $N=1$, the proof of Lemma 3.2 is easy, hence we omit the details, which we only prove with $N \geq 2$. Put

$$
\begin{equation*}
h=u_{0}+h_{1}, h_{1}=\sum_{1 \leq|\gamma| \leq N} u_{\gamma} \vec{K}^{\gamma} \tag{3.12}
\end{equation*}
$$

By using Taylor's expansion of the function $F(h)=F\left(u_{0}+h_{1}\right)$ around the point u_{0} up to order $N-1$, we obtain

$$
\begin{equation*}
F(h)=F\left(u_{0}\right)+\sum_{m=1}^{N-1} \frac{1}{m!} F^{(m)}\left(u_{0}\right) h_{1}^{m}+\frac{1}{N!} F^{(N)}\left(u_{0}+\theta_{1} h_{1}\right) h_{1}^{N}, \tag{3.13}
\end{equation*}
$$

where $0<\theta_{1}<1$. By Lemma 3.1, we obtain from (3.13), after some rearrangements in order to of \vec{K}^{γ}, that

$$
\begin{align*}
K F(h)= & K F\left(u_{0}\right) \\
& +\sum_{2 \leq|\gamma| \leq N,} \sum_{\gamma_{1} \geq 1}^{|\gamma|-1} \frac{1}{m!} F^{(m)}\left(u_{0}\right) T^{(m)}[u]_{\gamma_{1}-1, \gamma_{2}, \gamma_{3}} \vec{K}^{\gamma}+R^{(1)}(F, \vec{K}), \tag{3.14}
\end{align*}
$$

where

$$
\begin{align*}
& R^{(1)}(F, \vec{K}) \\
& =K \sum_{m=1}^{N-1} \frac{1}{m!} F^{(m)}\left(u_{0}\right) \sum_{N \leq|\gamma| \leq m N} T^{(m)}[u]_{\gamma} \vec{K}^{\gamma}+\frac{1}{N!} F^{(N)}\left(u_{0}+\theta_{1} h_{1}\right) K h_{1}^{N}, \tag{3.15}
\end{align*}
$$

Similarly, we use Taylor's expansion of the function $G\left(h_{t}\right)=G\left(u_{0}^{\prime}+h_{1}^{\prime}\right)$ around the point u_{0}^{\prime} up to order $N-1$, we obtain

$$
\begin{align*}
\lambda G\left(h_{t}\right)= & \lambda G\left(u_{0}^{\prime}\right)+\sum_{2 \leq|\gamma| \leq N,} \sum_{\gamma_{2} \geq 1}^{|\gamma|-1} \frac{1}{m=1} G^{(m)}\left(u_{0}^{\prime}\right) T^{(m)}\left[u^{\prime}\right]_{\gamma_{1}, \gamma_{2}-1, \gamma_{3}} \vec{K}^{\gamma} \tag{3.16}\\
& +R^{(2)}(G, \vec{K})
\end{align*}
$$

where

$$
\begin{align*}
& R^{(2)}(G, \vec{K}) \\
& =\lambda \sum_{m=1}^{N-1} \frac{1}{m!} G^{(m)}\left(u_{0}^{\prime}\right) \sum_{N \leq|\gamma| \leq m N} T^{(m)}\left[u^{\prime}\right]_{\gamma} \vec{K}^{\gamma}+\lambda \frac{1}{N!} G^{(N)}\left(u_{0}^{\prime}+\theta_{2} h_{1}^{\prime}\right)\left(h_{1}^{\prime}\right)^{N} \tag{3.17}
\end{align*}
$$

and $0<\theta_{2}<1$. Combining (3.6), 3.8, (3.14 -3.17), we then obtain

$$
\begin{align*}
\widetilde{E}_{N}(\vec{K})= & f(x, t)-K F\left(u_{0}\right)-\lambda G\left(u_{0}^{\prime}\right) \\
& -\sum_{2 \leq|\gamma| \leq N, \gamma_{1} \geq 1} \sum_{m=1}^{|\gamma|-1} \frac{1}{m!} F^{(m)}\left(u_{0}\right) T^{(m)}[u]_{\gamma_{1}-1, \gamma_{2}, \gamma_{3}} \vec{K}^{\gamma} \\
& -\sum_{2 \leq|\gamma| \leq N, \gamma_{2} \geq 1} \sum_{m=1}^{|\gamma|-1} \frac{1}{m!} G^{(m)}\left(u_{0}^{\prime}\right) T^{(m)}\left[u^{\prime}\right]_{\gamma_{1}, \gamma_{2}-1, \gamma_{3}} \vec{K}^{\gamma} \tag{3.18}\\
& -\sum_{|\gamma| \leq N} P_{\gamma} \vec{K}^{\gamma}-R^{(1)}(F, \vec{K})-R^{(2)}(G, \vec{K}) \\
= & -R^{(1)}(F, \vec{K})-R^{(2)}(G, \vec{K}) .
\end{align*}
$$

We shall estimate respectively the following terms on the right-hand side of (3.18). Estimate for $R^{(1)}(F, \vec{K})$. By the boundedness of the functions $u_{\gamma}, \gamma \in \mathbb{Z}_{+}^{3},|\gamma| \leq N$ in the function space $L^{\infty}\left(0, T ; H^{1}\right)$, we obtain from (3.13), that

$$
\begin{align*}
& \left\|R^{(1)}(F, \vec{K})\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \\
& \leq \tag{3.19}\\
& \quad|K| \sum_{m=1}^{N-1} \sum_{N \leq|\gamma| \leq m N} \frac{1}{m!}\left\|F^{(m)}\left(u_{0}\right)\right\|_{L^{\infty}(0, T ; V)}\left\|T^{(m)}[u]_{\gamma}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}\left|\vec{K}^{\gamma}\right| \\
& \\
& \quad+\frac{1}{N!} K\left\|F^{(N)}\left(u_{0}+\theta_{1} h_{1}\right)\right\|_{L^{\infty}(0, T ; V)}\left\|h_{1}\right\|_{L^{\infty}(0, T ; V)}^{N} .
\end{align*}
$$

Using the inequality

$$
\begin{equation*}
\left|\vec{K}^{\gamma}\right| \leq\|\vec{K}\|^{|\gamma|}, \text { for all } \gamma \in \mathbb{Z}_{+}^{3},|\gamma| \leq N \tag{3.20}
\end{equation*}
$$

it follows from 3.19 and 3.20 that

$$
\begin{equation*}
\left\|R^{(1)}(F, \vec{K})\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq \widetilde{C}_{1 N}^{(1)}\|\vec{K}\|^{N+1}, \quad\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\| \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
\widetilde{C}_{1 N}^{(1)}= & \sum_{m=1}^{N-1} \sum_{N \leq|\gamma| \leq m N} C_{p-1}^{m}\left\|u_{0}\right\|_{L^{\infty}(0, T ; V)}^{p-m-1}\left\|T^{(m)}[\widehat{u}]_{\gamma}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}\left\|\overrightarrow{K_{*}}\right\|^{|\gamma|-N} \tag{3.22}\\
& +C_{p-1}^{N}\left\|\overrightarrow{K_{*}}\right\|^{-N}\left(\sum_{|\gamma| \leq N}\left\|u_{\gamma}\right\|_{L^{\infty}(0, T ; V)}\left\|\overrightarrow{K_{*}}\right\|^{|\gamma|}\right)^{p-1}
\end{align*}
$$

$\overrightarrow{K_{*}}=\left(K_{*}, \lambda_{*}, K_{1 *}\right)$, and $C_{p-1}^{m}=\frac{(p-1)(p-2) \ldots(p-m)}{m!}$.
Estimate for $R^{(2)}(G, \vec{K})$. From (3.17) We obtain in a similar manner corresponding to the above part, that

$$
\begin{equation*}
\left\|R^{(2)}(G, \vec{K})\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq \widetilde{C}_{1 N}^{(2)}\|\vec{K}\|^{N+1}, \quad\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\| \tag{3.23}
\end{equation*}
$$

where

$$
\begin{align*}
\widetilde{C}_{1 N}^{(2)}= & \sum_{m=1}^{N-1} \sum_{N \leq|\gamma| \leq m N} C_{q-1}^{m}\left\|u_{0}^{\prime}\right\|_{L^{\infty}(0, T ; V)}^{q-m-1}\left\|T^{(m)}\left[\widehat{u}^{\prime}\right]_{\gamma}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}\left\|\overrightarrow{K_{*}}\right\|^{|\gamma|-N} \tag{3.24}\\
& +C_{q-1}^{N}\left\|\overrightarrow{K_{*}}\right\|^{-N}\left(\sum_{|\gamma| \leq N}\left\|u_{\gamma}^{\prime}\right\|_{L^{\infty}(0, T ; V)}\left\|\overrightarrow{K_{*}}\right\|^{|\gamma|}\right)^{q-1}
\end{align*}
$$

Therefore, it follows from 3.18, 3.21-3.24 that

$$
\begin{gather*}
\left\|\widetilde{E}_{N}(\vec{K})\right\|_{L^{\infty}\left(0, T ; L^{2}\right) \leq}\left(\widetilde{C}_{1 N}^{(1)}+\widetilde{C}_{1 N}^{(2)}\right)\|\vec{K}\|^{N+1} \equiv \widetilde{C}_{1 N}\|\vec{K}\|^{N+1} \tag{3.25}\\
\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\|
\end{gather*}
$$

Hence, the first part of Lemma 3.2 is proved.
With $\widetilde{G}_{N}(\vec{K})$, then, we obtain from $\sqrt{3.9}$ in a similar manner to the above part, that

$$
\begin{equation*}
\left\|\widetilde{G}_{N}(\vec{K})\right\|_{H^{2}(0, T)} \leq \widetilde{C}_{2 N}\|\vec{K}\|^{N+1} \tag{3.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{C}_{2 N}=\sum_{|\gamma|=N+1, \gamma_{3} \geq 1}\left\|u_{\gamma_{1}, \gamma_{2}, \gamma_{3}-1}(1, \cdot)\right\|_{H^{2}(0, T)} \tag{3.27}
\end{equation*}
$$

The proof of Lemma 3.2 is complete.
Theorem 3.3. Let (H2)-(H6) hold. Then, for every $\vec{K} \in \mathbb{R}_{+}^{3}$, with $0 \leq K \leq K_{*}$, $0 \leq \lambda \leq \lambda_{*}, 0 \leq K_{1} \leq K_{1 *}$, problem (3.1) has a unique weak solution $(u, Q)=$ $\left(u_{K, \lambda, K_{1}}, Q_{K, \lambda, K_{1}}\right)$ satisfying the asymptotic estimations up to order $N+1$ as follows

$$
\begin{align*}
& \left\|u^{\prime}-\sum_{|\gamma| \leq N} u_{\gamma}^{\prime} \vec{K}^{\gamma}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|u-\sum_{|\gamma| \leq N} u_{\gamma} \vec{K}^{\gamma}\right\|_{L^{\infty}(0, T ; V)} \\
& +\left\|u^{\prime}(1, \cdot)-\sum_{|\gamma| \leq N} u_{\gamma}^{\prime}(1, \cdot) \vec{K}^{\gamma}\right\|_{L^{2}(0, T)} \tag{3.28}\\
& \leq \widetilde{D}_{N}^{*}\|\vec{K}\|^{N+1}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|Q-\sum_{|\gamma| \leq N} Q_{\gamma} \vec{K}^{\gamma}\right\|_{L^{2}(0, T)} \leq \widetilde{D}_{N}^{* *}\|\vec{K}\|^{N+1} \tag{3.29}
\end{equation*}
$$

for all $\vec{K} \in \mathbb{R}_{+}^{3},\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\|, \widetilde{D}_{N}^{*}$ and $\widetilde{D}_{N}^{* *}$ are positive constants independent of \vec{K}, the functions $\left(u_{\gamma}, Q_{\gamma}\right)$ are the weak solutions of problems (3.4), $\gamma \in \mathbb{Z}_{+}^{3}$, $|\gamma| \leq N$.

Remark 3.4. In [9], as in this special case for problem 1.1 - 1.5), Long, Ut and Truc have obtained a result about the asymptotic expansion of the solutions with respect to two parameters (K, λ) up to order $N+1$.

Proof of Theorem 3.3. First, we note that, if the data \vec{K} satisfy

$$
\begin{equation*}
0 \leq K \leq K_{*}, \quad 0 \leq \lambda \leq \lambda_{*}, \quad 0 \leq K_{1} \leq K_{1 *} \tag{3.30}
\end{equation*}
$$

where $K_{*}, \lambda_{*}, K_{1 *}$ are fixed positive constants. Therefore, the a priori estimates of the sequences $\left\{u_{m}\right\}$ and $\left\{Q_{m}\right\}$ in the proof of theorem 2.2 satisfy

$$
\begin{gather*}
\left\|u_{m}^{\prime}(t)\right\|^{2}+\mu_{0}\left\|u_{m x}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|u_{m}^{\prime}(1, s)\right|^{2} d s \leq M_{T}, \forall t \in[0, T] \tag{3.31}\\
\left\|u_{m}^{\prime \prime}(t)\right\|^{2}+\mu_{0}\left\|u_{m x}^{\prime}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|u_{m}^{\prime \prime}(1, s)\right|^{2} d s \leq M_{T}, \forall t \in[0, T] \tag{3.32}\\
\left\|Q_{m}\right\|_{H^{1}(0, T)} \leq M_{T} \tag{3.33}
\end{gather*}
$$

where M_{T} is a constant depending only on $T, \widetilde{u}_{0}, \widetilde{u}_{1}, \lambda_{0}, \mu_{0}, f, g, k, \mu, \lambda_{1}, K_{*}$, $\lambda_{*}, K_{1 *}$ (independent of \vec{K}). Hence, the limit (u, Q) in suitable function spaces of
the sequence $\left\{\left(u_{m}, Q_{m}\right)\right\}$ defined by 2.7 - 2.9 is a weak solution of the problem (1.1)-1.5) satisfying the a priori estimates (3.31)-3.33).

Multiplying the two sides of 3.7$)_{1}$ with v^{\prime}, and integrating in t, we find without difficulty from Lemma 3.2 that

$$
\begin{align*}
\sigma(t) \leq & 2 T\left(\frac{2}{\lambda_{0}} \widetilde{C}_{2 N}^{2}+\widetilde{C}_{1 N}^{2}\right)\|\vec{K}\|^{2 N+2} \\
& +2\left[1+K+\frac{1}{\mu_{0}}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}+\frac{2}{\lambda_{0} \mu_{0}} T\|k\|_{L^{2}(0, T)}^{2}\right] \int_{0}^{t} \sigma(s) d s \tag{3.34}\\
& +2 K \int_{0}^{t}\|F(v+h)-F(h)\|^{2} d s
\end{align*}
$$

where

$$
\begin{equation*}
\sigma(t)=\left\|v^{\prime}(t)\right\|^{2}+\left\|\sqrt{\mu(t)} v_{x}(t)\right\|^{2}+K_{1} v^{2}(1, t)+2 \int_{0}^{t} \lambda_{1}(s)\left|v^{\prime}(1, s)\right|^{2} d s \tag{3.35}
\end{equation*}
$$

By using the same arguments as in the above part we can show that the component u of the weak solution (u, Q) of problem $\left(P_{K, \lambda, K_{1}}\right)$ satisfies

$$
\begin{equation*}
\left\|u^{\prime}(t)\right\|^{2}+\mu_{0}\left\|u_{x}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|u^{\prime}(1, s)\right|^{2} d s \leq M_{T}, \forall t \in[0, T] \tag{3.36}
\end{equation*}
$$

where M_{T} is a constant independent of K, λ, K_{1}. On the other hand,

$$
\begin{equation*}
\|h\|_{L^{\infty}(0, T ; V)} \leq \sum_{|\gamma| \leq N}\left\|u_{\gamma}\right\|_{L^{\infty}(0, T ; V)}\left\|\overrightarrow{K_{*}}\right\|^{|\gamma|} \equiv R_{1} \tag{3.37}
\end{equation*}
$$

We again use inequality (2.48 with $\delta=p, R=\max \left\{R_{1}, \sqrt{\frac{M_{T}}{\mu_{0}}}\right\}$, then, it follows from 3.35-3.37, that

$$
\begin{equation*}
\int_{0}^{t}\|F(v+h)-F(h)\|^{2} d s \leq \frac{1}{\mu_{0}}(p-1)^{2} R^{2 p-4} \int_{0}^{t} \sigma(s) d s \tag{3.38}
\end{equation*}
$$

Combining (3.34) and 3.38, we then obtain

$$
\begin{equation*}
\sigma(t) \leq 2 T\left(\frac{2}{\lambda_{0}} \widetilde{C}_{2 N}^{2}+\widetilde{C}_{1 N}^{2}\right)\|\vec{K}\|^{2 N+2}+\sigma_{1 T} \int_{0}^{t} \sigma(s) d s \tag{3.39}
\end{equation*}
$$

for all $t \in[0, T]$, where

$$
\begin{equation*}
\sigma_{1 T}=2\left[1+K_{*}+\frac{1}{\mu_{0}}\left\|\mu^{\prime}\right\|_{C^{0}\left(\overline{Q_{T}}\right)}+\frac{2}{\lambda_{0} \mu_{0}} T\|k\|_{L^{2}(0, T)}^{2}+\frac{1}{\mu_{0}}(p-1)^{2} R^{2 p-4} K_{*}\right] \tag{3.40}
\end{equation*}
$$

By Gronwall's lemma, we obtain from 3.39 that

$$
\begin{equation*}
\sigma(t) \leq 2 T\left(\frac{2}{\lambda_{0}} \widetilde{C}_{2 N}^{2}+\widetilde{C}_{1 N}^{2}\right)\|\vec{K}\|^{2 N+2} \exp \left(T \sigma_{1 T}\right) \equiv \widetilde{D}_{T}^{(1)}\|\vec{K}\|^{2 N+2} \tag{3.41}
\end{equation*}
$$

for all $t \in[0, T]$ and all $\vec{K} \in \mathbb{R}_{+}^{3},\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\|$. It follows that

$$
\begin{equation*}
\left\|v^{\prime}(t)\right\|^{2}+\mu_{0}\left\|v_{x}(t)\right\|^{2}+2 \lambda_{0} \int_{0}^{t}\left|v^{\prime}(1, s)\right|^{2} d s \leq \sigma(t) \leq \widetilde{D}_{T}^{(1)}\|\vec{K}\|^{2 N+2} \tag{3.42}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|v^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\|v\|_{L^{\infty}(0, T ; V)}+\left\|v^{\prime}(1, \cdot)\right\|_{L^{2}(0, T)} \leq \widetilde{D}_{N}^{*}\|\vec{K}\|^{N+1} \tag{3.43}
\end{equation*}
$$

or

$$
\begin{align*}
& \left\|u^{\prime}-\sum_{|\gamma| \leq N} u_{\gamma}^{\prime} \vec{K}^{\gamma}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|u-\sum_{|\gamma| \leq N} u_{\gamma} \vec{K}^{\gamma}\right\|_{L^{\infty}(0, T ; V)} \\
& +\left\|u^{\prime}(1, \cdot)-\sum_{|\gamma| \leq N} u_{\gamma}^{\prime}(1, \cdot) \vec{K}^{\gamma}\right\|_{L^{2}(0, T)} \tag{3.44}\\
& \leq \widetilde{D}_{N}^{*}\|\vec{K}\|^{N+1}
\end{align*}
$$

for all $\vec{K} \in \mathbb{R}_{+}^{3},\|\vec{K}\| \leq\left\|\overrightarrow{K_{*}}\right\|$, where \widetilde{D}_{N}^{*} is a constant independent of \vec{K}. On the other hand, it follows from (3.11), (3.43), that

$$
\begin{align*}
\|R\|_{L^{2}(0, T)} \leq & K_{1}\|v\|_{L^{\infty}(0, T ; V)}+\left\|\lambda_{1}\right\|_{\infty}\left\|v^{\prime}(1, \cdot)\right\|_{L^{2}(0, T)}+\left\|\widetilde{G}_{N}(\vec{K})\right\|_{L^{2}(0, T)} \\
& +\sqrt{\frac{1}{\mu_{0}} T\|k\|_{L^{2}(0, T)}\left(\int_{0}^{T} \sigma(s) d s\right)^{1 / 2}} \tag{3.45}\\
\leq & \widetilde{D}_{N}^{* *}\|\vec{K}\|^{N+1}
\end{align*}
$$

hence,

$$
\begin{equation*}
\left\|Q-\sum_{|\gamma| \leq N} Q_{\gamma} \vec{K}^{\gamma}\right\|_{L^{2}(0, T)} \leq \widetilde{D}_{N}^{* *}\|\vec{K}\|^{N+1} \tag{3.46}
\end{equation*}
$$

where $\widetilde{D}_{N}^{* *}$ is a constant independent of \vec{K}. The proof of Theorem 3.3 is complete.

Remark 3.5. For the case $\left(K, \lambda, K_{1}\right) \in \mathbb{R}^{2} \times \mathbb{R}_{+}$, but $p=q=2$, we have received a theorem of the asymptotic expansion for the weak solution (u, Q) of problem (1.1)-(1.5) with respect to three mentioned parameters; however, the detailes of proof have been omitted.

Acknowledgements. The authors wish to express their sincere thanks to the referee for his/her helpful comments, also to Professor Julio G. Dix and to Professor Dung Le for their helpful suggestions.

References

[1] N. T. An, N. D. Trieu, Shock between absolutely solid body and elastic bar with the elastic viscous frictional resistance at the side, J. Mech. NCSR. Vietnam, (2) 13 (1991), 1-7.
[2] M. Bergounioux, N. T. Long, A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal. 43 (2001), 547-561.
[3] A. P. N. Dinh, N. T. Long, Linear approximation and asymptotic expansion associated to the nonlinear wave equation in one dimension, Demonstratio Math. 19 (1986), 45-63.
[4] J. L. Lions, Quelques méthodes de résolution des problè mes aux limites nonlinéaires, Dunod; Gauthier- Villars, Paris. 1969.
[5] N. T. Long, A. P. N. Dinh, On the quasilinear wave equation $u_{t t}-\Delta u+f\left(u, u_{t}\right)=0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal. 19 (1992), 613-623.
[6] N. T. Long, A. P. N. Dinh, A semilinear wave equation associated with a linear differential equation with Cauchy data, Nonlinear Anal. 24 (1995), 1261-1279.
[7] N. T. Long, T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f\left(x, t, u, u_{x}, u_{t}\right)$ associated with the mixed homogeneous conditions, Nonlinear Anal., 29 (1997), 1217-1230.
[8] N. T. Long, A. P. N. Dinh, T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Problems, Hindawi Publishing Corporation, 2005 (3) (2005), 337-358.
[9]] N. T. Long, L. V. Ut, N. T. T. Truc, On a shock problem involving a linear viscoelastic bar, Nonlinear Analysis, Theory, Methods \& Applications, Series A: Theory and Methods, 63 (2) (2005), 198-224.
[10] N. T. Long, L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, Nonlinear Analysis, Theory, Methods \& Applications, Series A: Theory and Methods, (accepted for publication).
[11] M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electronic J. Diff. Equat. Vol. 2001 (2001), No. 73, pp.1-11.

Nguyen Thanh Long
Department of Mathematics, Hochiminh City National University, 227 Nguyen Van Cu, Q5, HoChiMinh City, Vietnam

E-mail address: longnt@hcmc.netnam.vn, longnt2@gmail.com
Le Xuan Truong
Department of Mathematics, Faculty of General Science, University of Technical Education in HoChiMinh City, 01 Vo Van Ngan Str., Thu Duc Dist., HoChiMinh City, Vietnam

E-mail address: lxuantruong@gmail.com

[^0]: 2000 Mathematics Subject Classification. 35L20, 35L70.
 Key words and phrases. Nonlinear wave equation; linear integral equation;
 existence and uniqueness; asymptotic expansion.
 © 2007 Texas State University - San Marcos.
 Submitted October 27, 2006. Published March 20, 2007.

