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EXISTENCE OF SOLUTIONS TO p-LAPLACIAN DIFFERENCE
EQUATIONS UNDER BARRIER STRIPS CONDITIONS

CHENGHUA GAO

Abstract. We study the existence of solutions to the boundary-value problem

∆(φp(∆u(k − 1))) = f(k, u(k), ∆u(k)), k ∈ T[1,N ],

∆u(0) = A, u(N + 1) = B,

with barrier strips conditions, where N > 1 is a fixed natural number, φp(s) =

|s|p−2s, p > 1.

1. Introduction

Given a, b ∈ Z and a < b, we employ T[a,b] to denote {a, a+1, a+2, . . . , b−1, b}.
In this paper, we are concerned with the following p-Laplacian difference equation

∆(φp(∆u(k − 1))) = f(k, u(k),∆u(k)), k ∈ T[1,N ], (1.1)

satisfying the boundary conditions

∆u(0) = A, u(N + 1) = B, (1.2)

where N > 1 is a fixed natural number, f : T[1,N ] ×R2 → R is continuous, φp(s) =
|s|p−2s, p > 1, (φp)−1 = φq,

1
p + 1

q = 1.
In recent years, p-Laplacian discrete boundary-value problems have been inves-

tigated in literature [1,2,4]. But, almost all of the works discussed these problems
when f satisfies growth restriction at ∞. Now, the question is: Is there still a
solution to those problems when f is not restricted at ∞?

In 1994, Kelevedjiev [3] used Leray-Schauder principle to discuss the solutions
to the nonlinear differential boundary-value problem

x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1], (1.3)

x′(0) = A, x(1) = B. (1.4)

He established the following results:
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Theorem 1.1. Let f : [0, 1]×R2 → R be continuous. Suppose there are constants
Li, i = 1, 2, 3, 4, such that L2 > L1 ≥ A, L3 < L4 ≤ A,

f(t, x, p) ≤ 0, (t, x, p) ∈ [0, 1]× R× [L1, L2],

f(t, x, p) ≥ 0, (t, x, p) ∈ [0, 1]× R× [L3, L4].

Then (1.3)-(1.4) has at least one solution in C2[0, 1], where C2[0, 1] is the set of
functions whose second derivative is continuous on [0, 1].

Clearly, growth restrictions on f are not imposed in Theorem 1.1. So, we use
the Leray-Schauder principle to discuss the existence of solutions to boundary-value
problem (1.1)-(1.2) when f is not restricted at ∞.

2. Preliminaries

Let X := {u|u : T[0,N+1] → R} be equipped with the norm

‖u‖X = max
k∈T[0,N+1]

|u(k)|,

and Y := {u|u : T[1,N ] → R} with the norm

‖u‖Y = max
k∈T[1,N]

|u(k)|.

It is easy to see that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces.
The main result of our work is based on the following special form of Leray-

Schauder principle.

Theorem 2.1. Let f : T[1,N ] × R2 → R be continuous, L : D(L) ⊂ X → Y be a
bijection, and L−1 be completely continuous. If there exists a constant M such that
an arbitrary solution of the boundary-value problem

Lu(k) = λf(k, u(k),∆u(k)), k ∈ T[1,N ], λ ∈ [0, 1], u ∈ D(L)

satisfies ‖u‖X < M , then the boundary-value problem

Lu(k) = f(k, u(k),∆u(k)), k ∈ T[1,N ], u ∈ D(L)

has at least one solution in X.

Define the operator L : D(L) ⊂ X → Y by

Lu(k) = ∆(φp(∆u(k − 1))), u ∈ D(L), k ∈ T[1,N ],

where D(L) = {u|u ∈ X, ∆u(0) = A, u(N + 1) = B}.

Lemma 2.2. Let h ∈ Y . Then the boundary-value problem

∆φp(∆u(k − 1)) = h(k), k ∈ T[1,N ], (2.1)

∆u(0) = A, u(N + 1) = B (2.2)

has a unique solution

u(k) = B −
N+1∑

s=k+1

(
φq

( s−1∑
l=1

h(l) + φp(A)
))

, k ∈ T[0,N+1].
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Proof. Summing the equation (2.1) from s = 1 to s = k − 1, we obtain

φp(∆u(k − 1)) = φp(A) +
k−1∑
s=1

h(s).

Applying φq on both sides of the above equation, we obtain

∆u(k − 1) = φq(φp(A) +
k−1∑
s=1

h(s)).

Summing again from s = k + 1 to s = N + 1, we have

B − u(k) =
N+1∑

s=k+1

(φq(
s−1∑
l=1

h(l) + φp(A))),

u(k) = B −
N+1∑

s=k+1

(φq(
s−1∑
l=1

h(l) + φp(A))), k ∈ T[0,N+1].

Next, we show that there is only one solution to (1.1)-(1.2). Suppose that u1, u2

are solutions. Then

∆(φp(∆u1(k − 1))) = ∆(φp(∆u2(k − 1))), k ∈ T[1,N ], (2.3)

and ∆ui(0) = A, ui(N + 1) = B, i = 1, 2. Now, summing (2.3) from s = 1 to
s = k − 1, we get

φp(∆u1(k − 1))− φp(∆u2(k − 1)) = φp(∆u1(0))− φp(∆u2(0)),

furthermore, ∆ui(0) = A, i = 1, 2,

φp(∆u1(k − 1)) = φp(∆u2(k − 1)),

and since φp is a bijection,

∆u1(k − 1) = ∆u2(k − 1).

Summing the above equation from s = k + 1 to s = N + 1, we have
N+1∑

s=k+1

∆u1(k − 1) =
N+1∑

s=k+1

∆u2(k − 1),

B − u1(k) = B − u2(k),

so u1(k) = u2(k), k ∈ T[1,N ], and from the boundary conditions ∆ui(0) = A,
ui(N + 1) = B, we have

u1(k) = u2(k), k ∈ T[0,N+1].

�

We remark that from Lemma 2.2, it follows that L is a bijection.

Lemma 2.3. L−1 : Y → X is completely continuous.

Proof. Since the range of L−1 has finite dimension, it is not difficult to check
that it is compact; and from the continuity of f and φq, we can see that L−1 is
continuous. �
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3. Main results

Theorem 3.1. Let f : T[1,N ]×R2 → R be continuous. Suppose there exist constants
Li, i = 1, 2, 3, 4 satisfying L2 > L1 ≥ A, L3 < L4 ≤ A, such that

f(k, u, p) ≤ 0, (k, u, p) ∈ T[1,N ] × R× [L1, L2], (3.1)

f(k, u, p) ≥ 0, (k, u, p) ∈ T[1,N ] × R× [L3, L4]. (3.2)

Then the boundary-value problem (1.1)-(1.2) has at least one solution in X.

Proof. Let us define the function Φ : R → R as follows.

Φ(v) =


L2, v > L2,

v, L3 ≤ v ≤ L2,

L3, v < L3.

Now, we consider the problem

∆(φp(∆u(k − 1))) = f(k, u(k),Φ(∆u(k))), k ∈ T[1,N ], u ∈ D(L). (3.3)

Suppose that u ∈ D(L) is an arbitrary solution to the family of problems

∆(φp(∆u(k − 1))) = λf(k, u(k),Φ(∆u(k))), k ∈ T[1,N ]. (3.4)

To apply Theorem 2.1, we need a priori bounds for ‖u‖X independent of λ ∈ [0, 1].
First, let us examine ∆u(k). Now, we prove that the set

S0 = {k ∈ T[0,N ]|∆u(k) > L1}

is empty. Suppose it is not empty. Let k0 ∈ S0 be fixed. Then ∆u(k0) > L1. From
the construction of Φ, we know

L1 < Φ(∆u(k0)) ≤ L2.

From (3.1) and ∆(φp(∆u(k0 − 1))) ≤ 0, we have

|∆u(k0)|p−2∆u(k0) ≤ |∆u(k0 − 1)|p−2∆u(k0 − 1). (3.5)

Now, we prove k0 − 1 ∈ S0. It will be discussed in three cases:
Case 1: ∆u(k0) > 0. Then from (3.5), we know L1 < ∆u(k0) ≤ ∆u(k0 − 1);
Case 2: ∆u(k0) = 0. Then the result is obvious;
Case 3: ∆u(k0) < 0. Then ∆u(k0 − 1) will be discussed under two cases.
Case 3.1: ∆u(k0 − 1) ≥ 0. Then from (3.5), ∆u(k0 − 1) > L1;
Case 3.2: ∆u(k0 − 1) < 0. Then p will be discussed under different situations.
Case 3.2.1: p is an odd number. Then (−∆u(k0))p−2 = −(∆u(k0))p−2. From
(3.5), we know −(∆u(k0))p−1 ≤ |∆u(k0−1)|p−2∆u(k0−1). Moreover, ∆u(k0−1) <
0, we have −(∆u(k0))p−1 ≤ −(∆u(k0 − 1))p−1. Since p− 1 is an even number and
∆u(k0),∆u(k0 − 1) < 0, it’s not difficult to get

L1 < ∆u(k0) ≤ ∆u(k0 − 1);

Case 3.2.2: p is an even number. Then we have (∆u(k0))p−1 ≤ (∆u(k0 − 1))p−1,
and since p− 1 is an odd number, we know that

L1 < ∆u(k0) ≤ ∆u(k0 − 1);

so, when ∆u(k0) < 0, ∆u(k0 − 1) < 0, there also exists

L1 < ∆u(k0) ≤ ∆u(k0 − 1).
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From Case 1, Case 2, Case 3, we obtain

L1 < ∆u(k0) ≤ ∆u(k0 − 1),

so k0 − 1 ∈ S0. If we continue the above process, we get

∆u(0) ≥ ∆u(1) > L1,

which contradicts with ∆u(0) = A, so S0 = ∅.
Similarly, we can obtain that the set

S1 = {k ∈ T[0,N ]|∆u(k) < L4}
is also empty.

Then for k ∈ T[0,N ],
L4 ≤ ∆u(k) ≤ L1, (3.6)

i.e.,
max

k∈T[0,N]

|∆u(k)| ≤ C, (3.7)

where C = max{|L1|, |L4|}.
On the other hand, for k ∈ T[0,N ], since u(N + 1) = B, we can construct

u(k) = −
∑N

s=k ∆u(s) + B. Thus for u ∈ D(L), we have

max
k∈T[0,N+1]

|u(k)| ≤ C1, (3.8)

where C1 = (N + 1) · C + |B|. From (3.8), we can see that all of the solutions to
problems (3.4) satisfy

‖u‖X ≤ C1.

Then there exists at least one solution u ∈ D(L) to problem (3.3). And from (3.6),
we know that

L3 < L4 ≤ Φ(∆u(k)) ≤ L1 < L2, k ∈ T[1,N ],

together with the definition of Φ, the following conclusion

Φ(∆u(k)) = ∆u(k), k ∈ T[1,N ],

can be obtained. Thus u is also a solution to the problem (1.1)-(1.2).

Example. Consider the problem

∆(φp(∆u(k − 1))) = (∆u(k))4 − 6(∆u(k))3 + 11(∆u(k))2 − 6∆u(k), k ∈ T[1,N ],

∆u(0) = 2, u(N + 1) = B,

where N > 1 is a fixed natural number, B is an arbitrary number. Let f(k, u, p) =
p4 − 6p3 + 11p2 − 6p, L1 = 5

2 , L2 = 3, L3 = 1, L4 = 3
2 , A = 2. We can prove that

f(k, u, p) satisfies all conditions of Theorem 3.1, so this problem has at least one
solution. �

The next theorem can be proved by similar arguments.

Theorem 3.2. Let f : T[1,N ]×R2 → R be continuous. Suppose there are constants
Li, i = 1, 2, 3, 4 with L2 > L1 ≥ B, L3 < L4 ≤ B, such that (3.1), (3.2) are
satisfied. Then the boundary-value problem

∆(φp(∆u(k − 1))) = f(k, u(k),∆u(k)), k ∈ T[1,N ],

u(0) = A, ∆u(N) = B

has at least one solution in X.
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