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A REMARK ON GROUND STATE SOLUTIONS FOR
LANE-EMDEN-FOWLER EQUATIONS WITH

A CONVECTION TERM

HONGTAO XUE, ZHIJUN ZHANG

Abstract. Via a sub-supersolution method and a perturbation argument, we

study the Lane-Emden-Fowler equation

−∆u = p(x)[g(u) + f(u) + |∇u|q ]

in RN (N ≥ 3), where 0 < q < 1, p is a positive weight such that
R∞
0 rϕ(r)dr <

∞, where ϕ(r) = max|x|=r p(x), r ≥ 0. Under the hypotheses that both g and

f are sublinear, which include no monotonicity on the functions g(u), f(u),
g(u)/u and f(u)/u, we show the existence of ground state solutions.

1. Introduction

This paper concerns the Lane-Emden-Fowler type problem

−∆u = p(x)[g(u) + f(u) + |∇u|q], in RN ,

u > 0, in RN ,

u(x) → 0, as |x| → ∞,

(1.1)

where N ≥ 3, 0 < q < 1, and p : RN → (0,+∞) is a locally Hölder continuous
function of exponent 0 < α < 1 satisfying∫ ∞

0

rϕ(r)dr <∞, (1.2)

where ϕ(r) = max|x|=r p(x), r ≥ 0. We also assume that g satisfies
(G1) g ∈ C1((0,∞), (0,∞));
(G2) limu→0+

g(u)
u = +∞;

(G3) limu→∞
g(u)

u = 0,
and f : [0,∞) → [0,∞) is a locally Hölder continuous function of exponent 0 <
α < 1 satisfying

(F1) limu→0+
f(u)

u = +∞;
(F2) limu→∞

f(u)
u = 0.
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The Lane-Emden-Fowler equation arises in the study of gaseous dynamics in
astrophysics, fluid mechanics, relativistic mechanics, nuclear physics and chemical
reaction systems. By far, it has been studied by many authors using various meth-
ods. But we note that in most works, monotonicity is necessary to some extent.

With regard to semilinear elliptic problems in bounded domains, we refer for
details to [3, 4, 11, 14, 15, 21] and their references. Here, we mention the works
of Ghergu and Rǎdulescu [7], Zhang [18, 20], where the influence of the convection
term has been emphasized.

Concerning with ground state solutions for elliptic problems, that is, positive
solutions defined in the whole space and decaying to zero at infinity, we refer the
reader to the works of Čirstea and Rǎdulescu [2], Dinu [5, 6], Goncalves and Santos
[10], Sun and Li [16], Ye and Zhou [17], Zhang [19]. We mention here the work of
Zhang [22]. In [22], it showed that if g satisfies (G1)-(G3) and condition (1.2), then
the following boundary value problem

−∆u = p(x)g(u), in RN ,

u > 0, in RN ,

u(x) → 0, as |x| → ∞,

(1.3)

has at least one solution u ∈ C2+α
loc (RN ). For problem (1.3), we see that no mono-

tonicity conditions are imposed on the functions g(u) and g(u)/u . On the other
hand, condition (1.2) is necessary to prove the existence (see also Lair and Shaker
[13]).

Recently, in Ghergu and Rǎdulescu [8], the same problem (1.1) is considered,
where g ∈ C1(0,∞) is a positive decreasing function such that

lim
u→0+

g(u) = +∞,

and f : [0,∞) → [0,∞) is a Hölder continuous function of exponent 0 < α < 1
which is non-decreasing such that f > 0 on (0,∞) and satisfies (F1)-(F2) and

(F3) the mapping (0,∞) 3 u 7−→ f(u)
u is non-increasing.

Finally, they showed that in addition to condition (1.2) , if the above assumptions
are fulfilled, then problem (1.1) has at least one ground state solution.

In the present paper, we consider the existence of ground state solutions for
problem (1.1) under more general conditions. Our main result is summarized in
the following theorem.

Theorem 1.1. Assume (G1)–(G3) and (F1)–(F2). Then problem (1.1) has at
least one solution provided that condition (1.2) is fulfilled.

Remark 1.2. Some basic examples of the function g satisfying (G1)–(G3) are:
(i) u−γ + up + sinψ(u) + 1, where γ > 0, p < 1 and ψ ∈ C2(R);
(ii) e1/uγ

+ up + cosψ(u) + 1, where γ > 0, p < 1 and ψ ∈ C2(R);
(iii) u−γ ln−q1(1 + u) + lnq2(1 + u) + up + sinψ(u) + 2 with ψ ∈ C2(R) , γ > 0,

p < 1, q2 > 0 and q1 > 0;
(iv) u−γ + arctanψ(u) + π with ψ ∈ C2(R) and γ > 0.

Remark 1.3. Some basic examples of the function f satisfying (F1)–(F2) are:
(i) c1(1 + u)−α + c2u

γ + c3, where c1, c2, c3 ≥ 0, α > 0, 0 < γ < 1;
(ii) e1/(u+1) + uγ + sinψ(u) + 1, where 0 < γ < 1 and ψ ∈ C2(R);
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(iii) lnq(u+ 1) + (1 + u)−α, where q > 0, α > 0;
(iv) up lnq(u+ 1), where p, q ∈ (0, 1) and p+ q < 1.

2. Proof of Theorem 1.1

In this section, we first show the existence of positive solutions for problem (1.1)
in smooth bounded domains by a sub-supersolution method. Then, via the per-
turbation argument, we prove Theorem 1.1. First we recall the following auxiliary
results.

Lemma 2.1 ([4, Lemma 3]). Let Ω ⊂ RN be a smooth bounded domain. Suppose
the boundary-value problem

−∆u = p(x)[g(u) + f(u) + |∇u|q], u > 0, x ∈ Ω, u|∂Ω = 0, (2.1)

has a super-solution ū and a sub-solution u such that u ≤ ū in Ω, then problem
(2.1) has at least one solution u ∈ C(Ω̄) ∩ C2(Ω) in the ordered interval [u, ū].

Lemma 2.2 ([22, Lemma 2.3]). Suppose (G1)–(G3) are satisfied. Then there exists
a function g0 such that

(i) g0 ∈ C1((0,∞), (0,∞));
(ii) g(s)

s ≤ g0,∀ s > 0;
(iii) g0(s) is non-increasing on (0,∞);
(iv) lims→0+ g0(s) = ∞ and lims→∞ g0(s) = 0.

Note that if g ∈ C((0,∞), (0,∞)), the function g0 still exists in Lemma 2.2.

Lemma 2.3. Let Ω ⊂ RN be a smooth bounded domain. Assume (G1)-(G3) and
(F1)-(F2) are fulfilled. Then problem (2.1) has at least one solution u ∈ C(Ω̄) ∩
C2(Ω).

Proof. Let u be a solution of

−∆u = p(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (2.2)

The existence of u follows from the results in Zhang [22]. Obviously, u is a sub-
solution of (2.1). The main point is to find a super-solution u of (2.1) such that
u ≤ u in Ω. Then, by Lemma 2.1 we deduce that problem (2.1) has at least one
solution.

Denote σ(u) := g(u) + f(u). Then σ satisfies
• σ ∈ C((0,∞), (0,∞));
• limu→0+

σ(u)
u = +∞;

• limu→∞
σ(u)

u = 0.
By Lemma 2.2, corresponding to σ, there exists a function σ0 satisfying

(i) σ0 ∈ C1((0,∞), (0,∞));
(ii) σ(u)

u ≤ σ0, for all u > 0;
(iii) σ0(u) is non-increasing on (0,∞);
(iv) limu→0+ σ0(u) = +∞ and limu→∞ σ0(u) = 0,

such that G(u) := u(σ0(u) + 1
u ) satisfying

(G1) G ∈ C1((0,∞), (0,∞));
(G2) G(u)

u is decreasing on (0,∞);
(G3) limu→0+

G(u)
u = ∞;
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(G4) limu→∞
G(u)

u = 0.
Then, we consider the problem

−∆u = p(x)[G(u) + |∇u|q], u > 0, x ∈ Ω, u|∂Ω = 0. (2.3)

We claim that this problem has at least one classical solution, which is a super-
solution of (2.1). Indeed, let h : [0, η] → [0,∞) be such that

−h′′(t) =
G(h(t))
h(t)

, 0 < t < η < 1,

h > 0, 0 < t ≤ η < 1,

h(0) = 0.

(2.4)

The existence of h follows from the results in Agarwal and O’Regan [1, Theorem
2.1]. Since h is concave, there exists h′(0+) ∈ (0,∞], namely, h is increasing on
[0, η] for η > 0 small enough. Multiplying by h′(t) in (2.4) and integrating on [t, η],
we combine (G2) and get

(h′)2(t) ≤ 2h(η)
G(h(t))
h(t)

+ (h′)2(η), 0 < t < η.

Since sq ≤ s2 + 1, for all s ≥ 0. Combining the above inequality we have

(h′)q(t) ≤ C
G(h(t))
h(t)

, (2.5)

for all 0 < t < η < 1 and some C > 0.
Let φ1 be the normalized positive eigenfunction corresponding to the first eigen-

value λ1 of −∆ in H1
0 (Ω). By Höpf’s maximum principle, there exist δ > 0 and

ω b Ω such that
|∇φ1| > δ, in Ω \ ω. (2.6)

For the rest of this paper we denote

|φ1|∞ := max
x∈Ω̄

φ1(x), |φ1|0 := min
x∈ω̄

φ1(x),

|p|∞ := max
x∈Ω̄

p(x), |∇φ1|∞ := max
x∈Ω̄

|∇φ1(x)|.

And we fix c > 0 such that c|φ1|∞ < η.
Using the monotonicity of h and h′, it follows that

0 < h(c|φ1|0) ≤ h(cφ1) ≤ h(η), in ω, (2.7)

0 < h′(η) ≤ h′(cφ1) ≤ h′(c|φ1|0), in ω. (2.8)

Let M > 1 be such that

λ1(Mch′(η))1−q|φ|0 > 2|p|∞|∇φ1|q∞, (2.9)

M1−qC−1(cδ)2−q > 2|p|∞. (2.10)

By (G4), we can choose M > 1 large enough such that

G(Mh(c|φ1|0))
Mh(c|φ1|0)

≤ λ1c|φ1|0h′(η)
2|p|∞h(η)

. (2.11)

Next, we show that u0 = Mh(cφ1) is a super-solution of (2.3) provided that M
satisfies (2.9)-(2.11). We have

−∆u0 = λ1Mcφ1h
′(cφ1) +Mc2|∇φ1|2

G(h(cφ1))
h(cφ1)

.
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By (G2), (2.7)-(2.8) and (2.11), we have

G(Mh(cφ1))
Mh(cφ1)

≤ G(Mh(c|φ1|0))
Mh(c|φ1|0)

≤ λ1c|φ1|0h′(η)
2|p|∞h(η)

≤ λ1cφ1h
′(cφ1)

2p(x)h(cφ1)
, in ω.

It follows that

λ1Mcφ1h
′(cφ1) ≥ 2p(x)G(Mh(cφ1)), in ω. (2.12)

From (2.8)-(2.9), we have

λ1Mcφ1h
′(cφ1) ≥ 2p(x)|Mch′(cφ1)∇φ1|q = 2p(x)|∇u0|q, in ω. (2.13)

Since h(0) = 0, we get

lim
x→∂Ω

( (cδ)2

h(cφ1)
− 2|p|∞

)
= +∞,

namely,

(cδ)2

h(cφ1)
> 2|p|∞ > 2p(x), in Ω \ ω. (2.14)

From (2.6), (G2) and (2.14), we have

Mc2|∇φ1|2
G(h(cφ1))
h(cφ1)

≥Mc2δ2
G(Mh(cφ1))
Mh(cφ1)

≥ 2p(x)G(Mh(cφ1)), in Ω \ ω.

(2.15)
From (2.5)-(2.6) and (2.10), we have

Mc2|∇φ1|2
G(h(cφ1))
h(cφ1)

≥ 2p(x)|Mch′(cφ1)∇φ1|q = 2p(x)|∇ū0|q, in Ω \ ω. (2.16)

From (2.12)-(2.13) and (2.15)-(2.16), we deduce that

−∆u0 ≥ p(x)[G(u0) + |∇u0|q], in Ω,

namely, u0 = Mh(cφ1) is a super-solution of (2.3).
On the other hand, the unique solution u0 of the boundary-value problem

−∆u0 = p(x)G(u0), u0 > 0, x ∈ Ω, u0|∂Ω = 0,

is a sub-solution of problem (2.3). Here the existence of u0 follows from the results
in Goncalves and Santos [10].

Next, we prove that

u0 ≤ ū0 in Ω.

Assume the contrary; i.e., there exists x0 ∈ Ω such that ū0(x0) < u0(x0). Then,
supx∈Ω (ln(u0(x))− ln(ū0(x))) exists and is positive in Ω. At the point, we have

∇ (ln(u0(x0))− ln(ū0(x0))) = 0,

∆ (ln(u0(x0))− ln(ū0(x0))) ≤ 0.
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By (G2), we see that

∆ (ln(u0(x0))− ln(ū0(x0)))

=
∆u0(x0)
u0(x0)

− ∆ū0(x0)
ū0(x0)

− |∇u0(x0)|2

(u0(x0))2
+
|∇ū0(x0)|2

(ū0(x0))2

=
∆u0(x0)
u0(x0)

− ∆ū0(x0)
ū0(x0)

≥ p(x0)
([G(ū0(x0))

ū0(x0)
− G(u0(x0))

u0(x0)
]
+
|∇ū0(x0)|q

ū0(x0)

)
> 0,

which is a contradiction. Therefore, u0 ≥ u0 in Ω. Then by Lemma 2.1, problem
(2.3) has at least one classical solution denoted by ū, which is a super-solution of
problem (2.1).

Finally, we show that u ≤ ū in Ω. Assume the contrary, i.e., there exists x1 ∈ Ω
such that ū(x1) < u(x1). Then, supx∈Ω (ln(u(x))− ln(ū(x))) exists and is positive
in Ω. At the point, we have

∇ (ln(u(x1))− ln(ū(x1))) = 0 and ∆ (ln(u(x1))− ln(ū(x1))) ≤ 0.

Since σ0 is non-increasing on (0,∞), we have

σ0(ū(x1)) ≥ σ0(u(x1)) ≥
g(u(x1)) + f(u(x1))

u(x1)
.

Then we obtain

∆ (ln(u(x1))− ln(ū(x1)))

=
∆u(x1)
u(x1)

− ∆ū(x1)
ū(x1)

− |∇u(x1)|2

(u(x1))2
+
|∇ū(x1)|2

(ū(x1))2

=
∆u(x1)
u(x1)

− ∆ū(x1)
ū(x1)

= p(x1)
([G(ū(x1))

ū(x1)
− g(u(x1))

u(x1)
]
+
|∇ū(x1)|q

ū(x1)

)
= p(x1)

([
σ0(ū(x1))−

g(u(x1))
u(x1)

]
+

1
ū(x1)

+
|∇ū(x1)|q

ū(x1)

)
> 0,

which is a contradiction. Therefore, u ≥ u in Ω. By Lemma 2.1, the proof is
complete. �

Lemma 2.4. Assume condition (1.2) is fulfilled. Then there is a function w such
that

−∆w ≥ p(x)[g(w) + f(w) + |∇w|q], w > 0, x ∈ RN ,

w(x) → 0, as |x| → ∞.
(2.17)

Proof. Denote

Ψ(r) := r1−N

∫ r

0

tN−1ϕ(t)dt, ∀r > 0.

By condition (1.2) and the L’Hôpital’s rule, we have limr→0 Ψ(r) = limr→∞Ψ(r) =
0. Thus, Ψ is bounded on (0,∞) and it can be extended in the origin by taking
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Ψ(0) = 0. On the other hand, by integration by parts and the L’Hôpital’s rule (see
details in [8]) , we get∫ ∞

0

Ψ(r)dr = lim
r→∞

∫ r

0

Ψ(t)dt =
1

N − 2

∫ ∞

0

rϕ(r)dr <∞.

Let µ > 2 be such that
µ1−q ≥ 2 max

r≥0
Ψq(r). (2.18)

Define

ρ(x) := µ

∫ ∞

|x|
Ψ(t)dt, for x ∈ RN .

Then ρ is bounded and satisfies

−∆ρ = µϕ(|x|), ρ > 0, x ∈ RN ,

ρ(x) → 0, as |x| → ∞.

We claim that there are R > 0 and a function w ∈ C2(RN ) such that

ρ(x) =
1
R

∫ w(x)

0

t

G(t) + 1
dt. (2.19)

Indeed, since

lim
r→+∞

∫ r

0
t

G(t)+1dt

r
= lim

r→+∞

r

G(r) + 1
= +∞,

we notice first for some R > 0

|ρ|∞ ≤ 1
R

∫ R

0

t

G(t) + 1
dt,

and in particular
w(x) ≤ R, x ∈ RN . (2.20)

From (2.19) we have

|∇w| = R
G(w) + 1

w
|∇ρ| = µRΨ(|x|)G(w) + 1

w
,

and combining with (G2), we get

1
R

w

G(w) + 1
∆w +

1
R

d

dw

(
w

G(w) + 1

)
|∇w|2 = ∆ρ,

i.e.,

−∆w ≥ µRϕ(|x|)G(w) + 1
w

.

Then from (2.18), (2.20) and (G2), we obtain

−∆w ≥ µRϕ(|x|)G(w) + 1
w

≥ Rp(x)
G(w) + 1

w
+
µ

2
Rp(x)

G(w) + 1
w

≥ p(x)(G(w) + 1) + p(x)|µRG(w) + 1
w

Ψ(|x|)|q

= p(x)(G(w) + 1) + p(x)|∇w|q.



8 H. XUE, Z. ZHANG EJDE-2007/53

Hence,

−∆w ≥ p(x)[G(w) + 1 + |∇w|q], w > 0, x ∈ RN ,

w(x) → 0, as |x| → ∞.

Since G(w) > g(w) + f(w) on (0,+∞), it follows that w satisfies (2.17). The proof
is complete. �

Proof of Theorem 1.1. Consider the perturbed problem

−∆un = p(x)[g(un) + f(un) + |∇un|q], un > 0, x ∈ Bn, un|∂Bn
= 0, (2.21)

where Bn := {x ∈ RN ; |x| < n}, n = 1, 2, 3, . . . . It follows by Lemma 2.3 that
problem (2.21) has at least one solution un ∈ C2(Bn) ∩ C(B̄n). Put

un(x) = 0, ∀ |x| > n.

Let w be as in Lemma 2.4, with the same proof above, we deduce that

un(x) ≤ w(x), x ∈ RN , n = 1, 2, 3, . . . . (2.22)

Now, we need to estimate {un}. For any bounded C2+α-smooth domain Ω′ ⊂ RN ,
take Ω1 and Ω2 with C2+α-smooth boundaries, and K1 large enough, such that

Ω′ ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Bn, n ≥ K1.

Note that
un(x) ≥ u(x) > 0, ∀x ∈ BK1 , (2.23)

where BK1 is the substitution for Ω in the proof of Lemma 2.3. Let

Ψn(x) = p(x)[g(un) + f(un) + |∇un|q], x ∈ B̄K1 .

Since −∆un(x) = Ψn(x), x ∈ BK1 , by the interior estimate theorem of Ladyzen-
skaja and Ural’tseva [12, Theorem 3.1, p. 266], we get a positive constant C1

independent of n such that

max
x∈Ω̄2

|∇un(x)| ≤ C1 max
x∈B̄K1

un(x) ≤ C1 max
x∈B̄K1

w(x), ∀ x ∈ BK1 ,

i.e., |∇un(x)| is uniformly bounded on Ω̄2. It follows that {Ψn}∞K1
is uniformly

bounded on Ω̄2 and hence Ψn ∈ Lp(Ω2) for any p > 1. Since−∆un(x) = Ψn(x), x ∈
Ω2, we see by [9, Theorem 9.11], that there exists a positive constant C2 independent
of n such that

‖un‖W 2,p(Ω1) ≤ C2

(
‖Ψn‖Lp(Ω2) + ‖un‖Lp(Ω2)

)
, ∀ n ≥ K1.

Taking p > N such that α < 1 −N/p and applying Sobolev’s embedding inequal-
ity, we see that {‖un‖C1+α(Ω̄1)}

∞
K1

is uniformly bounded. Therefore Ψn ∈ Cα(Ω̄1)
and {‖Ψn‖Cα(Ω̄1)}

∞
K1

is uniformly bounded. It follows by Schauder’s interior esti-
mate theorem (see [9, Chapter 1, p. 2]) that there exists a positive constant C3

independent of n such that

‖un‖C2+α(Ω̄′) ≤ C3

(
‖Ψn‖Cα(Ω̄1) + ‖un‖C(Ω̄1)

)
, ∀ n ≥ K1;

i.e., {‖un‖C2+α(Ω̄′)}∞K1
is uniformly bounded. Using Ascoli-Arzela’s theorem and

the diagonal sequential process, we see that {un}∞K1
has a subsequence that con-

verges uniformly in the C2(Ω̄′) norm to a function u ∈ C2(Ω̄′) and u satisfies

−∆u = p(x)[g(u) + f(u) + |∇u|q], x ∈ Ω̄′.
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By (2.23), we obtain that
u > 0, ∀x ∈ Ω̄′.

Applying Schauder’s regularity theorem we see that u ∈ C2+α(Ω̄′). Since Ω′ is
arbitrary, we also see that u ∈ C2+α

loc (RN ). It follows by (2.22) that lim|x|→∞ u(x) =
0. Thus, a standard bootstrap argument shows that u is a classical solution to
problem (1.1). The proof is complete. �

At last, it is worth pointing out that Ye and Zhou [17] proved that in many
situations condition (1.2) can be replaced by the following more general condition

(P1) −∆u = p(x) has a bounded ground state solution.
Obviously, condition (1.2) implies (P1) (see [17] for details about comparison be-
tween condition (1.2) and (P1)). Therefore, we have an unsolved problem as follows.

Remark 2.5. We note that the existence of ground state solutions for problem
(1.1) is left an open problem if p satisfies condition (P1) instead of (1.2).
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[2] F. Čirstea, V. D. Rǎdulescu; Existence and uniqueness of positive solutions to a semilinear

elliptic problem in RN , J. Math. Anal. Appl. 229 (1999), 417-425.
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