Electronic Journal of Differential Equations, Vol. 2007(2007), No. 59, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# EXISTENCE OF SOLUTIONS TO $p$-LAPLACIAN DIFFERENCE EQUATIONS UNDER BARRIER STRIPS CONDITIONS 

CHENGHUA GAO

Abstract. We study the existence of solutions to the boundary-value problem

$$
\begin{aligned}
\Delta\left(\phi_{p}(\Delta u(k-1))\right) & =f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1, N]}, \\
\Delta u(0) & =A, \quad u(N+1)=B,
\end{aligned}
$$

with barrier strips conditions, where $N>1$ is a fixed natural number, $\phi_{p}(s)=$ $|s|^{p-2} s, p>1$.

## 1. Introduction

Given $a, b \in \mathbf{Z}$ and $a<b$, we employ $\mathbb{T}_{[a, b]}$ to denote $\{a, a+1, a+2, \ldots, b-1, b\}$. In this paper, we are concerned with the following $p$-Laplacian difference equation

$$
\begin{equation*}
\Delta\left(\phi_{p}(\Delta u(k-1))\right)=f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1, N]}, \tag{1.1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
\Delta u(0)=A, u(N+1)=B \tag{1.2}
\end{equation*}
$$

where $N>1$ is a fixed natural number, $f: \mathbb{T}_{[1, N]} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, $\phi_{p}(s)=$ $|s|^{p-2} s, p>1,\left(\phi_{p}\right)^{-1}=\phi_{q}, \frac{1}{p}+\frac{1}{q}=1$.

In recent years, $p$-Laplacian discrete boundary-value problems have been investigated in literature $[1,2,4]$. But, almost all of the works discussed these problems when $f$ satisfies growth restriction at $\infty$. Now, the question is: Is there still a solution to those problems when $f$ is not restricted at $\infty$ ?

In 1994, Kelevedjiev [3] used Leray-Schauder principle to discuss the solutions to the nonlinear differential boundary-value problem

$$
\begin{gather*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \quad t \in[0,1],  \tag{1.3}\\
x^{\prime}(0)=A, x(1)=B \tag{1.4}
\end{gather*}
$$

He established the following results:

[^0]Theorem 1.1. Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Suppose there are constants $L_{i}, i=1,2,3,4$, such that $L_{2}>L_{1} \geq A, L_{3}<L_{4} \leq A$,

$$
\begin{aligned}
& f(t, x, p) \leq 0, \quad(t, x, p) \in[0,1] \times \mathbb{R} \times\left[L_{1}, L_{2}\right] \\
& f(t, x, p) \geq 0, \quad(t, x, p) \in[0,1] \times \mathbb{R} \times\left[L_{3}, L_{4}\right]
\end{aligned}
$$

Then (1.3)-(1.4) has at least one solution in $C^{2}[0,1]$, where $C^{2}[0,1]$ is the set of functions whose second derivative is continuous on $[0,1]$.

Clearly, growth restrictions on $f$ are not imposed in Theorem 1.1. So, we use the Leray-Schauder principle to discuss the existence of solutions to boundary-value problem $(\sqrt{1.1})-\sqrt{1.2}$ when $f$ is not restricted at $\infty$.

## 2. Preliminaries

Let $X:=\left\{u \mid u: \mathbb{T}_{[0, N+1]} \rightarrow \mathbb{R}\right\}$ be equipped with the norm

$$
\|u\|_{X}=\max _{k \in \mathbb{T}_{[0, N+1]}}|u(k)|,
$$

and $Y:=\left\{u \mid u: \mathbb{T}_{[1, N]} \rightarrow \mathbb{R}\right\}$ with the norm

$$
\|u\|_{Y}=\max _{k \in \mathbb{T}_{[1, N]}}|u(k)| .
$$

It is easy to see that $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are Banach spaces.
The main result of our work is based on the following special form of LeraySchauder principle.

Theorem 2.1. Let $f: \mathbb{T}_{[1, N]} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous, $L: D(L) \subset X \rightarrow Y$ be $a$ bijection, and $L^{-1}$ be completely continuous. If there exists a constant $M$ such that an arbitrary solution of the boundary-value problem

$$
L u(k)=\lambda f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1, N]}, \quad \lambda \in[0,1], \quad u \in D(L)
$$

satisfies $\|u\|_{X}<M$, then the boundary-value problem

$$
L u(k)=f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1, N]}, \quad u \in D(L)
$$

has at least one solution in $X$.
Define the operator $L: D(L) \subset X \rightarrow Y$ by

$$
L u(k)=\Delta\left(\phi_{p}(\Delta u(k-1))\right), \quad u \in D(L), k \in \mathbb{T}_{[1, N]},
$$

where $D(L)=\{u \mid u \in X, \Delta u(0)=A, u(N+1)=B\}$.
Lemma 2.2. Let $h \in Y$. Then the boundary-value problem

$$
\begin{gather*}
\Delta \phi_{p}(\Delta u(k-1))=h(k), \quad k \in \mathbb{T}_{[1, N]},  \tag{2.1}\\
\Delta u(0)=A, \quad u(N+1)=B \tag{2.2}
\end{gather*}
$$

has a unique solution

$$
u(k)=B-\sum_{s=k+1}^{N+1}\left(\phi_{q}\left(\sum_{l=1}^{s-1} h(l)+\phi_{p}(A)\right)\right), \quad k \in \mathbb{T}_{[0, N+1]}
$$

Proof. Summing the equation (2.1) from $s=1$ to $s=k-1$, we obtain

$$
\phi_{p}(\Delta u(k-1))=\phi_{p}(A)+\sum_{s=1}^{k-1} h(s) .
$$

Applying $\phi_{q}$ on both sides of the above equation, we obtain

$$
\Delta u(k-1)=\phi_{q}\left(\phi_{p}(A)+\sum_{s=1}^{k-1} h(s)\right) .
$$

Summing again from $s=k+1$ to $s=N+1$, we have

$$
\begin{gathered}
B-u(k)=\sum_{s=k+1}^{N+1}\left(\phi_{q}\left(\sum_{l=1}^{s-1} h(l)+\phi_{p}(A)\right)\right) \\
u(k)=B-\sum_{s=k+1}^{N+1}\left(\phi_{q}\left(\sum_{l=1}^{s-1} h(l)+\phi_{p}(A)\right)\right), \quad k \in \mathbb{T}_{[0, N+1]}
\end{gathered}
$$

Next, we show that there is only one solution to (1.1)-(1.2). Suppose that $u_{1}, u_{2}$ are solutions. Then

$$
\begin{equation*}
\Delta\left(\phi_{p}\left(\Delta u_{1}(k-1)\right)\right)=\Delta\left(\phi_{p}\left(\Delta u_{2}(k-1)\right)\right), \quad k \in \mathbb{T}_{[1, N]}, \tag{2.3}
\end{equation*}
$$

and $\Delta u_{i}(0)=A, u_{i}(N+1)=B, i=1,2$. Now, summing 2.3 from $s=1$ to $s=k-1$, we get

$$
\phi_{p}\left(\Delta u_{1}(k-1)\right)-\phi_{p}\left(\Delta u_{2}(k-1)\right)=\phi_{p}\left(\Delta u_{1}(0)\right)-\phi_{p}\left(\Delta u_{2}(0)\right),
$$

furthermore, $\Delta u_{i}(0)=A, i=1,2$,

$$
\phi_{p}\left(\Delta u_{1}(k-1)\right)=\phi_{p}\left(\Delta u_{2}(k-1)\right)
$$

and since $\phi_{p}$ is a bijection,

$$
\Delta u_{1}(k-1)=\Delta u_{2}(k-1)
$$

Summing the above equation from $s=k+1$ to $s=N+1$, we have

$$
\begin{aligned}
\sum_{s=k+1}^{N+1} \Delta u_{1}(k-1) & =\sum_{s=k+1}^{N+1} \Delta u_{2}(k-1) \\
B-u_{1}(k) & =B-u_{2}(k)
\end{aligned}
$$

so $u_{1}(k)=u_{2}(k), k \in \mathbb{T}_{[1, N]}$, and from the boundary conditions $\Delta u_{i}(0)=A$, $u_{i}(N+1)=B$, we have

$$
u_{1}(k)=u_{2}(k), \quad k \in \mathbb{T}_{[0, N+1]} .
$$

We remark that from Lemma 2.2 , it follows that $L$ is a bijection.
Lemma 2.3. $L^{-1}: Y \rightarrow X$ is completely continuous.
Proof. Since the range of $L^{-1}$ has finite dimension, it is not difficult to check that it is compact; and from the continuity of $f$ and $\phi_{q}$, we can see that $L^{-1}$ is continuous.

## 3. Main Results

Theorem 3.1. Let $f: \mathbb{T}_{[1, N]} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Suppose there exist constants $L_{i}, i=1,2,3,4$ satisfying $L_{2}>L_{1} \geq A, L_{3}<L_{4} \leq A$, such that

$$
\begin{align*}
& f(k, u, p) \leq 0, \quad(k, u, p) \in \mathbb{T}_{[1, N]} \times \mathbb{R} \times\left[L_{1}, L_{2}\right]  \tag{3.1}\\
& f(k, u, p) \geq 0, \quad(k, u, p) \in \mathbb{T}_{[1, N]} \times \mathbb{R} \times\left[L_{3}, L_{4}\right] \tag{3.2}
\end{align*}
$$

Then the boundary-value problem (1.1)-(1.2) has at least one solution in $X$.
Proof. Let us define the function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ as follows.

$$
\Phi(v)= \begin{cases}L_{2}, & v>L_{2} \\ v, & L_{3} \leq v \leq L_{2} \\ L_{3}, & v<L_{3}\end{cases}
$$

Now, we consider the problem

$$
\begin{equation*}
\Delta\left(\phi_{p}(\Delta u(k-1))\right)=f(k, u(k), \Phi(\Delta u(k))), \quad k \in \mathbb{T}_{[1, N]}, u \in D(L) \tag{3.3}
\end{equation*}
$$

Suppose that $u \in D(L)$ is an arbitrary solution to the family of problems

$$
\begin{equation*}
\Delta\left(\phi_{p}(\Delta u(k-1))\right)=\lambda f(k, u(k), \Phi(\Delta u(k))), \quad k \in \mathbb{T}_{[1, N]} \tag{3.4}
\end{equation*}
$$

To apply Theorem 2.1, we need a priori bounds for $\|u\|_{X}$ independent of $\lambda \in[0,1]$. First, let us examine $\Delta u(k)$. Now, we prove that the set

$$
S_{0}=\left\{k \in \mathbb{T}_{[0, N]} \mid \Delta u(k)>L_{1}\right\}
$$

is empty. Suppose it is not empty. Let $k_{0} \in S_{0}$ be fixed. Then $\Delta u\left(k_{0}\right)>L_{1}$. From the construction of $\Phi$, we know

$$
L_{1}<\Phi\left(\Delta u\left(k_{0}\right)\right) \leq L_{2} .
$$

From (3.1) and $\Delta\left(\phi_{p}\left(\Delta u\left(k_{0}-1\right)\right)\right) \leq 0$, we have

$$
\begin{equation*}
\left|\Delta u\left(k_{0}\right)\right|^{p-2} \Delta u\left(k_{0}\right) \leq\left|\Delta u\left(k_{0}-1\right)\right|^{p-2} \Delta u\left(k_{0}-1\right) . \tag{3.5}
\end{equation*}
$$

Now, we prove $k_{0}-1 \in S_{0}$. It will be discussed in three cases:
Case 1: $\Delta u\left(k_{0}\right)>0$. Then from (3.5), we know $L_{1}<\Delta u\left(k_{0}\right) \leq \Delta u\left(k_{0}-1\right)$;
Case 2: $\Delta u\left(k_{0}\right)=0$. Then the result is obvious;
Case 3: $\Delta u\left(k_{0}\right)<0$. Then $\Delta u\left(k_{0}-1\right)$ will be discussed under two cases.
Case 3.1: $\Delta u\left(k_{0}-1\right) \geq 0$. Then from (3.5), $\Delta u\left(k_{0}-1\right)>L_{1}$;
Case 3.2: $\Delta u\left(k_{0}-1\right)<0$. Then $p$ will be discussed under different situations.
Case 3.2.1: $p$ is an odd number. Then $\left(-\Delta u\left(k_{0}\right)\right)^{p-2}=-\left(\Delta u\left(k_{0}\right)\right)^{p-2}$. From (3.5), we know $-\left(\Delta u\left(k_{0}\right)\right)^{p-1} \leq\left|\Delta u\left(k_{0}-1\right)\right|^{p-2} \Delta u\left(k_{0}-1\right)$. Moreover, $\Delta u\left(k_{0}-1\right)<$ 0 , we have $-\left(\Delta u\left(k_{0}\right)\right)^{p-1} \leq-\left(\Delta u\left(k_{0}-1\right)\right)^{p-1}$. Since $p-1$ is an even number and $\Delta u\left(k_{0}\right), \Delta u\left(k_{0}-1\right)<0$, it's not difficult to get

$$
L_{1}<\Delta u\left(k_{0}\right) \leq \Delta u\left(k_{0}-1\right)
$$

Case 3.2.2: $p$ is an even number. Then we have $\left(\Delta u\left(k_{0}\right)\right)^{p-1} \leq\left(\Delta u\left(k_{0}-1\right)\right)^{p-1}$, and since $p-1$ is an odd number, we know that

$$
L_{1}<\Delta u\left(k_{0}\right) \leq \Delta u\left(k_{0}-1\right)
$$

so, when $\Delta u\left(k_{0}\right)<0, \Delta u\left(k_{0}-1\right)<0$, there also exists

$$
L_{1}<\Delta u\left(k_{0}\right) \leq \Delta u\left(k_{0}-1\right)
$$

From Case 1, Case 2, Case 3, we obtain

$$
L_{1}<\Delta u\left(k_{0}\right) \leq \Delta u\left(k_{0}-1\right)
$$

so $k_{0}-1 \in S_{0}$. If we continue the above process, we get

$$
\Delta u(0) \geq \Delta u(1)>L_{1}
$$

which contradicts with $\Delta u(0)=A$, so $S_{0}=\emptyset$.
Similarly, we can obtain that the set

$$
S_{1}=\left\{k \in \mathbb{T}_{[0, N]} \mid \Delta u(k)<L_{4}\right\}
$$

is also empty.
Then for $k \in \mathbb{T}_{[0, N]}$,

$$
\begin{equation*}
L_{4} \leq \Delta u(k) \leq L_{1} \tag{3.6}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\max _{k \in \mathbb{T}_{[0, N]}}|\Delta u(k)| \leq C, \tag{3.7}
\end{equation*}
$$

where $C=\max \left\{\left|L_{1}\right|,\left|L_{4}\right|\right\}$.
On the other hand, for $k \in \mathbb{T}_{[0, N]}$, since $u(N+1)=B$, we can construct $u(k)=-\sum_{s=k}^{N} \Delta u(s)+B$. Thus for $u \in D(L)$, we have

$$
\begin{equation*}
\max _{k \in \mathbb{T}_{[0, N+1]}}|u(k)| \leq C_{1} \tag{3.8}
\end{equation*}
$$

where $C_{1}=(N+1) \cdot C+|B|$. From (3.8), we can see that all of the solutions to problems 3.4 satisfy

$$
\|u\|_{X} \leq C_{1}
$$

Then there exists at least one solution $u \in D(L)$ to problem (3.3). And from (3.6), we know that

$$
L_{3}<L_{4} \leq \Phi(\Delta u(k)) \leq L_{1}<L_{2}, \quad k \in \mathbb{T}_{[1, N]}
$$

together with the definition of $\Phi$, the following conclusion

$$
\Phi(\Delta u(k))=\Delta u(k), \quad k \in \mathbb{T}_{[1, N]}
$$

can be obtained. Thus $u$ is also a solution to the problem $1.1-1.2$.
Example. Consider the problem

$$
\begin{gathered}
\Delta\left(\phi_{p}(\Delta u(k-1))\right)=(\Delta u(k))^{4}-6(\Delta u(k))^{3}+11(\Delta u(k))^{2}-6 \Delta u(k), \quad k \in \mathbb{T}_{[1, N]} \\
\Delta u(0)=2, u(N+1)=B
\end{gathered}
$$

where $N>1$ is a fixed natural number, $B$ is an arbitrary number. Let $f(k, u, p)=$ $p^{4}-6 p^{3}+11 p^{2}-6 p, L_{1}=\frac{5}{2}, L_{2}=3, L_{3}=1, L_{4}=\frac{3}{2}, A=2$. We can prove that $f(k, u, p)$ satisfies all conditions of Theorem 3.1. so this problem has at least one solution.

The next theorem can be proved by similar arguments.
Theorem 3.2. Let $f: \mathbb{T}_{[1, N]} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Suppose there are constants $L_{i}, i=1,2,3,4$ with $L_{2}>L_{1} \geq B, L_{3}<L_{4} \leq B$, such that (3.1), 3.2) are satisfied. Then the boundary-value problem

$$
\begin{aligned}
\Delta\left(\phi_{p}(\Delta u(k-1))\right) & =f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1, N]} \\
u(0) & =A, \quad \Delta u(N)=B
\end{aligned}
$$

has at least one solution in $X$.

## References

[1] Jifeng Chu, Daqing Jiang; Eigenvalues and discrete boundary-value problems for the onedimensional p-Laplacian, Journal of Mathematical Analysis and Applications, 305 (2005): 452-465.
[2] Zhimin He; On the existence of positive solutions of p-Laplacian difference equations, Journal of Computational and Applied Mathmatics, 161 (2003): 193-201.
[3] P. Kelevedjiev; Existence of solutions for two-point boundary-value problems, J. Nonlinear Analysis. 22(1) (1994): 217-224.
[4] Yongkun Li, Linghong Lu; Existence of positive solutions of p-Laplacian difference equations, Applied Mathematics Letters, 19 (2006): 1019-1023.

Chenghua Gao
College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China

E-mail address: gaokuguo@163.com


[^0]:    2000 Mathematics Subject Classification. 39A10.
    Key words and phrases. Second-order p-Laplacian difference equation; barrier strips; Leray-Schauder principle; existence.
    © 2007 Texas State University - San Marcos.
    Submitted January 24, 2007. Published April 22, 2007.

