Electronic Journal of Differential Equations, Vol. 2007(2007), No. 59, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS TO *p*-LAPLACIAN DIFFERENCE EQUATIONS UNDER BARRIER STRIPS CONDITIONS

CHENGHUA GAO

ABSTRACT. We study the existence of solutions to the boundary-value problem

$$\Delta(\phi_p(\Delta u(k-1))) = f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1,N]},$$

$$\Delta u(0) = A, \quad u(N+1) = B,$$

with barrier strips conditions, where N>1 is a fixed natural number, $\phi_p(s)=|s|^{p-2}s,\,p>1.$

1. INTRODUCTION

Given $a, b \in \mathbb{Z}$ and a < b, we employ $\mathbb{T}_{[a,b]}$ to denote $\{a, a+1, a+2, \dots, b-1, b\}$. In this paper, we are concerned with the following *p*-Laplacian difference equation

$$\Delta(\phi_p(\Delta u(k-1))) = f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1,N]}, \tag{1.1}$$

satisfying the boundary conditions

$$\Delta u(0) = A, u(N+1) = B, \tag{1.2}$$

where N > 1 is a fixed natural number, $f : \mathbb{T}_{[1,N]} \times \mathbb{R}^2 \to \mathbb{R}$ is continuous, $\phi_p(s) = |s|^{p-2}s, p > 1, (\phi_p)^{-1} = \phi_q, \frac{1}{p} + \frac{1}{q} = 1.$

In recent years, *p*-Laplacian discrete boundary-value problems have been investigated in literature [1,2,4]. But, almost all of the works discussed these problems when f satisfies growth restriction at ∞ . Now, the question is: Is there still a solution to those problems when f is not restricted at ∞ ?

In 1994, Kelevedjiev [3] used Leray-Schauder principle to discuss the solutions to the nonlinear differential boundary-value problem

$$x''(t) = f(t, x(t), x'(t)), \quad t \in [0, 1],$$
(1.3)

$$x'(0) = A, x(1) = B.$$
(1.4)

He established the following results:

²⁰⁰⁰ Mathematics Subject Classification. 39A10.

Key words and phrases. Second-order p-Laplacian difference equation; barrier strips;

Leray-Schauder principle; existence.

^{©2007} Texas State University - San Marcos.

Submitted January 24, 2007. Published April 22, 2007.

Theorem 1.1. Let $f : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be continuous. Suppose there are constants $L_i, i = 1, 2, 3, 4$, such that $L_2 > L_1 \ge A$, $L_3 < L_4 \le A$,

$$f(t, x, p) \le 0, \quad (t, x, p) \in [0, 1] \times \mathbb{R} \times [L_1, L_2],$$

$$f(t, x, p) \ge 0, \quad (t, x, p) \in [0, 1] \times \mathbb{R} \times [L_3, L_4].$$

Then (1.3)-(1.4) has at least one solution in $C^{2}[0,1]$, where $C^{2}[0,1]$ is the set of functions whose second derivative is continuous on [0,1].

Clearly, growth restrictions on f are not imposed in Theorem 1.1. So, we use the Leray-Schauder principle to discuss the existence of solutions to boundary-value problem (1.1)-(1.2) when f is not restricted at ∞ .

2. Preliminaries

Let $X := \{u | u : \mathbb{T}_{[0,N+1]} \to \mathbb{R}\}$ be equipped with the norm

$$||u||_X = \max_{k \in \mathbb{T}_{[0,N+1]}} |u(k)|,$$

and $Y := \{u | u : \mathbb{T}_{[1,N]} \to \mathbb{R}\}$ with the norm

$$||u||_Y = \max_{k \in \mathbb{T}_{[1,N]}} |u(k)|.$$

It is easy to see that $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are Banach spaces.

The main result of our work is based on the following special form of Leray-Schauder principle.

Theorem 2.1. Let $f : \mathbb{T}_{[1,N]} \times \mathbb{R}^2 \to \mathbb{R}$ be continuous, $L : D(L) \subset X \to Y$ be a bijection, and L^{-1} be completely continuous. If there exists a constant M such that an arbitrary solution of the boundary-value problem

$$Lu(k) = \lambda f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1,N]}, \quad \lambda \in [0,1], \quad u \in D(L)$$

satisfies $||u||_X < M$, then the boundary-value problem

$$Lu(k) = f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1,N]}, \quad u \in D(L)$$

has at least one solution in X.

Define the operator $L: D(L) \subset X \to Y$ by

$$Lu(k) = \Delta(\phi_p(\Delta u(k-1))), \quad u \in D(L), \ k \in \mathbb{T}_{[1,N]},$$

where $D(L) = \{u | u \in X, \Delta u(0) = A, u(N+1) = B\}.$

Lemma 2.2. Let $h \in Y$. Then the boundary-value problem

$$\Delta \phi_p(\Delta u(k-1)) = h(k), \quad k \in \mathbb{T}_{[1,N]}, \tag{2.1}$$

$$\Delta u(0) = A, \quad u(N+1) = B \tag{2.2}$$

has a unique solution

$$u(k) = B - \sum_{s=k+1}^{N+1} \left(\phi_q \left(\sum_{l=1}^{s-1} h(l) + \phi_p(A) \right) \right), \quad k \in \mathbb{T}_{[0,N+1]}.$$

EJDE-2007/59

Proof. Summing the equation (2.1) from s = 1 to s = k - 1, we obtain

$$\phi_p(\Delta u(k-1)) = \phi_p(A) + \sum_{s=1}^{k-1} h(s).$$

Applying ϕ_q on both sides of the above equation, we obtain

$$\Delta u(k-1) = \phi_q(\phi_p(A) + \sum_{s=1}^{k-1} h(s)).$$

Summing again from s = k + 1 to s = N + 1, we have

$$B - u(k) = \sum_{s=k+1}^{N+1} (\phi_q(\sum_{l=1}^{s-1} h(l) + \phi_p(A))),$$
$$u(k) = B - \sum_{s=k+1}^{N+1} (\phi_q(\sum_{l=1}^{s-1} h(l) + \phi_p(A))), \quad k \in \mathbb{T}_{[0,N+1]}$$

Next, we show that there is only one solution to (1.1)-(1.2). Suppose that u_1, u_2 are solutions. Then

$$\Delta(\phi_p(\Delta u_1(k-1))) = \Delta(\phi_p(\Delta u_2(k-1))), \quad k \in \mathbb{T}_{[1,N]},$$
(2.3)

and $\Delta u_i(0) = A$, $u_i(N+1) = B$, i = 1, 2. Now, summing (2.3) from s = 1 to s = k - 1, we get

$$\phi_p(\Delta u_1(k-1)) - \phi_p(\Delta u_2(k-1)) = \phi_p(\Delta u_1(0)) - \phi_p(\Delta u_2(0)),$$

furthermore, $\Delta u_i(0) = A, i = 1, 2,$

$$\phi_p(\Delta u_1(k-1)) = \phi_p(\Delta u_2(k-1)),$$

and since ϕ_p is a bijection,

$$\Delta u_1(k-1) = \Delta u_2(k-1).$$

Summing the above equation from s = k + 1 to s = N + 1, we have

$$\sum_{s=k+1}^{N+1} \Delta u_1(k-1) = \sum_{s=k+1}^{N+1} \Delta u_2(k-1),$$
$$B - u_1(k) = B - u_2(k),$$

so $u_1(k) = u_2(k), k \in \mathbb{T}_{[1,N]}$, and from the boundary conditions $\Delta u_i(0) = A$, $u_i(N+1) = B$, we have

$$u_1(k) = u_2(k), \quad k \in \mathbb{T}_{[0,N+1]}.$$

We remark that from Lemma 2.2, it follows that L is a bijection.

Lemma 2.3. $L^{-1}: Y \to X$ is completely continuous.

Proof. Since the range of L^{-1} has finite dimension, it is not difficult to check that it is compact; and from the continuity of f and ϕ_q , we can see that L^{-1} is continuous.

3. Main results

Theorem 3.1. Let $f : \mathbb{T}_{[1,N]} \times \mathbb{R}^2 \to \mathbb{R}$ be continuous. Suppose there exist constants $L_i, i = 1, 2, 3, 4$ satisfying $L_2 > L_1 \ge A, L_3 < L_4 \le A$, such that

$$f(k, u, p) \le 0, \quad (k, u, p) \in \mathbb{T}_{[1,N]} \times \mathbb{R} \times [L_1, L_2], \tag{3.1}$$

$$f(k, u, p) \ge 0, \quad (k, u, p) \in \mathbb{T}_{[1,N]} \times \mathbb{R} \times [L_3, L_4].$$
 (3.2)

Then the boundary-value problem (1.1)-(1.2) has at least one solution in X.

Proof. Let us define the function $\Phi : \mathbb{R} \to \mathbb{R}$ as follows.

$$\Phi(v) = \begin{cases} L_2, & v > L_2, \\ v, & L_3 \le v \le L_2 \\ L_3, & v < L_3. \end{cases}$$

Now, we consider the problem

$$\Delta(\phi_p(\Delta u(k-1))) = f(k, u(k), \Phi(\Delta u(k))), \quad k \in \mathbb{T}_{[1,N]}, u \in D(L).$$

$$(3.3)$$

Suppose that $u \in D(L)$ is an arbitrary solution to the family of problems

$$\Delta(\phi_p(\Delta u(k-1))) = \lambda f(k, u(k), \Phi(\Delta u(k))), \quad k \in \mathbb{T}_{[1,N]}.$$
(3.4)

To apply Theorem 2.1, we need a priori bounds for $||u||_X$ independent of $\lambda \in [0, 1]$. First, let us examine $\Delta u(k)$. Now, we prove that the set

$$S_0 = \{k \in \mathbb{T}_{[0,N]} | \Delta u(k) > L_1\}$$

is empty. Suppose it is not empty. Let $k_0 \in S_0$ be fixed. Then $\Delta u(k_0) > L_1$. From the construction of Φ , we know

$$L_1 < \Phi(\Delta u(k_0)) \le L_2.$$

From (3.1) and $\Delta(\phi_p(\Delta u(k_0-1))) \leq 0$, we have

$$|\Delta u(k_0)|^{p-2} \Delta u(k_0) \le |\Delta u(k_0 - 1)|^{p-2} \Delta u(k_0 - 1).$$
(3.5)

Now, we prove $k_0 - 1 \in S_0$. It will be discussed in three cases: **Case 1:** $\Delta u(k_0) > 0$. Then from (3.5), we know $L_1 < \Delta u(k_0) \le \Delta u(k_0 - 1)$; **Case 2:** $\Delta u(k_0) = 0$. Then the result is obvious; **Case 3:** $\Delta u(k_0) < 0$. Then $\Delta u(k_0 - 1)$ will be discussed under two cases. **Case 3.1:** $\Delta u(k_0 - 1) \ge 0$. Then from (3.5), $\Delta u(k_0 - 1) > L_1$; **Case 3.2:** $\Delta u(k_0 - 1) < 0$. Then p will be discussed under different situations. **Case 3.2:** $\Delta u(k_0 - 1) < 0$. Then p will be discussed under different situations. **Case 3.2.1:** p is an odd number. Then $(-\Delta u(k_0))^{p-2} = -(\Delta u(k_0))^{p-2}$. From (3.5), we know $-(\Delta u(k_0))^{p-1} \le |\Delta u(k_0 - 1)|^{p-2}\Delta u(k_0 - 1)$. Moreover, $\Delta u(k_0 - 1) < 0$, we have $-(\Delta u(k_0))^{p-1} \le -(\Delta u(k_0 - 1))^{p-1}$. Since p-1 is an even number and $\Delta u(k_0), \Delta u(k_0 - 1) < 0$, it's not difficult to get

$$L_1 < \Delta u(k_0) \le \Delta u(k_0 - 1);$$

Case 3.2.2: p is an even number. Then we have $(\Delta u(k_0))^{p-1} \leq (\Delta u(k_0-1))^{p-1}$, and since p-1 is an odd number, we know that

$$L_1 < \Delta u(k_0) \le \Delta u(k_0 - 1);$$

so, when $\Delta u(k_0) < 0$, $\Delta u(k_0 - 1) < 0$, there also exists

$$L_1 < \Delta u(k_0) \le \Delta u(k_0 - 1).$$

EJDE-2007/59

From Case 1, Case 2, Case 3, we obtain

$$L_1 < \Delta u(k_0) \le \Delta u(k_0 - 1),$$

so $k_0 - 1 \in S_0$. If we continue the above process, we get

$$\Delta u(0) \ge \Delta u(1) > L_1,$$

which contradicts with $\Delta u(0) = A$, so $S_0 = \emptyset$.

Similarly, we can obtain that the set

$$S_1 = \{k \in \mathbb{T}_{[0,N]} | \Delta u(k) < L_4\}$$

is also empty.

Then for $k \in \mathbb{T}_{[0,N]}$,

$$L_4 \le \Delta u(k) \le L_1, \tag{3.6}$$

i.e.,

$$\max_{k \in \mathbb{T}_{[0,N]}} |\Delta u(k)| \le C, \tag{3.7}$$

where $C = \max\{|L_1|, |L_4|\}.$

On the other hand, for $k \in \mathbb{T}_{[0,N]}$, since u(N+1) = B, we can construct $u(k) = -\sum_{s=k}^{N} \Delta u(s) + B$. Thus for $u \in D(L)$, we have

$$\max_{k \in \mathbb{T}_{[0,N+1]}} |u(k)| \le C_1, \tag{3.8}$$

where $C_1 = (N + 1) \cdot C + |B|$. From (3.8), we can see that all of the solutions to problems (3.4) satisfy

$$\|u\|_X \le C_1$$

Then there exists at least one solution $u \in D(L)$ to problem (3.3). And from (3.6), we know that

$$L_3 < L_4 \le \Phi(\Delta u(k)) \le L_1 < L_2, \quad k \in \mathbb{T}_{[1,N]},$$

together with the definition of Φ , the following conclusion

$$\Phi(\Delta u(k)) = \Delta u(k), \quad k \in \mathbb{T}_{[1,N]},$$

can be obtained. Thus u is also a solution to the problem (1.1)-(1.2).

Example. Consider the problem

$$\Delta(\phi_p(\Delta u(k-1))) = (\Delta u(k))^4 - 6(\Delta u(k))^3 + 11(\Delta u(k))^2 - 6\Delta u(k), \quad k \in \mathbb{T}_{[1,N]},$$

$$\Delta u(0) = 2, u(N+1) = B,$$

where N > 1 is a fixed natural number, B is an arbitrary number. Let $f(k, u, p) = p^4 - 6p^3 + 11p^2 - 6p$, $L_1 = \frac{5}{2}$, $L_2 = 3$, $L_3 = 1$, $L_4 = \frac{3}{2}$, A = 2. We can prove that f(k, u, p) satisfies all conditions of Theorem 3.1, so this problem has at least one solution.

The next theorem can be proved by similar arguments.

Theorem 3.2. Let $f : \mathbb{T}_{[1,N]} \times \mathbb{R}^2 \to \mathbb{R}$ be continuous. Suppose there are constants L_i , i = 1, 2, 3, 4 with $L_2 > L_1 \ge B$, $L_3 < L_4 \le B$, such that (3.1), (3.2) are satisfied. Then the boundary-value problem

$$\begin{split} \Delta(\phi_p(\Delta u(k-1))) &= f(k, u(k), \Delta u(k)), \quad k \in \mathbb{T}_{[1,N]}, \\ u(0) &= A, \quad \Delta u(N) = B \end{split}$$

has at least one solution in X.

References

- Jifeng Chu, Daqing Jiang; Eigenvalues and discrete boundary-value problems for the onedimensional p-Laplacian, Journal of Mathematical Analysis and Applications, 305 (2005): 452-465.
- [2] Zhimin He; On the existence of positive solutions of p-Laplacian difference equations, Journal of Computational and Applied Mathematics, **161** (2003): 193-201.
- [3] P. Kelevedjiev; Existence of solutions for two-point boundary-value problems, J. Nonlinear Analysis. 22(1) (1994): 217-224.
- [4] Yongkun Li, Linghong Lu; Existence of positive solutions of p-Laplacian difference equations, Applied Mathematics Letters, **19** (2006): 1019-1023.

Chenghua Gao

College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China

 $E\text{-}mail\ address: \texttt{gaokuguo@163.com}$