Electronic Journal of Differential Equations, Vol. 2007(2007), No. 49, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE PERIODIC SOLUTIONS FOR THE KORTEWEG-DE VRIES EQUATION

SVETLIN GEORGIEV GEORGIEV

ABSTRACT. In this paper we prove that the Korteweg-de Vries equation

$$\partial_t u + \partial_x^3 u + u \partial_x u = 0$$

has unique positive solution u(t,x) which is ω -periodic with respect to the time variable t and $u(0,x) \in \dot{B}_{p,q}^{\gamma}([a,b]), \gamma > 0, \gamma \notin \{1,2,\ldots\}, p > 1, q \geq 1, a < b$ are fixed constants, $x \in [a,b]$. The period $\omega > 0$ is arbitrary chosen and fixed.

1. INTRODUCTION

In this paper we consider the initial-value problem for the Korteweg-de Vries equation

$$\partial_t u + \partial_x^3 u + u \partial_x u = 0, \quad t \in \mathbb{R}, \quad x \in [a, b],$$
(1.1)

$$u$$
 is periodic in t , (1.2)

$$u(0,x) = u_0, \quad u_0 \in \dot{B}^{\gamma}_{p,q}([a,b]),$$
(1.3)

where $q \ge 1, 1 0, \gamma \notin \{1, 2, \ldots\}$. We prove that the (1.1)–(1.3) has unique positive solution in the form u(t, x) = v(t)q(x), which is continuous ω -periodic with respect to the time variable t. When we say that the solution u(t, x) of the (1.1) is positive we understand: u(t, x) > 0 for $t \in \mathbb{R}, x \in [a, b]$. Here the period $\omega > 0$ is arbitrary chosen and fixed.

Bourgain [1] consider the initial-value problem

$$\partial_t u + \partial_x^3 u + u \partial_x u = 0,$$

 u is periodic in x ,
 $u(0, x) = u_0.$

He proved that the above problem is globally well-posed for H^s -data ($s \ge 0$, integer). Bourgain [1] used the Fourier restriction space method, which he introduced.

Here we use the theory of completely continuous vector field presented by Krasnosel'skii and Zabrejko and we prove that the Korteweg-de Vries (1.1) has unique positive solution u(t, x) = v(t)q(x), which is continuous ω -periodic with respect to

periodic solutions.

²⁰⁰⁰ Mathematics Subject Classification. 35Q53, 35Q35, 35G25.

Key words and phrases. Nonlinear evolution equation; Kortewg de Vries equation;

^{©2007} Texas State University - San Marcos.

Submitted January 18, 2006. Published April 4, 2007.

the time variable t and infinitely differentiable with respect to the space variable $x \in [a, b]$ and $u(0, x) \in \dot{B}_{p,q}^{\gamma}([a, b]), p > 1, q \ge 1, \gamma > 0, \gamma \notin \{1, 2, ...\}.$

- To state our main result we use the following hypotheses:
- (H1) $q \in \mathcal{C}^{\infty}([a, b]), q(x) > 0$ for all $x \in [a, b];$ (H2) q'(x) < 0, q'''(x) > 0 for all $x \in [a, b].$

Theorem 1.1. Let $q \ge 1$, $1 , <math>\gamma > 0$, $\gamma \notin \{1, 2, ...\}$ be fixed. Then the initial-value problem (1.1)–(1.3) has unique positive solution u(t, x) = v(t)q(x), which is continuous ω -periodic with respect to the time variable t and infinitely differentiable with respect to the space variable $x \in [a, b]$, where q(x) is a fixed function satisfying (H1)–(H2).

This paper is organized as follows: In section 2 we prove that the (1.1)-(1.3) has positive solution u(t, x) = v(t)q(x) which is continuous ω -periodic with respect to the time variable t and infinitely differentiable with respect to the space variable $x \in [a, b]$, where q(x) is fixed function satisfying (H1)-(H2). In section 3 we prove that the solution obtained in section 2, is unique.

2. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

Here and below we will suppose that q(x) is fixed function satisfying (H1)–(H2). As an example of such function, we have $q(x) = 2 + \sin x$ with $[a, b] = [2\pi/3, 5\pi/6]$.

Proposition 2.1. If for every fixed $x \in [a, b]$, u(t, x) = v(t)q(x) satisfies

$$u(t,x) = -\int_0^\omega \frac{e^{-\frac{q'''(x)}{q(x)}s}}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} u^2(t-s,x) \frac{q'(x)}{q(x)} ds,$$
(2.1)

then u(t,x) = v(t)q(x) satisfies the (1.1) for every fixed $x \in [a,b]$. Here v(t) is a positive continuous ω -periodic function.

Proof. For every fixed $x \in [a, b]$ if u(t, x) = v(t)q(x) is a solution to (2.1), we have

$$\begin{split} v(t)q(x) &= -\int_0^\omega \frac{e^{-\frac{q'''(x)}{q(x)}s}}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} v^2(t-s)q^2(x)\frac{q'(x)}{q(x)}ds\\ &= -\int_0^\omega \frac{e^{-\frac{q'''(x)}{q(x)}s}}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} v^2(t-s)q(x)q'(x)ds. \end{split}$$

From here,

$$v(t) = -\int_0^\omega \frac{e^{-\frac{q''(x)}{q(x)}s}}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}}v^2(t-s)q'(x)ds;$$

i.e., for every fixed $x \in [a, b]$, if u(t, x) = v(t)q(x) is a solution to (2.1) we have

$$v(t) = -\frac{q'(x)}{1 - e^{-\frac{q''(x)}{q(x)}\omega}} \int_0^\omega e^{-\frac{q''(x)}{q(x)}s} v^2(t-s)ds.$$
 (2.2)

Let us consider the integral

$$\int_{0}^{\omega} e^{-\frac{q'''(x)}{q(x)}s} v^{2}(t-s)ds.$$

We make the change of variable s = t - z, from where ds = -dz and

$$\int_0^\omega e^{-\frac{q'''(x)}{q(x)}s} v^2(t-s)ds = -\int_t^{t-\omega} e^{-\frac{q'''(x)}{q(x)}(t-z)} v^2(z)dz$$
$$= e^{-\frac{q'''(x)}{q(x)}t} \Big(\int_0^t e^{\frac{q'''(x)}{q(x)}z} v^2(z)dz - \int_0^{t-\omega} e^{\frac{q'''(x)}{q(x)}z} v^2(z)dz\Big).$$

Then the equality (2.2) takes the form

$$v(t) = -\frac{q'(x)}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} e^{-\frac{q'''(x)}{q(x)}t} \Big(\int_0^t e^{\frac{q'''(x)}{q(x)}z} v^2(z) dz - \int_0^{t-\omega} e^{\frac{q'''(x)}{q(x)}z} v^2(z) dz \Big).$$

From the above equality, for every fixed $x \in [a, b]$, we get

$$\begin{split} v'(t) &= -\frac{q'(x)}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} e^{-\frac{q'''(x)}{q(x)}t} \Big[-\frac{q'''(x)}{q(x)} \Big(\int_0^t e^{\frac{q'''(x)}{q(x)}z} v^2(z) dz \\ &- \int_0^{t-\omega} e^{\frac{q'''(x)}{q(x)}z} v^2(z) dz \Big) + e^{\frac{q'''(x)}{q(x)}t} v^2(t) - e^{\frac{q'''(x)}{q(x)}(t-\omega)} v^2(t-\omega) \Big] \\ &= \frac{q'''(x)}{q(x)} \frac{q'(x)}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} e^{-\frac{q'''(x)}{q(x)}t} \Big(\int_0^t e^{\frac{q'''(x)}{q(x)}z} v^2(z) dz - \int_0^{t-\omega} e^{\frac{q'''(x)}{q(x)}z} v^2(z) dz \Big) \\ &- \frac{q'(x)}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} \Big(1 - e^{-\frac{q'''(x)}{q(x)}\omega} \Big) v^2(t) \\ &= -\frac{q'''(x)}{q(x)} v(t) - q'(x) v^2(t); \end{split}$$

i.e., for every fixed $x \in [a, b]$ we have

$$v'(t) = -\frac{q'''(x)}{q(x)}v(t) - q'(x)v^2(t).$$

Then

$$q(x)v'(t) = -q'''(x)v(t) - q'(x)q(x)v^{2}(t)$$
(2.3)

for every fixed $x \in [a, b]$. Since for every fixed $x \in [a, b]$ we have

$$u_t = v'(t)q(x),$$

$$\partial_x^3 u = q'''(x)v(t),$$

$$u\partial_x u = q'(x)q(x)v^2(t).$$

From the equality (2.3) we take

$$u_t = -\partial_x^3 u - u\partial_x u;$$

i.e., for every fixed $x \in [a, b]$, if u(t, x) = v(t)q(x) is a solution to the (2.1), then u(t, x) satisfies the Korteweg-de Vries equation (1.1).

Proposition 2.2. If for every fixed $x \in [a,b]$, u(t,x) = v(t)q(x) satisfies the Korteweg-de Vries equation (1.1) then u(t,x) = v(t)q(x) satisfies the integral (2.1). Here v(t) is positive continuous ω -periodic function.

Proof. Let $x \in [a, b]$ is fixed and u(t, x) = v(t)q(x) is a solution to the Kortewegde Vries (1.1), where v(t) is positive continuous ω -periodic function. Then

$$v'(t)q(x) = -q'''(x)v(t) - v^2(t)q'(x)q(x).$$

After we use the definition of the function q(x) (see (H1), (H2)) from the last equation we get

$$v'(t) = -\frac{q'''(x)}{q(x)}v(t) - q'(x)v^2(t).$$

Since $x \in [a, b]$ is fixed, the last equation we may consider as ordinary differential equation with respect to the variable t. Therefore

$$\begin{aligned} v(t) &= e^{-\int_0^t \frac{q'''(x)}{q(x)} ds} \Big(v(0) - \int_0^t q'(x) v^2(s) e^{\int_0^s \frac{q'''(x)}{q(x)} d\tau} ds \Big) \\ &= e^{-\frac{q'''(x)}{q(x)} t} \Big(v(0) - \int_0^t q'(x) v^2(s) e^{\frac{q'''(x)}{q(x)} s} ds \Big). \end{aligned}$$

For q'''(x) > 0, q(x) > 0 for $x \in [a, b]$ we have $\lim_{t \to -\infty} e^{-\frac{q'''(x)}{q(x)}t} = \infty$. Therefore,

$$v(0) = q'(x) \int_0^{-\infty} v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds = -q'(x) \int_{-\infty}^0 v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds$$

or

$$v(t) = -q'(x)e^{-\frac{q'''(x)}{q(x)}t} \int_{-\infty}^{t} v^2(s)e^{\frac{q'''(x)}{q(x)}s} ds.$$
 (2.4)

Now we consider the integral

$$\int_{-\infty}^t v^2(s) e^{\frac{q^{\prime\prime\prime}(x)}{q(x)}s} ds.$$

We have

$$\int_{-\infty}^{t} v^{2}(s) e^{\frac{q'''(x)}{q(x)}s} ds = \int_{t-\omega}^{t} v^{2}(s) e^{\frac{q'''(x)}{q(x)}s} ds + \int_{t-2\omega}^{t-\omega} v^{2}(s) e^{\frac{q'''(x)}{q(x)}s} ds + \dots$$
(2.5)

Let

$$J = \int_{t-\omega}^t v^2(s) e^{\frac{q^{\prime\prime\prime}(x)}{q(x)}s} ds.$$

Let us consider the integral

$$\int_{t-2\omega}^{t-\omega} v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds.$$

After the change of variable $s + \omega = \tau$, we obtain

$$\int_{t-2\omega}^{t-\omega} v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds = e^{-\frac{q'''(x)}{q(x)}\omega} \int_{t-\omega}^t v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds = e^{-\frac{q'''(x)}{q(x)}\omega} J.$$

In the same way,

$$\int_{t-3\omega}^{t-2\omega} v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds = e^{-\frac{q'''(x)}{q(x)}\omega} \int_{t-2\omega}^{t-\omega} v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds = e^{-2\frac{q'''(x)}{q(x)}\omega} J$$

and so on and so forth. Then the equality (2.5) takes the form

$$\int_{-\infty}^{t} v^2(s) e^{\frac{q'''(x)}{q(x)}s} ds = J\left(1 + e^{-\frac{q'''(x)}{q(x)}\omega} + e^{-2\frac{q'''(x)}{q(x)}\omega} + \dots\right) = J\frac{1}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}},$$

because $\frac{q'''(x)}{q(x)} > 0$ for every fixed $x \in [a, b]$, $e^{-\frac{q'''(x)}{q(x)}\omega} < 1$ for every fixed $x \in [a, b]$. Therefore, from (2.4), for every fixed $x \in [a, b]$ we get

$$v(t) = -q'(x)e^{-\frac{q'''(x)}{q(x)}t}\frac{1}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}}\int_{t-\omega}^{t}v^2(s)e^{\frac{q'''(x)}{q(x)}s}ds.$$

Now we make the change of variable $s - t = \tau$. Then

$$\begin{split} v(t) &= -q'(x)e^{-\frac{q'''(x)}{q(x)}t}\frac{1}{1-e^{-\frac{q'''(x)}{q(x)}\omega}}\int_{-\omega}^{0}v^{2}(t+\tau)e^{\frac{q'''(x)}{q(x)}\tau}e^{\frac{q'''(x)}{q(x)}t}d\tau\\ &= -q'(x)\frac{1}{1-e^{-\frac{q'''(x)}{q(x)}\omega}}\int_{-\omega}^{0}v^{2}(t+\tau)e^{\frac{q'''(x)}{q(x)}\tau}d\tau. \end{split}$$

Let $\tau = -z$. Then

$$v(t) = -q'(x) \frac{1}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} \int_0^\omega v^2(t-z) e^{-\frac{q'''(x)}{q(x)}z} dz.$$

From where for every fixed $x \in [a, b]$,

$$u(t,x) = -\frac{q'(x)}{q(x)} \frac{1}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} \int_0^\omega u^2(t-z,x) e^{-\frac{q'''(x)}{q(x)}z} dz;$$

i. e., for every fixed $x \in [a, b]$, u(t, x) satisfies (2.1).

Let $\mathcal{C}(\omega)$ be the space of the real continuous ω -periodic functions defined on the whole axis. With $\mathcal{C}_{+}(\omega)$ we denote the space of the positive continuous ω -periodic functions defined on the whole axis. Let

$$D_q^+ = \max_{0 \le s \le \omega, \, x \in [a,b]} e^{-\frac{q''(x)}{q(x)}s}, \quad D_q^- = \min_{0 \le s \le \omega, \, x \in [a,b]} e^{-\frac{q''(x)}{q(x)}s}.$$

With $\mathcal{C}^{\circ}_{+}(\omega) \subset \mathcal{C}_{+}(\omega)$ we denote the cone

$$\mathcal{C}^{\circ}_{+}(\omega) = \big\{ x \in \mathcal{C}_{+}(\omega) : \min_{t} x(t) \ge \frac{D_{q}^{-}}{D_{q}^{+}} \max_{t} x(t) \big\}.$$

For every fixed $x \in [a, b]$ we define the operator

$$\chi(u) = -\frac{q'(x)}{q(x)} \int_0^\omega u^2(t-s,x) \frac{e^{-\frac{q'''(x)}{q(x)}s}}{1-e^{-\frac{q'''(x)}{q(x)}\omega}} ds,$$

where u(t, x) = v(t)q(x), v(t) is a positive continuous ω -periodic function, q(x) is a function satisfying (H1), (H2).

Proposition 2.3. For every fixed $x \in [a, b]$ we have $\chi : C_+(\omega) \to C^{\circ}_+(\omega)$.

Proof. Let $x \in [a, b]$ is fixed. Let also $u(t, x) \in C_+(\omega)$. u(t, x) is continuous ω -periodic with respect to the time variable t. Then

$$\begin{split} \chi(u) &= -\frac{q'(x)}{q(x)} \int_0^\omega u^2(t-s,x) \frac{e^{-\frac{q'''(x)}{q(x)}s}}{1-e^{-\frac{q'''(x)}{q(x)}\omega}} ds \\ &\ge D_q^- \frac{1}{1-e^{-\frac{q'''(x)}{q(x)}\omega}} \Big(-\frac{q'(x)}{q(x)} \int_0^\omega u^2(t-s,x) ds\Big) \\ &= D_q^- \frac{1}{1-e^{-\frac{q'''(x)}{q(x)}\omega}} \Big(-\frac{q'(x)}{q(x)} \int_0^\omega u^2(s,x) ds\Big); \end{split}$$

i.e., for every fixed $x \in [a, b]$ we have

$$\chi(u) \ge D_q^{-} \frac{1}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}} \Big(-\frac{q'(x)}{q(x)} \int_0^\omega u^2(s, x) ds \Big).$$

From where, for every fixed $x \in [a, b]$, we have

$$\min_{t} \chi(u) \ge D_{q}^{-} \frac{1}{1 - e^{-\frac{q''(x)}{q(x)}\omega}} \Big(-\frac{q'(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) ds \Big).$$
(2.6)

On the other hand, for every fixed $x \in [a, b]$, we have

$$\chi(u) \le D_q^+ \frac{1}{1 - e^{-\frac{q''(x)}{q(x)}\omega}} \Big(-\frac{q'(x)}{q(x)} \int_0^\omega u^2(s, x) ds \Big).$$

Therefore, for every fixed $x \in [a, b]$, we have

$$\max_{t} \chi(u) \le D_{q}^{+} \frac{1}{1 - e^{-\frac{q''(x)}{q(x)}\omega}} \Big(-\frac{q'(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) ds \Big).$$

From this inequality and (2.6),

$$\min_{t} \chi(u) \ge \frac{D_q^-}{D_q^+} \max_{t} \chi(u)$$

for every fixed $x \in [a, b]$. Consequently for every fixed $x \in [a, b]$ we have

$$\chi: \mathcal{C}_+(\omega) \to \mathcal{C}^{\circ}_+(\omega).$$

From proposition 2.3, we have that $\chi : \mathcal{C}^{\circ}_{+}(\omega) \to \mathcal{C}^{\circ}_{+}(\omega)$, i.e. the operator χ is positive with respect to the cone $\mathcal{C}^{\circ}_{+}(\omega)$ for every fixed $x \in [a, b]$.

Proposition 2.4. The operator χ is completely continuous in the space $C(\omega)$ for every fixed $x \in [a, b]$.

Proof. Let $x \in [a, b]$ be fixed. Let also $u(t, x) \in \mathcal{C}(\omega)$, $\max_{t \in [0, \omega]} |u(t, x)| = r$, r > 0. u(t, x) is continuous ω - periodic with respect to the time variable t. From the definition of the operator χ we have

$$|\chi(u)|(t) \le \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right) \omega r^2 \frac{1}{1 - e^{\max_{x \in [a,b]} \left(-\frac{q''(x)}{q(x)}\right)\omega}}$$

Consequently the functions $\chi(u)(t)$ are uniformly bounded in the space $\mathcal{C}(\omega)$ for every fixed $x \in [a, b]$.

Let $\epsilon > 0$. Then there exists $\delta > 0$ such that

$$-\frac{q'(x)}{q(x)}\frac{e^{-\frac{q''(x)}{q(x)}s}}{1-e^{-\frac{q''(x)}{q(x)}\omega}}|u^2(t_1-s,x)-u^2(t_2-s,x)|<\frac{\epsilon}{\omega}$$

for $|t_1 - t_2| < \delta$ and for every $s \in [0, \omega]$, for every fixed $x \in [a, b]$. Therefore

 $|\chi(u)(t_1) - \chi(u)(t_2)| < \epsilon$

for $|t_1 - t_2| < \delta$, for every fixed $x \in [a, b]$. Then $\chi(u)$ is equicontinuous for every fixed $x \in [a, b]$. From the Arzela-Ascoli theorem follows that the set $\{\chi(u)(t)\}$ is compact subset in the space $\mathcal{C}(\omega)$ for every fixed $x \in [a, b]$. From here and from uniformly bounded of the functions $\chi(u)(t)$ follows that the operator χ is completely continuous in the space $\mathcal{C}(\omega)$ for every fixed $x \in [a, b]$.

Proposition 2.5. Let v(t) is continuous ω -periodic function and $q(x) \in \mathcal{C}^{\infty}([a, b])$. Then for every $\gamma > 0$, $\gamma \notin \{1, 2, ...\}$, p > 1, $q \ge 1$ we have $u(t, x) = v(t)q(x) \in \dot{B}_{p,q}^{\gamma}([a, b])$ for every $t \in [0, \omega]$.

Proof. Here we use the following definition of the $B_{p,q}^{\gamma}([a,b])$ -norm (see [3]).

$$\|u\|_{\dot{B}^{\gamma}_{p,q}([a,b])}^{q} = \int_{0}^{1} h^{-1-(\gamma-k)q} \left\|\Delta_{h} \frac{\partial^{k}}{\partial x^{k}} u\right\|_{L^{p}([a,b])}^{q} dh,$$

where

$$\Delta_h u(t,x) = u(t,x+h) - u(t,x),$$

 $k \in \{0, 1, 2, ...\}, \gamma - k = \{\gamma\}, \{\gamma\}$ is the fractional part of $\gamma, 0 < \{\gamma\} < 1$. Then, after we use the middle point theorem we have

$$\begin{aligned} \|u\|_{\dot{B}^{\gamma}_{p,q}([a,b])}^{q} &= \int_{0}^{1} h^{-1-(\gamma-k)q} \|\Delta_{h} \frac{\partial^{k}}{\partial x^{k}} u\|_{L^{p}([a,b])}^{q} dh \\ &\leq C_{1} \int_{0}^{1} h^{-(\gamma-k)q+q-1} \|\frac{\partial^{k+1}}{\partial x^{k+1}} u\|_{L^{p}[a,b]}^{q} dh \\ &\leq C_{2} \int_{0}^{1} h^{-(\gamma-k)q+q-1} dh < \infty, \end{aligned}$$

because $q - (\gamma - k)q > 0$. Here C_1 and C_2 are positive constants.

The proof for existence of nontrivial solution to the Korteweg-de Vries equation, which is positive continuous ω -periodic with respect to the variable t and positive continuous with respect to the variable x is based on the theory of completely continuous vector field presented by Krasnosel'skii and Zabrejko in [2]. More precisely we will prove that the (1.1) has nontrivial solution, which is positive continuous ω -periodic with respect to the variable t and positive continuous with respect to the variable x after we use the following theorem which is extracted from [2].

Theorem 2.6 ([2]). Let Y be a real Banach space with a cone Q and $L: Y \to Y$ be a completely continuous and positive with respect to Q operator. Then the following propositions are valid.

- (i) Let L(0) = 0. Let also for every sufficiently small r > 0 there is no y ∈ Q, ||y||_Y = r, with y ≤ L(y). Then there exists ind(0, L; Q) = 1.
 (ii) Let for every sufficiently large R there is no y ∈ Q with ||y||_Y = R and
- (ii) Let for every sufficiently large R there is no $y \in Q$ with $||y||_Y = R$ and $L(y) \stackrel{\circ}{\leq} y$. Then there exists $\operatorname{ind}(\infty, L; Q) = 0$.

(iii) Let L(0) = 0 and let there exist $ind(0, L; Q) \neq ind(\infty, L; Q)$. Then L has nontrivial fixed point in Q.

Here $\operatorname{ind}(\cdot, L; Q)$ denotes an index of a point with respect to L and Q. The symbol $\stackrel{\circ}{\leq}$ denotes the semiordering generated by Q.

Theorem 2.7. Let $\gamma > 0$, $\gamma \notin \{1, 2, ...\}$, p > 1, $q \ge 1$. Let also q(x) is a function which satisfies the hypothesis (H1) and (H2). Then the Korteweg- de Vries (1.1) has a positive solution in the form u(t, x) = v(t)q(x), which is ω -periodic with respect to the time variable t and $u(0, x) \in \dot{B}_{p,q}^{\gamma}([a, b])$.

Proof. First we note that $\chi(0) = 0$. Also, from Propositions 2.3 and 2.4, we have that the operator χ is positive and completely continuous with respect to the cone $\mathcal{C}^{\circ}_{+}(\omega)$ for every fixed $x \in [a, b]$. Let $x \in [a, b]$ is fixed. (1) Let r > 0 satisfy the inequality

$$r < \frac{D_q^-}{D_q^+ \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)\omega} \left(1 - e^{\max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)\omega}\right).$$
(2.7)

We suppose that there exists $u(t, x) \in \mathcal{C}^{\circ}_{+}(\omega)$ for which

$$\max u(t, x) = r, \quad u \le \chi(u), \quad t \in [0, \omega],$$

for every fixed $x \in [a, b]$. Then

$$u(t,x) \le D_q^+ \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{\max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right)\omega}} \int_0^\omega u^2(t-s,x) ds.$$
(2.8)

From the definition of the cone $\mathcal{C}^{\circ}_{+}(\omega)$ we have for every fixed $x \in [a, b]$,

$$u(t,x) \le \max_{t} u(t,x) \le \frac{D_q^+}{D_q^-} \min_{t} u(t,x) \le \frac{D_q^+}{D_q^-} \max_{t} u(t,x) = r \frac{D_q^+}{D_q^-}.$$

From this and (2.8), we have

$$u(t,x) \le r \frac{D_q^{+2}}{D_q^{-1}} \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{\max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right)}} \int_0^\omega u(t-s,x) ds.$$

Now we integrate the last inequality from 0 to ω with respect to the time variable t and we get

$$\int_{0}^{\omega} u(s,x)ds \le \omega r \frac{D_{q}^{+2}}{D_{q}^{-}} \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right) \frac{1}{1 - e^{\max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)}} \int_{0}^{\omega} u(s,x)ds.$$

From the last inequality we have

$$1 \le \omega r \frac{D_q^{+^2}}{D_q^{-}} \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{\max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right)}}$$

or

$$r \ge \frac{D_q^-}{{D_q^+}^2 \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)\omega} \left(1 - e^{\max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)\omega}\right)$$

8

which is a contradiction with (2.7). Consequently for every enough small r > 0there is no $u(t,x) \in \mathcal{C}^{\circ}_{+}(\omega)$ such that $\max_{t} u(t,x) = r$ for every fixed $x \in [a,b]$, $u(t,x) \leq \chi(u)$ for every fixed $x \in [a,b]$ and $t \in [0,\omega]$. From here and from Theorem 2.6(i) we get that there exists $\operatorname{ind}(0, \chi; \mathcal{C}^{\circ}_{+}(\omega)) = 1$.

(2) Let R > 0 be large enough so that

$$R > \frac{D_q^+}{D_q^{-2} \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)\omega} \left(1 - e^{\min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)\omega}\right).$$
(2.9)

We suppose that there exists $u(t, x) \in \mathcal{C}^{\circ}_{+}(\omega)$ for which

$$\max_{t} u(t, x) = R, \quad u \ge \chi(u)$$

for every fixed $x \in [a, b]$ and for every $t \in [0, \omega]$. Then

$$u(t,x) \ge D_q^{-} \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{\min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right)}} \int_0^\omega u^2(t-s,x) ds.$$
(2.10)

From the definition of the cone $\mathcal{C}^{\circ}_{+}(\omega)$ we have for every fixed $x \in [a, b]$

$$u(t,x) \ge \min_{t} u(t,x) \ge \frac{D_{q}^{-}}{D_{q}^{+}} \max_{t} u(t,x) = R \frac{D_{q}^{-}}{D_{q}^{+}}.$$

Therefore, from (2.10), we have

$$u(t,x) \ge R \frac{D_q^{-2}}{D_q^{+}} \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{\min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right)}} \int_0^\omega u(t-s,x) ds.$$

Now we integrate the above inequality from 0 to ω with respect to t and obtain

$$\int_{0}^{\omega} u(s,x)ds \ge \omega R \frac{D_{q}^{-2}}{D_{q}^{+}} \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right) \frac{1}{1 - e^{\min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right)}} \int_{0}^{\omega} u(s,x)ds.$$

From the above inequality we have

$$1 \ge \omega R \frac{D_q^{-2}}{D_q^{+}} \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{\min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right)}}$$

or

$$R \le \frac{D_q^+}{D_q^{-2} \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right) \omega} \left(1 - e^{\min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)}\right) \omega}\right)$$

which is a contradiction with (2.9). Consequently for every enough large R > 0there is no $u(t,x) \in \mathcal{C}^{\circ}_{+}(\omega)$ such that $\max_{t} u(t,x) = R$ for every fixed $x \in [a,b]$, $u(t,x) \geq \chi(u)$ for every fixed $x \in [a,b]$ and $t \in [0,\omega]$. From here and from Theorem 2.6(ii) we get that there exists $\operatorname{ind}(\infty, \chi; \mathcal{C}^{\circ}_{+}(\omega)) = 0$.

From (1) and (2) follows that there exist

$$\operatorname{ind}(\infty, \chi; \mathcal{C}^{\circ}_{+}(\omega)) \neq \operatorname{ind}(0, \chi; \mathcal{C}^{\circ}_{+}(\omega))$$

Consequently, from Theorem 2.6 (iii), we conclude that the operator χ has a nontrivial fixed point in the cone $\mathcal{C}^{\circ}_{+}(\omega)$ for every fixed $x \in [a, b]$. Therefore the Korteweg - de Vries equation (1.1) has positive solution u(t, x) = v(t)q(x), which is continuous ω -periodic with respect to the time variable t and from Proposition 2.5 we have $u(0,x) \in \dot{B}^{\gamma}_{p,q}([a,b])$ for every $x \in [a,b]$.

3. Uniqueness of the positive periodic solutions

Here we use the following theorem.

Theorem 3.1 ([2]). Let Q is a physical cone in the Banach space Y and the operator $A: Y \to Q$ is monotonous u_0 -convex operator $(u_0 \in Q)$. Let also for every two solutions x_1 and x_2 to the equation x = Ax one of the differences x_1-x_2, x_2-x_1 is equal to zero or is inside element for the cone Q. Then the equation x = Ax has in the cone Q no more than one nontrivial solution.

We say that the operator $A: Y \to Y$, where Y is a Banach space with a cone Q, is *monotonous* if: $y_1 \in Y$, $y_2 \in Y$, with $y_1 \stackrel{\circ}{\leq} y_2$ then $Ay_1 \stackrel{\circ}{\leq} Ay_2$. Here $\stackrel{\circ}{\leq}$ denotes the semiordering generating by Q.

We say that the operator $A: Y \to Y$, Y is a Banach space with a cone Q, $A: Q \to Q$, is a u_0 -convex operator $(u_0 \in Q)$ if for every $x \in Q$, $x \neq 0$, then

$$\alpha(x)u_0 \le Ax \le \beta(x)u_0,$$

where $\alpha(x) > 0$, $\beta(x) > 0$; and for every $x \in Q$ for which

$$\alpha_1(x)u_0 \le Ax \le \beta_1(x)u_0$$

 $(\alpha_1(x) > 0, \beta_1(x) > 0)$ we have

$$A(\lambda x) \le [1 - \eta(x, \lambda)]\lambda Ax, \quad 0 < \lambda < 1,$$

where $\eta(x,\lambda) > 0$.

Here and below we suppose that q(x) is the function satisfying the conditions in Theorem 2.7. Let

$$K(x,s) = -\frac{q'(x)}{q(x)} \frac{e^{-\frac{q''(x)}{q(x)}s}}{1 - e^{-\frac{q'''(x)}{q(x)}\omega}}, \quad x \in [a,b], s \in [0,\omega].$$

From the above assumptions follows that there exist constants m > 0, M > 0 such that

$$m \le K(x,s) \le M, \quad \forall x \in [a,b], \quad \forall s \in [0,\omega].$$

For instance

$$m = \min_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{e^{-\max_{x \in [a,b]} \frac{q'''(x)}{q(x)}\omega}}{1 - e^{-\max_{x \in [a,b]} \frac{q''(x)}{q(x)}\omega}},$$
$$M = \max_{x \in [a,b]} \left(-\frac{q'(x)}{q(x)} \right) \frac{1}{1 - e^{-\min_{x \in [a,b]} \frac{q'''(x)}{q(x)}\omega}}.$$

Now we consider the integral equation (for a fixed $x \in [a, b]$)

$$u(t,x) = \int_0^{\omega} K(x,s)u^2(t-s,x)ds, \quad t \in [0,\omega].$$
(3.1)

The operator χ (see section 2) we may rewriten in the form

$$\chi(u) = \int_0^{\omega} K(x, s) u^2(t - s, x) ds.$$
(3.2)

...

Theorem 3.2. Let $\gamma > 0, \ \gamma \notin \{1, 2, ...\}, \ p > 1, \ q \ge 1$. Let also

$$\frac{M^2}{m^2} - \frac{m^2}{M^2} < \frac{1}{2}.$$

Then (1.1) has a unique positive solution u(t,x) = v(t)q(x) which is continuous ω -periodic with respect to the time variable t and $u(0,x) \in \dot{B}_{p,q}^{\gamma}([a,b])$.

Proof. From Theorem 2.7 follows that the problem (1.1)-(1.3) has positive solution u(t,x) = v(t)q(x). Let $x \in [a,b]$ is fixed. Let also $T \subset \mathcal{C}^{\circ}_{+}(\omega)$ is the set

$$T = \left\{ u(t,x) \in \mathcal{C}^{\circ}_{+}(\omega), \quad \frac{m}{M^{2}\omega} \le u(t,x) \le \frac{M}{m^{2}\omega}, \forall t \in [0,\omega] \right\}.$$

If u(t, x) is positive solution to (1.1), which is ω -periodic with respect to the time variable t then $u(t, x) \in T$. Indeed, for every fixed $x \in [a, b]$ we have

$$u(t,x) = \chi(u) \le \left(\max_{t \in [0,\omega]} u(t,x)\right)^2 M\omega$$

for every $t \in [0, \omega]$. From where,

$$\max_{t \in [0,\omega]} u(t,x) \le \left(\max_{t \in [0,\omega]} u(t,x)\right)^2 M\omega$$

or $\max_{t \in [0,\omega]} u(t,x) \ge 1/M\omega$ for every fixed $x \in [a,b]$. On the other hand from proposition 2.3, we have

$$u(t,x) \geq \frac{m}{M} \max_{t \in [0,\omega]} u(t,x) \geq \frac{m}{M^2 \omega} \quad \forall t \in [0,\omega],$$

for every fixed $x \in [a, b]$. Also, for every fixed $x \in [a, b]$

$$u(t,x) = \chi(u) \ge m\omega \left(\min_{t \in [0,\omega]} u(t,x)\right)^2, \quad \forall t \in [0,\omega].$$

From the above inequality,

$$\min_{t \in [0,\omega]} u(t,x) \le \frac{1}{m\omega}.$$
(3.3)

Since $u(t,x) \in \mathcal{C}^{\circ}_{+}(\omega)$, we have

$$\min_{t \in [0,\omega]} u(t,x) \ge \frac{m}{M} \max_{t \in [0,\omega]} u(t,x)$$

for every fixed $x \in [a, b]$. From the above inequality and (3.3),

$$\max_{t \in [0,\omega]} u(t,x) \le \frac{M}{m^2 \omega} \tag{3.4}$$

for every fixed $x \in [a, b]$. From (3) and (3.4) it follows that $u(t, x) \in T$ for every $t \in [0, \omega]$ and for every fixed $x \in [a, b]$.

Let u_1 and u_2 be two solutions to the integral equation (3.1). Let $y = u_1 - u_2$. We suppose that y changes its sign. Then for every positive constants c we have

$$||y - c|| \ge \frac{1}{2} ||y||.$$

(because y changes your sign) We note that in our case $||y|| = \max_{t \in [0,\omega]} |y|$ for every fixed $x \in [a, b], y \in \mathcal{C}(\omega)$. Let

$$b_1 = 2\frac{m^2}{M^2\omega}, \quad b_2 = 2\frac{M^2}{m^2\omega}.$$

In particular we have

$$\left\|y - \frac{b_1 + b_2}{2} \int_0^\omega y(s) ds\right\| \ge \frac{1}{2} \|y\|$$

for every fixed $x \in [a, b]$. Also, we have

$$y(t,x) = \int_0^\omega K(x,s)(u_1^2(t-s,x) - u_2^2(t-s,x))ds = 2\int_0^\omega K(x,s)z(s)y(s)ds$$

for every fixed $x \in [a, b]$. In the last equality we use the middle point theorem. Here

$$\min\{u_1, u_2\} \le z \le \max\{u_1, u_2\}.$$

From where it follows that $z \in T$ for every fixed $x \in [a, b]$. Then

$$2K(x,s)z(s) \ge 2m\frac{m}{M^2\omega} = b_1,$$

$$2K(x,s)z(s) \le 2M\frac{M}{m^2\omega} = b_2.$$

Consequently

$$\left| 2K(x,s)z(s) - \frac{b_1 + b_2}{2} \right| \le \frac{b_2 - b_1}{2}$$

for every fixed $x \in [a, b]$. On the other hand

$$\begin{aligned} \left| y(t) - \frac{b_1 + b_2}{2} \int_0^\omega y(s) ds \right| &= \left| 2 \int_0^\omega K(x, s) z(s) y(s) ds - \frac{b_1 + b_2}{2} \int_0^\omega y(s) ds \right| \\ &= \left| \int_0^\omega \left(2K(x, s) z(s) - \frac{b_1 + b_2}{2} \right) y(s) ds \right| \\ &\leq \int_0^\omega \left| 2K(x, s) z(s) - \frac{b_1 + b_2}{2} \right| |y(s)| ds \\ &\leq \frac{b_2 - b_1}{2} \int_0^\omega |y(s)| ds \le \frac{b_2 - b_1}{2} \|y\| \omega \end{aligned}$$

for every fixed $x \in [a, b]$. From where,

$$\left\|y - \frac{b_1 + b_2}{2} \int_0^\omega y(s) ds\right\| \le \frac{b_2 - b_1}{2} \|y\| \omega$$

for every fixed $x \in [a, b]$. Now we use the inequality (3) and we get

$$\frac{1}{2}\|y\|\leq \frac{b_2-b_1}{2}\|y\|\omega$$

or

$$1 \le (b_2 - b_1)\omega = 2\left(\frac{M^2}{m^2\omega} - \frac{m^2}{M^2\omega}\right)\omega,$$

from where,

$$\frac{1}{2} \le \frac{M^2}{m^2} - \frac{m^2}{M^2}$$

which is a contradiction with the conditions of the theorem 3.2. Consequently, if u_1 and u_2 are two solutions to the integral equation $u = \chi(u)$ we have $u_1 \equiv u_2$ or $u_1 - u_2$ or $u_2 - u_1$ is inside element for the cone $\mathcal{C}^{\circ}_+(\omega)$. Now we will show that the operator χ is 1-convex operator with respect to the cone $\mathcal{C}^{\circ}_+(\omega)$. First we note that $1 \in \mathcal{C}^{\circ}_+(\omega)$. Let $\eta(x, \lambda) = 1 - \lambda, \lambda \in (0, 1)$. Then we have

$$\chi(\lambda u) = \lambda^2 \chi(u) = (1 - \eta(x, \lambda))\lambda\chi(u).$$

Consequently the operator χ is 1-convex operator with respect to the cone $\mathcal{C}^{\circ}_{+}(\omega)$.

From here and from Theorems 2.7, 3.1, it follows that the Korteveg-de Vries (1.1) has unique positive solution u(t, x) = v(t)q(x), which is ω -periodic with respect to the time variable t and $u(0, x) \in \dot{B}_{p,q}^{\gamma}([a, b])$.

References

- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II: The KDV-Equation, Geometric and Functional Analysis, Vol. 3, No. 3 (1993).
- [2] M. A. Krasnosel'skii and P. P. Zabrejko; Geometrical Methods of Nonlinear Analysis (in Russian), Nauka, Moscow, 1975.
- [3] H. Triebel, Interpolation theory, function spaces, differential operators, Berlin, 1978.

Svetlin Georgiev Georgiev

DEPARTMENT OF DIFFERENTIAL EQUATIONS, UNIVERSITY OF SOFIA, SOFIA, BULGARIA E-mail address: sgg2000bg@yahoo.com