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POSITIVE PERIODIC SOLUTIONS FOR THE KORTEWEG-DE
VRIES EQUATION

SVETLIN GEORGIEV GEORGIEV

Abstract. In this paper we prove that the Korteweg-de Vries equation

∂tu + ∂3
xu + u∂xu = 0

has unique positive solution u(t, x) which is ω-periodic with respect to the

time variable t and u(0, x) ∈ Ḃγ
p,q([a, b]), γ > 0, γ /∈ {1, 2, . . . }, p > 1, q ≥ 1,

a < b are fixed constants, x ∈ [a, b]. The period ω > 0 is arbitrary chosen and
fixed.

1. Introduction

In this paper we consider the initial-value problem for the Korteweg-de Vries
equation

∂tu + ∂3
xu + u∂xu = 0, t ∈ R, x ∈ [a, b], (1.1)

u is periodic in t, (1.2)

u(0, x) = u0, u0 ∈ Ḃγ
p,q([a, b]), (1.3)

where q ≥ 1, 1 < p < ∞, γ > 0, γ /∈ {1, 2, . . . }. We prove that the (1.1)–(1.3)
has unique positive solution in the form u(t, x) = v(t)q(x), which is continuous ω-
periodic with respect to the time variable t. When we say that the solution u(t, x)
of the (1.1) is positive we understand: u(t, x) > 0 for t ∈ R, x ∈ [a, b]. Here the
period ω > 0 is arbitrary chosen and fixed.

Bourgain [1] consider the initial-value problem

∂tu + ∂3
xu + u∂xu = 0,

u is periodic in x,

u(0, x) = u0.

He proved that the above problem is globally well-posed for Hs-data (s ≥ 0, inte-
ger). Bourgain [1] used the Fourier restriction space method, which he introduced.

Here we use the theory of completely continuous vector field presented by Kras-
nosel’skii and Zabrejko and we prove that the Korteweg-de Vries (1.1) has unique
positive solution u(t, x) = v(t)q(x), which is continuous ω-periodic with respect to

2000 Mathematics Subject Classification. 35Q53, 35Q35, 35G25.
Key words and phrases. Nonlinear evolution equation; Kortewg de Vries equation;

periodic solutions.
c©2007 Texas State University - San Marcos.

Submitted January 18, 2006. Published April 4, 2007.

1



2 S. G. GEORGIEV EJDE-2007/49

the time variable t and infinitely differentiable with respect to the space variable
x ∈ [a, b] and u(0, x) ∈ Ḃγ

p,q([a, b]), p > 1, q ≥ 1, γ > 0, γ /∈ {1, 2, . . . }.
To state our main result we use the following hypotheses:

(H1) q ∈ C∞([a, b]), q(x) > 0 for all x ∈ [a, b];
(H2) q′(x) < 0, q′′′(x) > 0 for all x ∈ [a, b].

Theorem 1.1. Let q ≥ 1, 1 < p < ∞, γ > 0, γ /∈ {1, 2, . . . } be fixed. Then
the initial-value problem (1.1)–(1.3) has unique positive solution u(t, x) = v(t)q(x),
which is continuous ω-periodic with respect to the time variable t and infinitely
differentiable with respect to the space variable x ∈ [a, b], where q(x) is a fixed
function satisfying (H1)–(H2).

This paper is organized as follows: In section 2 we prove that the (1.1)–(1.3) has
positive solution u(t, x) = v(t)q(x) which is continuous ω-periodic with respect to
the time variable t and infinitely differentiable with respect to the space variable
x ∈ [a, b], where q(x) is fixed function satisfying (H1)–(H2). In section 3 we prove
that the solution obtained in section 2, is unique.

2. Existence of positive periodic solutions

Here and bellow we will suppose that q(x) is fixed function satisfying (H1)–(H2).
As an example of such function, we have q(x) = 2+ sinx with [a, b] = [2π/3, 5π/6].

Proposition 2.1. If for every fixed x ∈ [a, b], u(t, x) = v(t)q(x) satisfies

u(t, x) = −
∫ ω

0

e−
q′′′(x)

q(x) s

1− e−
q′′′(x)

q(x) ω
u2(t− s, x)

q′(x)
q(x)

ds, (2.1)

then u(t, x) = v(t)q(x) satisfies the (1.1) for every fixed x ∈ [a, b]. Here v(t) is a
positive continuous ω-periodic function.

Proof. For every fixed x ∈ [a, b] if u(t, x) = v(t)q(x) is a solution to (2.1), we have

v(t)q(x) = −
∫ ω

0

e−
q′′′(x)

q(x) s

1− e−
q′′′(x)

q(x) ω
v2(t− s)q2(x)

q′(x)
q(x)

ds

= −
∫ ω

0

e−
q′′′(x)

q(x) s

1− e−
q′′′(x)

q(x) ω
v2(t− s)q(x)q′(x)ds.

From here,

v(t) = −
∫ ω

0

e−
q′′′(x)

q(x) s

1− e−
q′′′(x)

q(x) ω
v2(t− s)q′(x)ds;

i.e., for every fixed x ∈ [a, b], if u(t, x) = v(t)q(x) is a solution to (2.1) we have

v(t) = − q′(x)

1− e−
q′′′(x)

q(x) ω

∫ ω

0

e−
q′′′(x)

q(x) sv2(t− s)ds. (2.2)

Let us consider the integral ∫ ω

0

e−
q′′′(x)

q(x) sv2(t− s)ds.
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We make the change of variable s = t− z, from where ds = −dz and∫ ω

0

e−
q′′′(x)

q(x) sv2(t− s)ds = −
∫ t−ω

t

e−
q′′′(x)

q(x) (t−z)v2(z)dz

= e−
q′′′(x)

q(x) t
(∫ t

0

e
q′′′(x)

q(x) zv2(z)dz −
∫ t−ω

0

e
q′′′(x)

q(x) zv2(z)dz
)
.

Then the equality (2.2) takes the form

v(t) = − q′(x)

1− e−
q′′′(x)

q(x) ω
e−

q′′′(x)
q(x) t

(∫ t

0

e
q′′′(x)

q(x) zv2(z)dz −
∫ t−ω

0

e
q′′′(x)

q(x) zv2(z)dz
)
.

From the above equality, for every fixed x ∈ [a, b], we get

v′(t) = − q′(x)

1− e−
q′′′(x)

q(x) ω
e−

q′′′(x)
q(x) t

[
−q′′′(x)

q(x)

(∫ t

0

e
q′′′(x)

q(x) zv2(z)dz

−
∫ t−ω

0

e
q′′′(x)

q(x) zv2(z)dz
)

+ e
q′′′(x)

q(x) tv2(t)− e
q′′′(x)

q(x) (t−ω)v2(t− ω)
]

=
q′′′(x)
q(x)

q′(x)

1− e−
q′′′(x)

q(x) ω
e−

q′′′(x)
q(x) t

(∫ t

0

e
q′′′(x)

q(x) zv2(z)dz −
∫ t−ω

0

e
q′′′(x)

q(x) zv2(z)dz
)

− q′(x)

1− e−
q′′′(x)

q(x) ω

(
1− e−

q′′′(x)
q(x) ω

)
v2(t)

= −q′′′(x)
q(x)

v(t)− q′(x)v2(t);

i.e., for every fixed x ∈ [a, b] we have

v′(t) = −q′′′(x)
q(x)

v(t)− q′(x)v2(t).

Then
q(x)v′(t) = −q′′′(x)v(t)− q′(x)q(x)v2(t) (2.3)

for every fixed x ∈ [a, b]. Since for every fixed x ∈ [a, b] we have

ut = v′(t)q(x),

∂3
xu = q′′′(x)v(t),

u∂xu = q′(x)q(x)v2(t).

From the equality (2.3) we take

ut = −∂3
xu− u∂xu;

i.e., for every fixed x ∈ [a, b], if u(t, x) = v(t)q(x) is a solution to the (2.1), then
u(t, x) satisfies the Korteweg-de Vries equation (1.1). �

Proposition 2.2. If for every fixed x ∈ [a, b], u(t, x) = v(t)q(x) satisfies the
Korteweg-de Vries equation (1.1) then u(t, x) = v(t)q(x) satisfies the integral (2.1).
Here v(t) is positive continuous ω-periodic function.

Proof. Let x ∈ [a, b] is fixed and u(t, x) = v(t)q(x) is a solution to the Korteweg-
de Vries (1.1), where v(t) is positive continuous ω-periodic function. Then

v′(t)q(x) = −q′′′(x)v(t)− v2(t)q′(x)q(x).
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After we use the definition of the function q(x) (see (H1), (H2)) from the last
equation we get

v′(t) = −q′′′(x)
q(x)

v(t)− q′(x)v2(t).

Since x ∈ [a, b] is fixed, the last equation we may consider as ordinary differential
equation with respect to the variable t. Therefore

v(t) = e−
R t
0

q′′′(x)
q(x) ds

(
v(0)−

∫ t

0

q′(x)v2(s)e
R s
0

q′′′(x)
q(x) dτds

)
= e−

q′′′(x)
q(x) t

(
v(0)−

∫ t

0

q′(x)v2(s)e
q′′′(x)

q(x) sds
)
.

For q′′′(x) > 0, q(x) > 0 for x ∈ [a, b] we have limt→−∞ e−
q′′′(x)

q(x) t = ∞. Therefore,

v(0) = q′(x)
∫ −∞

0

v2(s)e
q′′′(x)

q(x) sds = −q′(x)
∫ 0

−∞
v2(s)e

q′′′(x)
q(x) sds

or

v(t) = −q′(x)e−
q′′′(x)

q(x) t

∫ t

−∞
v2(s)e

q′′′(x)
q(x) sds. (2.4)

Now we consider the integral ∫ t

−∞
v2(s)e

q′′′(x)
q(x) sds.

We have∫ t

−∞
v2(s)e

q′′′(x)
q(x) sds =

∫ t

t−ω

v2(s)e
q′′′(x)

q(x) sds +
∫ t−ω

t−2ω

v2(s)e
q′′′(x)

q(x) sds + . . . . (2.5)

Let

J =
∫ t

t−ω

v2(s)e
q′′′(x)

q(x) sds.

Let us consider the integral ∫ t−ω

t−2ω

v2(s)e
q′′′(x)

q(x) sds.

After the change of variable s + ω = τ , we obtain∫ t−ω

t−2ω

v2(s)e
q′′′(x)

q(x) sds = e−
q′′′(x)

q(x) ω

∫ t

t−ω

v2(s)e
q′′′(x)

q(x) sds = e−
q′′′(x)

q(x) ωJ.

In the same way,∫ t−2ω

t−3ω

v2(s)e
q′′′(x)

q(x) sds = e−
q′′′(x)

q(x) ω

∫ t−ω

t−2ω

v2(s)e
q′′′(x)

q(x) sds = e−2
q′′′(x)

q(x) ωJ

and so on and so forth. Then the equality (2.5) takes the form∫ t

−∞
v2(s)e

q′′′(x)
q(x) sds = J

(
1 + e−

q′′′(x)
q(x) ω + e−2

q′′′(x)
q(x) ω + . . .

)
= J

1

1− e−
q′′′(x)

q(x) ω
,
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because q′′′(x)
q(x) > 0 for every fixed x ∈ [a, b], e−

q′′′(x)
q(x) ω < 1 for every fixed x ∈ [a, b].

Therefore, from (2.4), for every fixed x ∈ [a, b] we get

v(t) = −q′(x)e−
q′′′(x)

q(x) t 1

1− e−
q′′′(x)

q(x) ω

∫ t

t−ω

v2(s)e
q′′′(x)

q(x) sds.

Now we make the change of variable s− t = τ . Then

v(t) = −q′(x)e−
q′′′(x)

q(x) t 1

1− e−
q′′′(x)

q(x) ω

∫ 0

−ω

v2(t + τ)e
q′′′(x)

q(x) τe
q′′′(x)

q(x) tdτ

= −q′(x)
1

1− e−
q′′′(x)

q(x) ω

∫ 0

−ω

v2(t + τ)e
q′′′(x)

q(x) τdτ.

Let τ = −z. Then

v(t) = −q′(x)
1

1− e−
q′′′(x)

q(x) ω

∫ ω

0

v2(t− z)e−
q′′′(x)

q(x) zdz.

From where for every fixed x ∈ [a, b],

u(t, x) = −q′(x)
q(x)

1

1− e−
q′′′(x)

q(x) ω

∫ ω

0

u2(t− z, x)e−
q′′′(x)

q(x) zdz;

i. e., for every fixed x ∈ [a, b], u(t, x) satisfies (2.1). �

Let C(ω) be the space of the real continuous ω-periodic functions defined on the
whole axis. With C+(ω) we denote the space of the positive continuous ω-periodic
functions defined on the whole axis. Let

D+
q = max

0≤s≤ω, x∈[a,b]
e−

q′′′(x)
q(x) s, D−

q = min
0≤s≤ω, x∈[a,b]

e−
q′′′(x)

q(x) s.

With C◦+(ω) ⊂ C+(ω) we denote the cone

C◦+(ω) =
{
x ∈ C+(ω) : min

t
x(t) ≥

D−
q

D+
q

max
t

x(t)
}
.

For every fixed x ∈ [a, b] we define the operator

χ(u) = −q′(x)
q(x)

∫ ω

0

u2(t− s, x)
e−

q′′′(x)
q(x) s

1− e−
q′′′(x)

q(x) ω
ds,

where u(t, x) = v(t)q(x), v(t) is a positive continuous ω-periodic function, q(x) is a
function satisfying (H1), (H2).

Proposition 2.3. For every fixed x ∈ [a, b] we have χ : C+(ω) → C◦+(ω).
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Proof. Let x ∈ [a, b] is fixed. Let also u(t, x) ∈ C+(ω). u(t, x) is continuous ω-
periodic with respect to the time variable t. Then

χ(u) = −q′(x)
q(x)

∫ ω

0

u2(t− s, x)
e−

q′′′(x)
q(x) s

1− e−
q′′′(x)

q(x) ω
ds

≥ D−
q

1

1− e−
q′′′(x)

q(x) ω

(
−q′(x)

q(x)

∫ ω

0

u2(t− s, x)ds
)

= D−
q

1

1− e−
q′′′(x)

q(x) ω

(
−q′(x)

q(x)

∫ ω

0

u2(s, x)ds
)
;

i.e., for every fixed x ∈ [a, b] we have

χ(u) ≥ D−
q

1

1− e−
q′′′(x)

q(x) ω

(
−q′(x)

q(x)

∫ ω

0

u2(s, x)ds
)
.

From where, for every fixed x ∈ [a, b], we have

min
t

χ(u) ≥ D−
q

1

1− e−
q′′′(x)

q(x) ω

(
−q′(x)

q(x)

∫ ω

0

u2(s, x)ds
)
. (2.6)

On the other hand, for every fixed x ∈ [a, b], we have

χ(u) ≤ D+
q

1

1− e−
q′′′(x)

q(x) ω

(
−q′(x)

q(x)

∫ ω

0

u2(s, x)ds
)
.

Therefore, for every fixed x ∈ [a, b], we have

max
t

χ(u) ≤ D+
q

1

1− e−
q′′′(x)

q(x) ω

(
−q′(x)

q(x)

∫ ω

0

u2(s, x)ds
)
.

From this inequality and (2.6),

min
t

χ(u) ≥
D−

q

D+
q

max
t

χ(u)

for every fixed x ∈ [a, b]. Consequently for every fixed x ∈ [a, b] we have

χ : C+(ω) → C◦+(ω).

�

From proposition 2.3, we have that χ : C◦+(ω) → C◦+(ω), i.e. the operator χ is
positive with respect to the cone C◦+(ω) for every fixed x ∈ [a, b].

Proposition 2.4. The operator χ is completely continuous in the space C(ω) for
every fixed x ∈ [a, b].

Proof. Let x ∈ [a, b] be fixed. Let also u(t, x) ∈ C(ω), maxt∈[0,ω] |u(t, x)| = r,
r > 0. u(t, x) is continuous ω- periodic with respect to the time variable t. From
the definition of the operator χ we have

|χ(u)|(t) ≤ max
x∈[a,b]

(
−q′(x)

q(x)

)
ωr2 1

1− e
maxx∈[a,b]

(
− q′′′(x)

q(x)

)
ω

.

Consequently the functions χ(u)(t) are uniformly bounded in the space C(ω) for
every fixed x ∈ [a, b].
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Let ε > 0. Then there exists δ > 0 such that

−q′(x)
q(x)

e−
q′′′(x)

q(x) s

1− e−
q′′′(x)

q(x) ω
|u2(t1 − s, x)− u2(t2 − s, x)| < ε

ω

for |t1 − t2| < δ and for every s ∈ [0, ω], for every fixed x ∈ [a, b]. Therefore

|χ(u)(t1)− χ(u)(t2)| < ε

for |t1 − t2| < δ, for every fixed x ∈ [a, b]. Then χ(u) is equicontinuous for every
fixed x ∈ [a, b]. From the Arzela-Ascoli theorem follows that the set {χ(u)(t)} is
compact subset in the space C(ω) for every fixed x ∈ [a, b]. From here and from
uniformly bounded of the functions χ(u)(t) follows that the operator χ is completely
continuous in the space C(ω) for every fixed x ∈ [a, b]. �

Proposition 2.5. Let v(t) is continuous ω-periodic function and q(x) ∈ C∞([a, b]).
Then for every γ > 0, γ /∈ {1, 2, . . . }, p > 1, q ≥ 1 we have u(t, x) = v(t)q(x) ∈
Ḃγ

p,q([a, b]) for every t ∈ [0, ω].

Proof. Here we use the following definition of the Ḃγ
p,q([a, b])-norm (see [3]).

‖u‖q

Ḃγ
p,q([a,b])

=
∫ 1

0

h−1−(γ−k)q
∥∥∆h

∂k

∂xk
u
∣∣∣∣∣∣q

Lp([a,b])
dh,

where
∆hu(t, x) = u(t, x + h)− u(t, x),

k ∈ {0, 1, 2, . . . }, γ − k = {γ}, {γ} is the fractional part of γ, 0 < {γ} < 1. Then,
after we use the middle point theorem we have

‖u‖q

Ḃγ
p,q([a,b])

=
∫ 1

0

h−1−(γ−k)q
∥∥∆h

∂k

∂xk
u
∥∥q

Lp([a,b])
dh

≤ C1

∫ 1

0

h−(γ−k)q+q−1
∥∥ ∂k+1

∂xk+1
u
∥∥q

Lp[a,b]
dh

≤ C2

∫ 1

0

h−(γ−k)q+q−1dh < ∞,

because q − (γ − k)q > 0. Here C1 and C2 are positive constants. �

The proof for existence of nontrivial solution to the Korteweg-de Vries equation,
which is positive continuous ω-periodic with respect to the variable t and positive
continuous with respect to the variable x is based on the theory of completely con-
tinuous vector field presented by Krasnosel’skii and Zabrejko in [2]. More precisely
we will prove that the (1.1) has nontrivial solution, which is positive continuous
ω-periodic with respect to the variable t and positive continuous with respect to
the variable x after we use the following theorem which is extracted from [2].

Theorem 2.6 ([2]). Let Y be a real Banach space with a cone Q and L : Y → Y be
a completely continuous and positive with respect to Q operator. Then the following
propositions are valid.

(i) Let L(0) = 0. Let also for every sufficiently small r > 0 there is no y ∈ Q,

‖y‖Y = r, with y
◦
≤ L(y). Then there exists ind(0, L;Q) = 1.

(ii) Let for every sufficiently large R there is no y ∈ Q with ‖y‖Y = R and

L(y)
◦
≤ y. Then there exists ind(∞, L;Q) = 0.
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(iii) Let L(0) = 0 and let there exist ind(0, L;Q) 6= ind(∞, L;Q). Then L has
nontrivial fixed point in Q.

Here ind(·, L;Q) denotes an index of a point with respect to L and Q. The

symbol
◦
≤ denotes the semiordering generated by Q.

Theorem 2.7. Let γ > 0, γ /∈ {1, 2, . . . }, p > 1, q ≥ 1. Let also q(x) is a function
which satisfies the hypothesis (H1) and (H2). Then the Korteweg- de Vries (1.1) has
a positive solution in the form u(t, x) = v(t)q(x), which is ω-periodic with respect
to the time variable t and u(0, x) ∈ Ḃγ

p,q([a, b]).

Proof. First we note that χ(0) = 0. Also, from Propositions 2.3 and 2.4, we have
that the operator χ is positive and completely continuous with respect to the cone
C◦+(ω) for every fixed x ∈ [a, b]. Let x ∈ [a, b] is fixed.
(1) Let r > 0 satisfy the inequality

r <
D−

q

D+
q

2
maxx∈[a,b]

(
− q′(x)

q(x)

)
ω

(
1− e

maxx∈[a,b]

(
− q′(x)

q(x)

)
ω
)
. (2.7)

We suppose that there exists u(t, x) ∈ C◦+(ω) for which

max
t

u(t, x) = r, u ≤ χ(u), t ∈ [0, ω],

for every fixed x ∈ [a, b]. Then

u(t, x) ≤ D+
q max

x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
maxx∈[a,b]

(
− q′(x)

q(x)

)
ω

∫ ω

0

u2(t− s, x)ds. (2.8)

From the definition of the cone C◦+(ω) we have for every fixed x ∈ [a, b],

u(t, x) ≤ max
t

u(t, x) ≤
D+

q

D−
q

min
t

u(t, x) ≤
D+

q

D−
q

max
t

u(t, x) = r
D+

q

D−
q

.

From this and (2.8), we have

u(t, x) ≤ r
D+

q
2

D−
q

max
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
maxx∈[a,b]

(
− q′(x)

q(x)

) ∫ ω

0

u(t− s, x)ds.

Now we integrate the last inequality from 0 to ω with respect to the time variable
t and we get∫ ω

0

u(s, x)ds ≤ ωr
D+

q
2

D−
q

max
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
maxx∈[a,b]

(
− q′(x)

q(x)

) ∫ ω

0

u(s, x)ds.

From the last inequality we have

1 ≤ ωr
D+

q
2

D−
q

max
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
maxx∈[a,b]

(
− q′(x)

q(x)

)
or

r ≥
D−

q

D+
q

2
maxx∈[a,b]

(
− q′(x)

q(x)

)
ω

(
1− e

maxx∈[a,b]

(
− q′(x)

q(x)

)
ω
)
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which is a contradiction with (2.7). Consequently for every enough small r > 0
there is no u(t, x) ∈ C◦+(ω) such that maxt u(t, x) = r for every fixed x ∈ [a, b],
u(t, x) ≤ χ(u) for every fixed x ∈ [a, b] and t ∈ [0, ω]. From here and from Theorem
2.6(i) we get that there exists ind(0, χ; C◦+(ω)) = 1.
(2) Let R > 0 be large enough so that

R >
D+

q

D−
q

2
minx∈[a,b]

(
− q′(x)

q(x)

)
ω

(
1− e

minx∈[a,b]

(
− q′(x)

q(x)

)
ω
)
. (2.9)

We suppose that there exists u(t, x) ∈ C◦+(ω) for which

max
t

u(t, x) = R, u ≥ χ(u)

for every fixed x ∈ [a, b] and for every t ∈ [0, ω]. Then

u(t, x) ≥ D−
q min

x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
minx∈[a,b]

(
− q′(x)

q(x)

) ∫ ω

0

u2(t− s, x)ds. (2.10)

From the definition of the cone C◦+(ω) we have for every fixed x ∈ [a, b]

u(t, x) ≥ min
t

u(t, x) ≥
D−

q

D+
q

max
t

u(t, x) = R
D−

q

D+
q

.

Therefore, from (2.10), we have

u(t, x) ≥ R
D−

q
2

D+
q

min
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
minx∈[a,b]

(
− q′(x)

q(x)

) ∫ ω

0

u(t− s, x)ds.

Now we integrate the above inequality from 0 to ω with respect to t and obtain∫ ω

0

u(s, x)ds ≥ ωR
D−

q
2

D+
q

min
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
minx∈[a,b]

(
− q′(x)

q(x)

) ∫ ω

0

u(s, x)ds.

From the above inequality we have

1 ≥ ωR
D−

q
2

D+
q

min
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e
minx∈[a,b]

(
− q′(x)

q(x)

)
or

R ≤
D+

q

D−
q

2
minx∈[a,b]

(
− q′(x)

q(x)

)
ω

(
1− e

minx∈[a,b]

(
− q′(x)

q(x)

)
ω
)

which is a contradiction with (2.9). Consequently for every enough large R > 0
there is no u(t, x) ∈ C◦+(ω) such that maxt u(t, x) = R for every fixed x ∈ [a, b],
u(t, x) ≥ χ(u) for every fixed x ∈ [a, b] and t ∈ [0, ω]. From here and from Theorem
2.6(ii) we get that there exists ind(∞, χ; C◦+(ω)) = 0.

From (1) and (2) follows that there exist

ind(∞, χ; C◦+(ω)) 6= ind(0, χ; C◦+(ω)).

Consequently, from Theorem 2.6 (iii), we conclude that the operator χ has a non-
trivial fixed point in the cone C◦+(ω) for every fixed x ∈ [a, b]. Therefore the
Korteweg - de Vries equation (1.1) has positive solution u(t, x) = v(t)q(x), which
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is continuous ω-periodic with respect to the time variable t and from Proposition
2.5 we have u(0, x) ∈ Ḃγ

p,q([a, b]) for every x ∈ [a, b]. �

3. Uniqueness of the positive periodic solutions

Here we use the following theorem.

Theorem 3.1 ([2]). Let Q is a physical cone in the Banach space Y and the
operator A : Y → Q is monotonous u0-convex operator (u0 ∈ Q). Let also for every
two solutions x1 and x2 to the equation x = Ax one of the differences x1−x2, x2−x1

is equal to zero or is inside element for the cone Q. Then the equation x = Ax has
in the cone Q no more than one nontrivial solution.

We say that the operator A : Y → Y , where Y is a Banach space with a cone Q,

is monotonous if: y1 ∈ Y , y2 ∈ Y , with y1

◦
≤ y2 then Ay1

◦
≤ Ay2. Here

◦
≤ denotes

the semiordering generating by Q.
We say that the operator A : Y → Y , Y is a Banach space with a cone Q,

A : Q → Q, is a u0-convex operator (u0 ∈ Q) if for every x ∈ Q, x 6= 0, then

α(x)u0 ≤ Ax ≤ β(x)u0,

where α(x) > 0, β(x) > 0; and for every x ∈ Q for which

α1(x)u0 ≤ Ax ≤ β1(x)u0

(α1(x) > 0, β1(x) > 0) we have

A(λx) ≤ [1− η(x, λ)]λAx, 0 < λ < 1,

where η(x, λ) > 0.
Here and bellow we suppose that q(x) is the function satisfying the conditions

in Theorem 2.7. Let

K(x, s) = −q′(x)
q(x)

e−
q′′′(x)

q(x) s

1− e−
q′′′(x)

q(x) ω
, x ∈ [a, b], s ∈ [0, ω].

From the above assumptions follows that there exist constants m > 0, M > 0 such
that

m ≤ K(x, s) ≤ M, ∀x ∈ [a, b], ∀s ∈ [0, ω].

For instance

m = min
x∈[a,b]

(
−q′(x)

q(x)

) e−maxx∈[a,b]
q′′′(x)

q(x) ω

1− e−maxx∈[a,b]
q′′′(x)

q(x) ω
,

M = max
x∈[a,b]

(
−q′(x)

q(x)

) 1

1− e−minx∈[a,b]
q′′′(x)

q(x) ω
.

Now we consider the integral equation (for a fixed x ∈ [a, b])

u(t, x) =
∫ ω

0

K(x, s)u2(t− s, x)ds, t ∈ [0, ω]. (3.1)

The operator χ (see section 2) we may rewriten in the form

χ(u) =
∫ ω

0

K(x, s)u2(t− s, x)ds. (3.2)
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Theorem 3.2. Let γ > 0, γ /∈ {1, 2, . . . }, p > 1, q ≥ 1. Let also

M2

m2
− m2

M2
<

1
2
.

Then (1.1) has a unique positive solution u(t, x) = v(t)q(x) which is continuous
ω-periodic with respect to the time variable t and u(0, x) ∈ Ḃγ

p,q([a, b]).

Proof. From Theorem 2.7 follows that the problem (1.1)–(1.3) has positive solution
u(t, x) = v(t)q(x). Let x ∈ [a, b] is fixed. Let also T ⊂ C◦+(ω) is the set

T =
{
u(t, x) ∈ C◦+(ω),

m

M2ω
≤ u(t, x) ≤ M

m2ω
,∀t ∈ [0, ω]

}
.

If u(t, x) is positive solution to (1.1), which is ω-periodic with respect to the time
variable t then u(t, x) ∈ T . Indeed, for every fixed x ∈ [a, b] we have

u(t, x) = χ(u) ≤
(

max
t∈[0,ω]

u(t, x)
)2

Mω

for every t ∈ [0, ω]. From where,

max
t∈[0,ω]

u(t, x) ≤
(

max
t∈[0,ω]

u(t, x)
)2

Mω

or maxt∈[0,ω] u(t, x) ≥ 1/Mω for every fixed x ∈ [a, b]. On the other hand from
proposition 2.3, we have

u(t, x) ≥ m

M
max

t∈[0,ω]
u(t, x) ≥ m

M2ω
∀t ∈ [0, ω],

for every fixed x ∈ [a, b]. Also, for every fixed x ∈ [a, b]

u(t, x) = χ(u) ≥ mω
(

min
t∈[0,ω]

u(t, x)
)2

, ∀t ∈ [0, ω].

From the above inequality,

min
t∈[0,ω]

u(t, x) ≤ 1
mω

. (3.3)

Since u(t, x) ∈ C◦+(ω), we have

min
t∈[0,ω]

u(t, x) ≥ m

M
max

t∈[0,ω]
u(t, x)

for every fixed x ∈ [a, b]. From the above inequality and (3.3),

max
t∈[0,ω]

u(t, x) ≤ M

m2ω
(3.4)

for every fixed x ∈ [a, b]. From (3) and (3.4) it follows that u(t, x) ∈ T for every
t ∈ [0, ω] and for every fixed x ∈ [a, b].

Let u1 and u2 be two solutions to the integral equation (3.1). Let y = u1 − u2.
We suppose that y changes its sign. Then for every positive constants c we have

‖y − c‖ ≥ 1
2
‖y‖.

(because y changes your sign) We note that in our case ‖y‖ = maxt∈[0,ω] |y| for
every fixed x ∈ [a, b], y ∈ C(ω). Let

b1 = 2
m2

M2ω
, b2 = 2

M2

m2ω
.
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In particular we have ∥∥y − b1 + b2

2

∫ ω

0

y(s)ds
∥∥ ≥ 1

2
‖y‖

for every fixed x ∈ [a, b]. Also, we have

y(t, x) =
∫ ω

0

K(x, s)(u2
1(t− s, x)− u2

2(t− s, x))ds = 2
∫ ω

0

K(x, s)z(s)y(s)ds

for every fixed x ∈ [a, b]. In the last equality we use the middle point theorem.
Here

min{u1, u2} ≤ z ≤ max{u1, u2}.
From where it follows that z ∈ T for every fixed x ∈ [a, b]. Then

2K(x, s)z(s) ≥ 2m
m

M2ω
= b1,

2K(x, s)z(s) ≤ 2M
M

m2ω
= b2.

Consequently ∣∣∣2K(x, s)z(s)− b1 + b2

2

∣∣∣ ≤ b2 − b1

2
for every fixed x ∈ [a, b]. On the other hand∣∣∣y(t)− b1 + b2

2

∫ ω

0

y(s)ds
∣∣∣ =

∣∣∣2 ∫ ω

0

K(x, s)z(s)y(s)ds− b1 + b2

2

∫ ω

0

y(s)ds
∣∣∣

=
∣∣∣∫ ω

0

(
2K(x, s)z(s)− b1 + b2

2

)
y(s)ds

∣∣∣
≤

∫ ω

0

∣∣∣2K(x, s)z(s)− b1 + b2

2

∣∣∣|y(s)|ds

≤ b2 − b1

2

∫ ω

0

|y(s)|ds ≤ b2 − b1

2
‖y‖ω

for every fixed x ∈ [a, b]. From where,∥∥y − b1 + b2

2

∫ ω

0

y(s)ds
∥∥ ≤ b2 − b1

2
‖y‖ω

for every fixed x ∈ [a, b]. Now we use the inequality (3) and we get

1
2
‖y‖ ≤ b2 − b1

2
‖y‖ω

or

1 ≤ (b2 − b1)ω = 2
( M2

m2ω
− m2

M2ω

)
ω,

from where,
1
2
≤ M2

m2
− m2

M2
,

which is a contradiction with the conditions of the theorem 3.2. Consequently, if
u1 and u2 are two solutions to the integral equation u = χ(u) we have u1 ≡ u2 or
u1− u2 or u2− u1 is inside element for the cone C◦+(ω). Now we will show that the
operator χ is 1-convex operator with respect to the cone C◦+(ω). First we note that
1 ∈ C◦+(ω). Let η(x, λ) = 1− λ, λ ∈ (0, 1). Then we have

χ(λu) = λ2χ(u) = (1− η(x, λ))λχ(u).
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Consequently the operator χ is 1-convex operator with respect to the cone C◦+(ω).
From here and from Theorems 2.7, 3.1, it follows that the Korteveg-de Vries (1.1)

has unique positive solution u(t, x) = v(t)q(x), which is ω-periodic with respect to
the time variable t and u(0, x) ∈ Ḃγ

p,q([a, b]). �
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