Electronic Journal of Differential Equations, Vol. 2007(2007), No. 49, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE PERIODIC SOLUTIONS FOR THE KORTEWEG-DE VRIES EQUATION

SVETLIN GEORGIEV GEORGIEV

Abstract. In this paper we prove that the Korteweg-de Vries equation

$$
\partial_{t} u+\partial_{x}^{3} u+u \partial_{x} u=0
$$

has unique positive solution $u(t, x)$ which is ω-periodic with respect to the time variable t and $u(0, x) \in \dot{B}_{p, q}^{\gamma}([a, b]), \gamma>0, \gamma \notin\{1,2, \ldots\}, p>1, q \geq 1$, $a<b$ are fixed constants, $x \in[a, b]$. The period $\omega>0$ is arbitrary chosen and fixed.

1. Introduction

In this paper we consider the initial-value problem for the Korteweg-de Vries equation

$$
\begin{gather*}
\partial_{t} u+\partial_{x}^{3} u+u \partial_{x} u=0, \quad t \in \mathbb{R}, \quad x \in[a, b], \tag{1.1}\\
u \text { is periodic in } t, \tag{1.2}\\
u(0, x)=u_{0}, \quad u_{0} \in \dot{B}_{p, q}^{\gamma}([a, b]), \tag{1.3}
\end{gather*}
$$

where $q \geq 1,1<p<\infty, \gamma>0, \gamma \notin\{1,2, \ldots\}$. We prove that the 1.1-1.3) has unique positive solution in the form $u(t, x)=v(t) q(x)$, which is continuous ω periodic with respect to the time variable t. When we say that the solution $u(t, x)$ of the (1.1) is positive we understand: $u(t, x)>0$ for $t \in \mathbb{R}, x \in[a, b]$. Here the period $\omega>0$ is arbitrary chosen and fixed.

Bourgain [1] consider the initial-value problem

$$
\begin{gathered}
\partial_{t} u+\partial_{x}^{3} u+u \partial_{x} u=0, \\
u \text { is periodic in } x \\
u(0, x)=u_{0} .
\end{gathered}
$$

He proved that the above problem is globally well-posed for H^{s}-data ($s \geq 0$, integer). Bourgain [1] used the Fourier restriction space method, which he introduced.

Here we use the theory of completely continuous vector field presented by Krasnosel'skii and Zabrejko and we prove that the Korteweg-de Vries 1.1) has unique positive solution $u(t, x)=v(t) q(x)$, which is continuous ω-periodic with respect to

[^0]the time variable t and infinitely differentiable with respect to the space variable $x \in[a, b]$ and $u(0, x) \in \dot{B}_{p, q}^{\gamma}([a, b]), p>1, q \geq 1, \gamma>0, \gamma \notin\{1,2, \ldots\}$.

To state our main result we use the following hypotheses:
(H1) $q \in \mathcal{C}^{\infty}([a, b]), q(x)>0$ for all $x \in[a, b]$;
(H2) $q^{\prime}(x)<0, q^{\prime \prime \prime}(x)>0$ for all $x \in[a, b]$.
Theorem 1.1. Let $q \geq 1,1<p<\infty, \gamma>0, \gamma \notin\{1,2, \ldots\}$ be fixed. Then the initial-value problem (1.1)-(1.3) has unique positive solution $u(t, x)=v(t) q(x)$, which is continuous ω-periodic with respect to the time variable t and infinitely differentiable with respect to the space variable $x \in[a, b]$, where $q(x)$ is a fixed function satisfying (H1)-(H2).

This paper is organized as follows: In section 2 we prove that the (1.1)-1.3 has positive solution $u(t, x)=v(t) q(x)$ which is continuous ω-periodic with respect to the time variable t and infinitely differentiable with respect to the space variable $x \in[a, b]$, where $q(x)$ is fixed function satisfying (H1)-(H2). In section 3 we prove that the solution obtained in section 2 , is unique.

2. Existence of positive periodic solutions

Here and bellow we will suppose that $q(x)$ is fixed function satisfying (H1)-(H2). As an example of such function, we have $q(x)=2+\sin x$ with $[a, b]=[2 \pi / 3,5 \pi / 6]$.

Proposition 2.1. If for every fixed $x \in[a, b], u(t, x)=v(t) q(x)$ satisfies

$$
\begin{equation*}
u(t, x)=-\int_{0}^{\omega} \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} u^{2}(t-s, x) \frac{q^{\prime}(x)}{q(x)} d s \tag{2.1}
\end{equation*}
$$

then $u(t, x)=v(t) q(x)$ satisfies the (1.1) for every fixed $x \in[a, b]$. Here $v(t)$ is a positive continuous ω-periodic function.

Proof. For every fixed $x \in[a, b]$ if $u(t, x)=v(t) q(x)$ is a solution to 2.1, we have

$$
\begin{aligned}
v(t) q(x) & =-\int_{0}^{\omega} \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} v^{2}(t-s) q^{2}(x) \frac{q^{\prime}(x)}{q(x)} d s \\
& =-\int_{0}^{\omega} \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} v^{2}(t-s) q(x) q^{\prime}(x) d s .
\end{aligned}
$$

From here,

$$
v(t)=-\int_{0}^{\omega} \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime \prime}(x)}{q(x)} \omega}} v^{2}(t-s) q^{\prime}(x) d s
$$

i.e., for every fixed $x \in[a, b]$, if $u(t, x)=v(t) q(x)$ is a solution to 2.1 we have

$$
\begin{equation*}
v(t)=-\frac{q^{\prime}(x)}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \int_{0}^{\omega} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s} v^{2}(t-s) d s \tag{2.2}
\end{equation*}
$$

Let us consider the integral

$$
\int_{0}^{\omega} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s} v^{2}(t-s) d s
$$

We make the change of variable $s=t-z$, from where $d s=-d z$ and

$$
\begin{aligned}
\int_{0}^{\omega} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s} v^{2}(t-s) d s & =-\int_{t}^{t-\omega} e^{-\frac{q^{\prime \prime \prime \prime}(x)}{q(x)}(t-z)} v^{2}(z) d z \\
& =e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t}\left(\int_{0}^{t} e^{\frac{q^{\prime \prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z-\int_{0}^{t-\omega} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z\right) .
\end{aligned}
$$

Then the equality 2.2 takes the form

$$
v(t)=-\frac{q^{\prime}(x)}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t}\left(\int_{0}^{t} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z-\int_{0}^{t-\omega} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z\right)
$$

From the above equality, for every fixed $x \in[a, b]$, we get

$$
\begin{aligned}
v^{\prime}(t)= & -\frac{q^{\prime}(x)}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t}\left[-\frac{q^{\prime \prime \prime}(x)}{q(x)}\left(\int_{0}^{t} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)}} z v^{2}(z) d z\right.\right. \\
& \left.\left.-\int_{0}^{t-\omega} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z\right)+e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} t} v^{2}(t)-e^{\frac{q^{\prime \prime \prime}(x)}{q(x)}(t-\omega)} v^{2}(t-\omega)\right] \\
= & \frac{q^{\prime \prime \prime}(x)}{q(x)} \frac{q^{\prime}(x)}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t}\left(\int_{0}^{t} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z-\int_{0}^{t-\omega} e^{\frac{q^{\prime \prime \prime \prime}(x)}{q(x)} z} v^{2}(z) d z\right) \\
& -\frac{q^{\prime}(x)}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}\right) v^{2}(t) \\
= & -\frac{q^{\prime \prime \prime}(x)}{q(x)} v(t)-q^{\prime}(x) v^{2}(t)
\end{aligned}
$$

i.e., for every fixed $x \in[a, b]$ we have

$$
v^{\prime}(t)=-\frac{q^{\prime \prime \prime}(x)}{q(x)} v(t)-q^{\prime}(x) v^{2}(t)
$$

Then

$$
\begin{equation*}
q(x) v^{\prime}(t)=-q^{\prime \prime \prime}(x) v(t)-q^{\prime}(x) q(x) v^{2}(t) \tag{2.3}
\end{equation*}
$$

for every fixed $x \in[a, b]$. Since for every fixed $x \in[a, b]$ we have

$$
\begin{gathered}
u_{t}=v^{\prime}(t) q(x), \\
\partial_{x}^{3} u=q^{\prime \prime \prime}(x) v(t) \\
u \partial_{x} u=q^{\prime}(x) q(x) v^{2}(t)
\end{gathered}
$$

From the equality (2.3) we take

$$
u_{t}=-\partial_{x}^{3} u-u \partial_{x} u ;
$$

i.e., for every fixed $x \in[a, b]$, if $u(t, x)=v(t) q(x)$ is a solution to the 2.1), then $u(t, x)$ satisfies the Korteweg-de Vries equation 1.1.

Proposition 2.2. If for every fixed $x \in[a, b], u(t, x)=v(t) q(x)$ satisfies the Korteweg-de Vries equation (1.1) then $u(t, x)=v(t) q(x)$ satisfies the integral (2.1). Here $v(t)$ is positive continuous ω-periodic function.

Proof. Let $x \in[a, b]$ is fixed and $u(t, x)=v(t) q(x)$ is a solution to the Kortewegde Vries 1.1 , where $v(t)$ is positive continuous ω-periodic function. Then

$$
v^{\prime}(t) q(x)=-q^{\prime \prime \prime}(x) v(t)-v^{2}(t) q^{\prime}(x) q(x)
$$

After we use the definition of the function $q(x)$ (see (H1), (H2)) from the last equation we get

$$
v^{\prime}(t)=-\frac{q^{\prime \prime \prime}(x)}{q(x)} v(t)-q^{\prime}(x) v^{2}(t)
$$

Since $x \in[a, b]$ is fixed, the last equation we may consider as ordinary differential equation with respect to the variable t. Therefore

$$
\begin{aligned}
v(t) & =e^{-\int_{0}^{t} \frac{q^{\prime \prime \prime}(x)}{q(x)} d s}\left(v(0)-\int_{0}^{t} q^{\prime}(x) v^{2}(s) e^{\int_{0}^{s} \frac{q^{\prime \prime \prime}(x)}{q(x)} d \tau} d s\right) \\
& =e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t}\left(v(0)-\int_{0}^{t} q^{\prime}(x) v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s\right) .
\end{aligned}
$$

For $q^{\prime \prime \prime}(x)>0, q(x)>0$ for $x \in[a, b]$ we have $\lim _{t \rightarrow-\infty} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t}=\infty$. Therefore,

$$
v(0)=q^{\prime}(x) \int_{0}^{-\infty} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=-q^{\prime}(x) \int_{-\infty}^{0} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s
$$

or

$$
\begin{equation*}
v(t)=-q^{\prime}(x) e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t} \int_{-\infty}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s \tag{2.4}
\end{equation*}
$$

Now we consider the integral

$$
\int_{-\infty}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s
$$

We have

$$
\begin{equation*}
\int_{-\infty}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=\int_{t-\omega}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s+\int_{t-2 \omega}^{t-\omega} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s+\ldots \tag{2.5}
\end{equation*}
$$

Let

$$
J=\int_{t-\omega}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s
$$

Let us consider the integral

$$
\int_{t-2 \omega}^{t-\omega} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s
$$

After the change of variable $s+\omega=\tau$, we obtain

$$
\int_{t-2 \omega}^{t-\omega} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega} \int_{t-\omega}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega} J
$$

In the same way,

$$
\int_{t-3 \omega}^{t-2 \omega} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega} \int_{t-2 \omega}^{t-\omega} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=e^{-2 \frac{q^{\prime \prime \prime}(x)}{q(x)} \omega} J
$$

and so on and so forth. Then the equality (2.5) takes the form

$$
\int_{-\infty}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s=J\left(1+e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}+e^{-2 \frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}+\ldots\right)=J \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}},
$$

because $\frac{q^{\prime \prime \prime}(x)}{q(x)}>0$ for every fixed $x \in[a, b], e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}<1$ for every fixed $x \in[a, b]$. Therefore, from 2.4 , for every fixed $x \in[a, b]$ we get

$$
v(t)=-q^{\prime}(x) e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \int_{t-\omega}^{t} v^{2}(s) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} s} d s
$$

Now we make the change of variable $s-t=\tau$. Then

$$
\begin{aligned}
v(t) & =-q^{\prime}(x) e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} t} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \int_{-\omega}^{0} v^{2}(t+\tau) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} \tau} e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} t} d \tau \\
& =-q^{\prime}(x) \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \int_{-\omega}^{0} v^{2}(t+\tau) e^{\frac{q^{\prime \prime \prime}(x)}{q(x)} \tau} d \tau .
\end{aligned}
$$

Let $\tau=-z$. Then

$$
v(t)=-q^{\prime}(x) \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \int_{0}^{\omega} v^{2}(t-z) e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} z} d z
$$

From where for every fixed $x \in[a, b]$,

$$
u(t, x)=-\frac{q^{\prime}(x)}{q(x)} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \int_{0}^{\omega} u^{2}(t-z, x) e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} z} d z
$$

i. e., for every fixed $x \in[a, b], u(t, x)$ satisfies 2.1).

Let $\mathcal{C}(\omega)$ be the space of the real continuous ω-periodic functions defined on the whole axis. With $\mathcal{C}_{+}(\omega)$ we denote the space of the positive continuous ω-periodic functions defined on the whole axis. Let

$$
D_{q}^{+}=\max _{0 \leq s \leq \omega, x \in[a, b]} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}, \quad D_{q}^{-}=\min _{0 \leq s \leq \omega, x \in[a, b]} e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}
$$

With $\mathcal{C}_{+}^{\circ}(\omega) \subset \mathcal{C}_{+}(\omega)$ we denote the cone

$$
\mathcal{C}_{+}^{\circ}(\omega)=\left\{x \in \mathcal{C}_{+}(\omega): \min _{t} x(t) \geq \frac{D_{q}^{-}}{D_{q}^{+}} \max _{t} x(t)\right\}
$$

For every fixed $x \in[a, b]$ we define the operator

$$
\chi(u)=-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(t-s, x) \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} d s
$$

where $u(t, x)=v(t) q(x), v(t)$ is a positive continuous ω-periodic function, $q(x)$ is a function satisfying (H1), (H2).

Proposition 2.3. For every fixed $x \in[a, b]$ we have $\chi: \mathcal{C}_{+}(\omega) \rightarrow \mathcal{C}_{+}^{\circ}(\omega)$.

Proof. Let $x \in[a, b]$ is fixed. Let also $u(t, x) \in \mathcal{C}_{+}(\omega) . u(t, x)$ is continuous ω periodic with respect to the time variable t. Then

$$
\begin{aligned}
\chi(u) & =-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(t-s, x) \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} d s \\
& \geq D_{q}^{-} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(t-s, x) d s\right) \\
& =D_{q}^{-} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) d s\right) ;
\end{aligned}
$$

i.e., for every fixed $x \in[a, b]$ we have

$$
\chi(u) \geq D_{q}^{-} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) d s\right)
$$

From where, for every fixed $x \in[a, b]$, we have

$$
\begin{equation*}
\min _{t} \chi(u) \geq D_{q}^{-} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) d s\right) \tag{2.6}
\end{equation*}
$$

On the other hand, for every fixed $x \in[a, b]$, we have

$$
\chi(u) \leq D_{q}^{+} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) d s\right)
$$

Therefore, for every fixed $x \in[a, b]$, we have

$$
\max _{t} \chi(u) \leq D_{q}^{+} \frac{1}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left(-\frac{q^{\prime}(x)}{q(x)} \int_{0}^{\omega} u^{2}(s, x) d s\right)
$$

From this inequality and 2.6,

$$
\min _{t} \chi(u) \geq \frac{D_{q}^{-}}{D_{q}^{+}} \max _{t} \chi(u)
$$

for every fixed $x \in[a, b]$. Consequently for every fixed $x \in[a, b]$ we have

$$
\chi: \mathcal{C}_{+}(\omega) \rightarrow \mathcal{C}_{+}^{\circ}(\omega)
$$

From proposition 2.3, we have that $\chi: \mathcal{C}_{+}^{\circ}(\omega) \rightarrow \mathcal{C}_{+}^{\circ}(\omega)$, i.e. the operator χ is positive with respect to the cone $\mathcal{C}_{+}^{\circ}(\omega)$ for every fixed $x \in[a, b]$.

Proposition 2.4. The operator χ is completely continuous in the space $\mathcal{C}(\omega)$ for every fixed $x \in[a, b]$.

Proof. Let $x \in[a, b]$ be fixed. Let also $u(t, x) \in \mathcal{C}(\omega), \max _{t \in[0, \omega]}|u(t, x)|=r$, $r>0 . u(t, x)$ is continuous ω - periodic with respect to the time variable t. From the definition of the operator χ we have

$$
|\chi(u)|(t) \leq \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega r^{2} \frac{1}{1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime \prime \prime}(x)}{q(x)}\right) \omega}}
$$

Consequently the functions $\chi(u)(t)$ are uniformly bounded in the space $\mathcal{C}(\omega)$ for every fixed $x \in[a, b]$.

Let $\epsilon>0$. Then there exists $\delta>0$ such that

$$
-\frac{q^{\prime}(x)}{q(x)} \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}\left|u^{2}\left(t_{1}-s, x\right)-u^{2}\left(t_{2}-s, x\right)\right|<\frac{\epsilon}{\omega}
$$

for $\left|t_{1}-t_{2}\right|<\delta$ and for every $s \in[0, \omega]$, for every fixed $x \in[a, b]$. Therefore

$$
\left|\chi(u)\left(t_{1}\right)-\chi(u)\left(t_{2}\right)\right|<\epsilon
$$

for $\left|t_{1}-t_{2}\right|<\delta$, for every fixed $x \in[a, b]$. Then $\chi(u)$ is equicontinuous for every fixed $x \in[a, b]$. From the Arzela-Ascoli theorem follows that the set $\{\chi(u)(t)\}$ is compact subset in the space $\mathcal{C}(\omega)$ for every fixed $x \in[a, b]$. From here and from uniformly bounded of the functions $\chi(u)(t)$ follows that the operator χ is completely continuous in the space $\mathcal{C}(\omega)$ for every fixed $x \in[a, b]$.

Proposition 2.5. Let $v(t)$ is continuous ω-periodic function and $q(x) \in \mathcal{C}^{\infty}([a, b])$. Then for every $\gamma>0, \gamma \notin\{1,2, \ldots\}, p>1, q \geq 1$ we have $u(t, x)=v(t) q(x) \in$ $\dot{B}_{p, q}^{\gamma}([a, b])$ for every $t \in[0, \omega]$.

Proof. Here we use the following definition of the $\dot{B}_{p, q}^{\gamma}([a, b])$-norm (see [3]).

$$
\|u\|_{\dot{B}_{p, q}^{\gamma}([a, b])}^{q}=\int_{0}^{1} h^{-1-(\gamma-k) q}\left\|\Delta_{h} \frac{\partial^{k}}{\partial x^{k}} u\right\|_{L^{p}([a, b])}^{q} d h
$$

where

$$
\Delta_{h} u(t, x)=u(t, x+h)-u(t, x)
$$

$k \in\{0,1,2, \ldots\}, \gamma-k=\{\gamma\},\{\gamma\}$ is the fractional part of $\gamma, 0<\{\gamma\}<1$. Then, after we use the middle point theorem we have

$$
\begin{aligned}
\|u\|_{\dot{B}_{p, q}^{\gamma}([a, b])}^{q} & =\int_{0}^{1} h^{-1-(\gamma-k) q}\left\|\Delta_{h} \frac{\partial^{k}}{\partial x^{k}} u\right\|_{L^{p}([a, b])}^{q} d h \\
& \leq C_{1} \int_{0}^{1} h^{-(\gamma-k) q+q-1}\left\|\frac{\partial^{k+1}}{\partial x^{k+1}} u\right\|_{L^{p}[a, b]}^{q} d h \\
& \leq C_{2} \int_{0}^{1} h^{-(\gamma-k) q+q-1} d h<\infty
\end{aligned}
$$

because $q-(\gamma-k) q>0$. Here C_{1} and C_{2} are positive constants.
The proof for existence of nontrivial solution to the Korteweg-de Vries equation, which is positive continuous ω-periodic with respect to the variable t and positive continuous with respect to the variable x is based on the theory of completely continuous vector field presented by Krasnosel'skii and Zabrejko in [2]. More precisely we will prove that the (1.1) has nontrivial solution, which is positive continuous ω-periodic with respect to the variable t and positive continuous with respect to the variable x after we use the following theorem which is extracted from [2].

Theorem 2.6 ([2]). Let Y be a real Banach space with a cone Q and $L: Y \rightarrow Y$ be a completely continuous and positive with respect to Q operator. Then the following propositions are valid.
(i) Let $L(0)=0$. Let also for every sufficiently small $r>0$ there is no $y \in Q$, $\|y\|_{Y}=r$, with $y \stackrel{\circ}{\leq} L(y)$. Then there exists $\operatorname{ind}(0, L ; Q)=1$.
(ii) Let for every sufficiently large R there is no $y \in Q$ with $\|y\|_{Y}=R$ and $L(y) \stackrel{\circ}{\leq} y$. Then there exists $\operatorname{ind}(\infty, L ; Q)=0$.
(iii) Let $L(0)=0$ and let there exist $\operatorname{ind}(0, L ; Q) \neq \operatorname{ind}(\infty, L ; Q)$. Then L has nontrivial fixed point in Q.

Here $\operatorname{ind}(\cdot, L ; Q)$ denotes an index of a point with respect to L and Q. The symbol $\stackrel{\circ}{\leq}$ denotes the semiordering generated by Q.

Theorem 2.7. Let $\gamma>0, \gamma \notin\{1,2, \ldots\}, p>1, q \geq 1$. Let also $q(x)$ is a function which satisfies the hypothesis (H1) and (H2). Then the Korteweg- de Vries (1.1) has a positive solution in the form $u(t, x)=v(t) q(x)$, which is ω-periodic with respect to the time variable t and $u(0, x) \in \dot{B}_{p, q}^{\gamma}([a, b])$.

Proof. First we note that $\chi(0)=0$. Also, from Propositions 2.3 and 2.4 we have that the operator χ is positive and completely continuous with respect to the cone $\mathcal{C}_{+}^{\circ}(\omega)$ for every fixed $x \in[a, b]$. Let $x \in[a, b]$ is fixed.
(1) Let $r>0$ satisfy the inequality

$$
\begin{equation*}
r<\frac{D_{q}^{-}}{D_{q}^{+2} \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\left(1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\right) . \tag{2.7}
\end{equation*}
$$

We suppose that there exists $u(t, x) \in \mathcal{C}_{+}^{\circ}(\omega)$ for which

$$
\max _{t} u(t, x)=r, \quad u \leq \chi(u), \quad t \in[0, \omega],
$$

for every fixed $x \in[a, b]$. Then

$$
\begin{equation*}
u(t, x) \leq D_{q}^{+} \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}} \int_{0}^{\omega} u^{2}(t-s, x) d s \tag{2.8}
\end{equation*}
$$

From the definition of the cone $\mathcal{C}_{+}^{\circ}(\omega)$ we have for every fixed $x \in[a, b]$,

$$
u(t, x) \leq \max _{t} u(t, x) \leq \frac{D_{q}^{+}}{D_{q}^{-}} \min _{t} u(t, x) \leq \frac{D_{q}^{+}}{D_{q}^{-}} \max _{t} u(t, x)=r \frac{D_{q}^{+}}{D_{q}^{-}} .
$$

From this and 2.8, we have

$$
u(t, x) \leq r \frac{D_{q}^{+2}}{D_{q}^{-}} \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right)}} \int_{0}^{\omega} u(t-s, x) d s
$$

Now we integrate the last inequality from 0 to ω with respect to the time variable t and we get

$$
\int_{0}^{\omega} u(s, x) d s \leq \omega r \frac{D_{q}^{+2}}{D_{q}^{-}} \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{\left.1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right.}\right)} \int_{0}^{\omega} u(s, x) d s
$$

From the last inequality we have

$$
1 \leq \omega r \frac{D_{q}^{+2}}{D_{q}^{-}} \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right)}}
$$

or

$$
r \geq \frac{D_{q}^{-}}{D_{q}^{+2} \max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\left(1-e^{\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\right)
$$

which is a contradiction with 2.7. Consequently for every enough small $r>0$ there is no $u(t, x) \in \mathcal{C}_{+}^{\circ}(\omega)$ such that $\max _{t} u(t, x)=r$ for every fixed $x \in[a, b]$, $u(t, x) \leq \chi(u)$ for every fixed $x \in[a, b]$ and $t \in[0, \omega]$. From here and from Theorem 2.6 (i) we get that there exists $\operatorname{ind}\left(0, \chi ; \mathcal{C}_{+}^{\circ}(\omega)\right)=1$.
(2) Let $R>0$ be large enough so that

$$
\begin{equation*}
R>\frac{D_{q}^{+}}{D_{q}^{-2} \min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\left(1-e^{\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\right) . \tag{2.9}
\end{equation*}
$$

We suppose that there exists $u(t, x) \in \mathcal{C}_{+}^{\circ}(\omega)$ for which

$$
\max _{t} u(t, x)=R, \quad u \geq \chi(u)
$$

for every fixed $x \in[a, b]$ and for every $t \in[0, \omega]$. Then

$$
\begin{equation*}
u(t, x) \geq D_{q}^{-} \min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{1-e^{\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right)}} \int_{0}^{\omega} u^{2}(t-s, x) d s \tag{2.10}
\end{equation*}
$$

From the definition of the cone $\mathcal{C}_{+}^{\circ}(\omega)$ we have for every fixed $x \in[a, b]$

$$
u(t, x) \geq \min _{t} u(t, x) \geq \frac{D_{q}^{-}}{D_{q}^{+}} \max _{t} u(t, x)=R \frac{D_{q}^{-}}{D_{q}^{+}}
$$

Therefore, from 2.10), we have

$$
u(t, x) \geq R \frac{D_{q}^{-2}}{D_{q}^{+}} \min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{\left.1-e^{\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right.}\right)} \int_{0}^{\omega} u(t-s, x) d s
$$

Now we integrate the above inequality from 0 to ω with respect to t and obtain

$$
\int_{0}^{\omega} u(s, x) d s \geq \omega R \frac{D_{q}^{-2}}{D_{q}^{+}} \min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{\left.1-e^{\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right.}\right)} \int_{0}^{\omega} u(s, x) d s
$$

From the above inequality we have

$$
1 \geq \omega R \frac{D_{q}^{-2}}{D_{q}^{+}} \min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{\left.1-e^{\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right.}\right)}
$$

or

$$
R \leq \frac{D_{q}^{+}}{D_{q}^{-2} \min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\left(1-e^{\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \omega}\right)
$$

which is a contradiction with 2.9 . Consequently for every enough large $R>0$ there is no $u(t, x) \in \mathcal{C}_{+}^{\circ}(\omega)$ such that $\max _{t} u(t, x)=R$ for every fixed $x \in[a, b]$, $u(t, x) \geq \chi(u)$ for every fixed $x \in[a, b]$ and $t \in[0, \omega]$. From here and from Theorem 2.6 (ii) we get that there exists ind $\left(\infty, \chi ; \mathcal{C}_{+}^{\circ}(\omega)\right)=0$.

From (1) and (2) follows that there exist

$$
\operatorname{ind}\left(\infty, \chi ; \mathcal{C}_{+}^{\circ}(\omega)\right) \neq \operatorname{ind}\left(0, \chi ; \mathcal{C}_{+}^{\circ}(\omega)\right)
$$

Consequently, from Theorem 2.6 (iii), we conclude that the operator χ has a nontrivial fixed point in the cone $\mathcal{C}_{+}^{\circ}(\omega)$ for every fixed $x \in[a, b]$. Therefore the Korteweg - de Vries equation (1.1) has positive solution $u(t, x)=v(t) q(x)$, which
is continuous ω-periodic with respect to the time variable t and from Proposition 2.5 we have $u(0, x) \in \dot{B}_{p, q}^{\gamma}([a, b])$ for every $x \in[a, b]$.

3. Uniqueness of the positive periodic solutions

Here we use the following theorem.
Theorem 3.1 (2). Let Q is a physical cone in the Banach space Y and the operator $A: Y \rightarrow Q$ is monotonous u_{0}-convex operator $\left(u_{0} \in Q\right)$. Let also for every two solutions x_{1} and x_{2} to the equation $x=A x$ one of the differences $x_{1}-x_{2}, x_{2}-x_{1}$ is equal to zero or is inside element for the cone Q. Then the equation $x=A x$ has in the cone Q no more than one nontrivial solution.

We say that the operator $A: Y \rightarrow Y$, where Y is a Banach space with a cone Q, is monotonous if: $y_{1} \in Y, y_{2} \in Y$, with $y_{1} \stackrel{\circ}{\leq} y_{2}$ then $A y_{1} \stackrel{\circ}{\leq} A y_{2}$. Here $\stackrel{\circ}{\leq}$ denotes the semiordering generating by Q.

We say that the operator $A: Y \rightarrow Y, Y$ is a Banach space with a cone Q, $A: Q \rightarrow Q$, is a u_{0}-convex operator $\left(u_{0} \in Q\right)$ if for every $x \in Q, x \neq 0$, then

$$
\alpha(x) u_{0} \leq A x \leq \beta(x) u_{0}
$$

where $\alpha(x)>0, \beta(x)>0$; and for every $x \in Q$ for which

$$
\alpha_{1}(x) u_{0} \leq A x \leq \beta_{1}(x) u_{0}
$$

$\left(\alpha_{1}(x)>0, \beta_{1}(x)>0\right)$ we have

$$
A(\lambda x) \leq[1-\eta(x, \lambda)] \lambda A x, \quad 0<\lambda<1
$$

where $\eta(x, \lambda)>0$.
Here and bellow we suppose that $q(x)$ is the function satisfying the conditions in Theorem 2.7. Let

$$
K(x, s)=-\frac{q^{\prime}(x)}{q(x)} \frac{e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} s}}{1-e^{-\frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}, \quad x \in[a, b], s \in[0, \omega]
$$

From the above assumptions follows that there exist constants $m>0, M>0$ such that

$$
m \leq K(x, s) \leq M, \quad \forall x \in[a, b], \quad \forall s \in[0, \omega]
$$

For instance

$$
\begin{aligned}
& m=\min _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{e^{-\max _{x \in[a, b]} \frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}{1-e^{-\max _{x \in[a, b]} \frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}} \\
& M=\max _{x \in[a, b]}\left(-\frac{q^{\prime}(x)}{q(x)}\right) \frac{1}{1-e^{-\min _{x \in[a, b]} \frac{q^{\prime \prime \prime}(x)}{q(x)} \omega}}
\end{aligned}
$$

Now we consider the integral equation (for a fixed $x \in[a, b]$)

$$
\begin{equation*}
u(t, x)=\int_{0}^{\omega} K(x, s) u^{2}(t-s, x) d s, \quad t \in[0, \omega] \tag{3.1}
\end{equation*}
$$

The operator χ (see section 2) we may rewriten in the form

$$
\begin{equation*}
\chi(u)=\int_{0}^{\omega} K(x, s) u^{2}(t-s, x) d s \tag{3.2}
\end{equation*}
$$

Theorem 3.2. Let $\gamma>0, \gamma \notin\{1,2, \ldots\}, p>1, q \geq 1$. Let also

$$
\frac{M^{2}}{m^{2}}-\frac{m^{2}}{M^{2}}<\frac{1}{2}
$$

Then (1.1) has a unique positive solution $u(t, x)=v(t) q(x)$ which is continuous ω-periodic with respect to the time variable t and $u(0, x) \in \dot{B}_{p, q}^{\gamma}([a, b])$.
Proof. From Theorem 2.7 follows that the problem (1.1 -1.3 has positive solution $u(t, x)=v(t) q(x)$. Let $x \in[a, b]$ is fixed. Let also $T \subset \mathcal{C}_{+}^{\circ}(\omega)$ is the set

$$
T=\left\{u(t, x) \in \mathcal{C}_{+}^{\circ}(\omega), \quad \frac{m}{M^{2} \omega} \leq u(t, x) \leq \frac{M}{m^{2} \omega}, \forall t \in[0, \omega]\right\}
$$

If $u(t, x)$ is positive solution to 1.1 , which is ω-periodic with respect to the time variable t then $u(t, x) \in T$. Indeed, for every fixed $x \in[a, b]$ we have

$$
u(t, x)=\chi(u) \leq\left(\max _{t \in[0, \omega]} u(t, x)\right)^{2} M \omega
$$

for every $t \in[0, \omega]$. From where,

$$
\max _{t \in[0, \omega]} u(t, x) \leq\left(\max _{t \in[0, \omega]} u(t, x)\right)^{2} M \omega
$$

or $\max _{t \in[0, \omega]} u(t, x) \geq 1 / M \omega$ for every fixed $x \in[a, b]$. On the other hand from proposition 2.3, we have

$$
u(t, x) \geq \frac{m}{M} \max _{t \in[0, \omega]} u(t, x) \geq \frac{m}{M^{2} \omega} \quad \forall t \in[0, \omega]
$$

for every fixed $x \in[a, b]$. Also, for every fixed $x \in[a, b]$

$$
u(t, x)=\chi(u) \geq m \omega\left(\min _{t \in[0, \omega]} u(t, x)\right)^{2}, \quad \forall t \in[0, \omega]
$$

From the above inequality,

$$
\begin{equation*}
\min _{t \in[0, \omega]} u(t, x) \leq \frac{1}{m \omega} \tag{3.3}
\end{equation*}
$$

Since $u(t, x) \in \mathcal{C}_{+}^{\circ}(\omega)$, we have

$$
\min _{t \in[0, \omega]} u(t, x) \geq \frac{m}{M} \max _{t \in[0, \omega]} u(t, x)
$$

for every fixed $x \in[a, b]$. From the above inequality and 3.3 ,

$$
\begin{equation*}
\max _{t \in[0, \omega]} u(t, x) \leq \frac{M}{m^{2} \omega} \tag{3.4}
\end{equation*}
$$

for every fixed $x \in[a, b]$. From (3) and (3.4) it follows that $u(t, x) \in T$ for every $t \in[0, \omega]$ and for every fixed $x \in[a, b]$.

Let u_{1} and u_{2} be two solutions to the integral equation (3.1). Let $y=u_{1}-u_{2}$. We suppose that y changes its sign. Then for every positive constants c we have

$$
\|y-c\| \geq \frac{1}{2}\|y\|
$$

(because y changes your sign) We note that in our case $\|y\|=\max _{t \in[0, \omega]}|y|$ for every fixed $x \in[a, b], y \in \mathcal{C}(\omega)$. Let

$$
b_{1}=2 \frac{m^{2}}{M^{2} \omega}, \quad b_{2}=2 \frac{M^{2}}{m^{2} \omega}
$$

In particular we have

$$
\left\|y-\frac{b_{1}+b_{2}}{2} \int_{0}^{\omega} y(s) d s\right\| \geq \frac{1}{2}\|y\|
$$

for every fixed $x \in[a, b]$. Also, we have

$$
y(t, x)=\int_{0}^{\omega} K(x, s)\left(u_{1}^{2}(t-s, x)-u_{2}^{2}(t-s, x)\right) d s=2 \int_{0}^{\omega} K(x, s) z(s) y(s) d s
$$

for every fixed $x \in[a, b]$. In the last equality we use the middle point theorem. Here

$$
\min \left\{u_{1}, u_{2}\right\} \leq z \leq \max \left\{u_{1}, u_{2}\right\}
$$

From where it follows that $z \in T$ for every fixed $x \in[a, b]$. Then

$$
\begin{aligned}
2 K(x, s) z(s) & \geq 2 m \frac{m}{M^{2} \omega}=b_{1} \\
2 K(x, s) z(s) & \leq 2 M \frac{M}{m^{2} \omega}=b_{2}
\end{aligned}
$$

Consequently

$$
\left|2 K(x, s) z(s)-\frac{b_{1}+b_{2}}{2}\right| \leq \frac{b_{2}-b_{1}}{2}
$$

for every fixed $x \in[a, b]$. On the other hand

$$
\begin{aligned}
\left|y(t)-\frac{b_{1}+b_{2}}{2} \int_{0}^{\omega} y(s) d s\right| & =\left|2 \int_{0}^{\omega} K(x, s) z(s) y(s) d s-\frac{b_{1}+b_{2}}{2} \int_{0}^{\omega} y(s) d s\right| \\
& =\left|\int_{0}^{\omega}\left(2 K(x, s) z(s)-\frac{b_{1}+b_{2}}{2}\right) y(s) d s\right| \\
& \leq \int_{0}^{\omega}\left|2 K(x, s) z(s)-\frac{b_{1}+b_{2}}{2}\right||y(s)| d s \\
& \leq \frac{b_{2}-b_{1}}{2} \int_{0}^{\omega}|y(s)| d s \leq \frac{b_{2}-b_{1}}{2}\|y\| \omega
\end{aligned}
$$

for every fixed $x \in[a, b]$. From where,

$$
\left\|y-\frac{b_{1}+b_{2}}{2} \int_{0}^{\omega} y(s) d s\right\| \leq \frac{b_{2}-b_{1}}{2}\|y\| \omega
$$

for every fixed $x \in[a, b]$. Now we use the inequality (3) and we get

$$
\frac{1}{2}\|y\| \leq \frac{b_{2}-b_{1}}{2}\|y\| \omega
$$

or

$$
1 \leq\left(b_{2}-b_{1}\right) \omega=2\left(\frac{M^{2}}{m^{2} \omega}-\frac{m^{2}}{M^{2} \omega}\right) \omega
$$

from where,

$$
\frac{1}{2} \leq \frac{M^{2}}{m^{2}}-\frac{m^{2}}{M^{2}}
$$

which is a contradiction with the conditions of the theorem 3.2. Consequently, if u_{1} and u_{2} are two solutions to the integral equation $u=\chi(u)$ we have $u_{1} \equiv u_{2}$ or $u_{1}-u_{2}$ or $u_{2}-u_{1}$ is inside element for the cone $\mathcal{C}_{+}^{\circ}(\omega)$. Now we will show that the operator χ is 1 -convex operator with respect to the cone $\mathcal{C}_{+}^{\circ}(\omega)$. First we note that $1 \in \mathcal{C}_{+}^{\circ}(\omega)$. Let $\eta(x, \lambda)=1-\lambda, \lambda \in(0,1)$. Then we have

$$
\chi(\lambda u)=\lambda^{2} \chi(u)=(1-\eta(x, \lambda)) \lambda \chi(u)
$$

Consequently the operator χ is 1 -convex operator with respect to the cone $\mathcal{C}_{+}^{\circ}(\omega)$.
From here and from Theorems 2.7, 3.1, it follows that the Korteveg-de Vries 1.1 has unique positive solution $u(t, x)=v(t) q(x)$, which is ω-periodic with respect to the time variable t and $u(0, x) \in \dot{B}_{p, q}^{\gamma}([a, b])$.

References

[1] J . Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II: The KDV-Equation, Geometric and Functional Analysis, Vol. 3, No. 3 (1993).
[2] M. A. Krasnosel'skii and P. P. Zabrejko; Geometrical Methods of Nonlinear Analysis (in Russian), Nauka, Moscow, 1975.
[3] H. Triebel, Interpolation theory, function spaces, differential operators, Berlin, 1978.
Svetlin Georgiev Georgiev
Department of Differential Equations, University of Sofia, Sofia, Bulgaria
E-mail address: sgg2000bg@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 35Q53, 35Q35, 35G25.
 Key words and phrases. Nonlinear evolution equation; Kortewg de Vries equation; periodic solutions.
 (C) 2007 Texas State University - San Marcos.

 Submitted January 18, 2006. Published April 4, 2007.

