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TRANSMISSION PROBLEM FOR WAVES WITH FRICTIONAL
DAMPING

WALDEMAR D. BASTOS, CARLOS A. RAPOSO

Abstract. In this paper we consider the transmission problem, in one space

dimension, for linear dissipative waves with frictional damping. We study the
wave propagation in a medium with a component with attrition and another

simply elastic. We show that for this type of material, the dissipation produced

by the frictional part is strong enough to produce exponential decay of the
solution, no matter how small is its size.

1. Introduction

A number of authors have studied the wave equation with dissipation. We men-
tion for example, the work of Zuazua [5] where it was obtained the uniform rate
of decay of the solution for a large class of nonlinear wave equation with frictional
damping acting in the whole domain. In this direction, the natural question that
arises is about the rate of decay when the dissipation is effective only in a part of
the domain. It is the purpose of this investigation, at least in part, to answer this
question. We consider the wave propagation over a body consisting of two different
type of materials. This is a transmission (or diffraction) problem. It happens fre-
quently in applications where the domain is occupied by several materials, whose
elastic properties are different, joined together over the whole of a surface. From the
mathematical point of view a transmission problem for wave propagation consists
on a hyperbolic equation for which the corresponding elliptic operator has discon-
tinuous coefficients. Even though we consider a case of space dimension one and
linear equations with constant coefficients, the problem studied here is interesting
by its own.

Existence, regularity, as well as the exact controllability for the transmission
problem for the pure wave equation was studied in [2]. The transmission problem
for viscoelastic waves was studied by Rivera and Oquendo [4] who proved the expo-
nential decay of solution using regularity results of the Volterra’s integral equations
and regularizing properties of the viscosity. The asymptotic behavior for a coupled
system of equations of waves was studied by Raposo [3] by the same method used
in this paper.
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Let k1, k2 and α be positive real numbers and 0 < L0 < L. The system considered
here is

utt − k1uxx + αut = 0, x ∈ (0, L0), t > 0, (1.1)

vtt − k2vxx = 0, x ∈ (L0, L), t > 0, (1.2)

satisfying the boundary conditions

u(0, t) = v(L, t) = 0, t > 0, (1.3)

the transmission conditions

u(L0, t) = v(L0, t), k1ux(L0, t) = k2vx(L0, t), t > 0, (1.4)

and initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L0),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L0, L).
(1.5)

We are concerned with the asymptotic properties of the system above. The main
result of this paper is Theorem 3.6 which shows that the solution of the transmission
problem (1.1)–(1.5) decays exponentially to zero as time goes to infinity, no matter
how large is the difference L − L0. The approach we use consists of choosing
appropriate multipliers to build a functional of Lyapunov for the system.

The notation used throughout this work is the standard one. For instance Hm,
L2 = H0, Wm, p and Wm,∞ denote the usual Sobolev Spaces (see Adams [1]). By
V we denote the space

V := {(u, v) ∈ H1(0, L0)×H1(L0, L) : u(0) = v(L) = 0, u(L0) = v(L0)}

which together with the inner product

〈(u1, v1) , (u2, v2)〉 :=
∫ L0

0

u1
xu

2
x dx+

∫ L

L0

v1
xv

2
x dx

is a Hilbert space. The energies associated to the equations (1.1) and (1.2) are:

E1(t) =
1
2

∫ L0

0

[|ut|2 + k1|ux|2] dx,

E2(t) =
1
2

∫ L

L0

[|vt|2 + k2|vx|2] dx

respectively. We denote E(t) = E1(t) + E2(t) the total energy associated to the
system (1.1)–(1.5).

The remainder of this paper is organized as follows. In Section 2 we show the
existence of weak and strong solutions for the system (1.1)–(1.5), and in Section 3
we show the exponential decay of such solutions.

2. Existence of solutions

We begin this section defining what is meant by weak solution to our transmission
problem.

Definition 2.1. The couple (u(x, t), v(x, t)) is a weak solution of the system (1.1)–
(1.5) when

(u, v) ∈ L∞(0, T ;V) ∩W 1,∞(0, T ;L2(0, L0)× L2(L0, L)),
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and satisfies

−
∫ L0

0

u1φ(0) dx−
∫ L

L0

v1ψ(0) dx−
∫ T

0

∫ L0

0

utφt dx dt−
∫ T

0

∫ L

L0

vtψt dx dt

+ k1

∫ T

0

∫ L0

0

uxφx dx dt+ k2

∫ T

0

∫ L

L0

vxψx dx dt+ α

∫ T

0

∫ L0

0

utφdx dt = 0

for any
(φ, ψ) ∈ L∞(0, T ; ) ∩W 1,∞(0, T ;L2(0, L0)× L2(L0, L)),

such that
(φ(T ), ψ(T )) = (0, 0).

Theorem 2.2. Let us take (u0, v0) ∈ (H2(0, L0)×H2(L0, L))∩V and (u1, v1) ∈ V
verifying the transmission conditions. Under this conditions the solution (u, v) of
(1.1)–(1.5) satisfies

(u, v) ∈
2⋂

k=0

W k,∞(0, T ;H2−k(0, L0))×H2−k(L0, L).

Proof. The existence is proved using Galerkin method. In order to do so we take a
basis {(φ0, ψ0), (φ1, ψ1), (φ2, ψ2), · · ·} of V and let

(u0
m, v

0
m), (u1

m, v
1
m) ∈ span{(φ0, ψ0), (φ1, ψ1) · · · (φm, ψm)}

be a projection of the initial state on a finite dimensional subspace of V. Standard
results on ordinary differential equations guarantee that there exists one and only
one solution

(um(t), vm(t)) :=
m∑

j=1

hj,m(t)(φj , ψj)

of the approximated system,∫ L0

0

uttφ
i dx+

∫ L

L0

vttψ
i dx+k1

∫ L0

0

uxφ
i
x dx+k2

∫ L

L0

vxψ
i
x dx+α

∫ L0

0

utφ
i dx = 0

(2.1)
i = 0, 1, 2, . . . ,m, with initial data

(um(0), vm(0)) = (u0
m, v

0
m), (um

t (0), vm
t (0)) = (u1

m, v
1
m).

We show next that the above solution remain bounded for any m ∈ N. In order to
do so, we first multiply equation (2.1) by h′j,m(t) and then sum up in i, to obtain

d

dt
Em(t) = −α

∫ L0

0

|um
t |2 dx.

Integrating the identity above from 0 to t, we get

Em(t) ≤ Em(0)

showing that the first order energy Em(t) is uniformly bounded for m ∈ N.
Now we denote the second order energy by

Em(t) =
1
2

∫ L0

0

[|um
tt |2 + k1|um

xt|2] dx+
1
2

∫ L

L0

[|vm
tt |2 + k2|vm

xt|2] dx.
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Differentiating equation (2.1) with respect to t, we get∫ L0

0

utttφ
i dx+

∫ L

L0

vtttψ
i dx+ k1

∫ L0

0

uxtφ
i
x dx

+ k2

∫ L

L0

vxtψ
i
x dx+ α

∫ L0

0

uttφ
i dx = 0.

(2.2)

Multiplying equation (2.2) by h′′j,m(t) and summing up in i, we obtain

d

dt
Em(t) = −α

∫ L0

0

|um
tt |2 dx

which integrated from 0 to t furnishes

Em(t) ≤ Em(0).

The next step is to estimate the second order energy. Letting t → 0+ in equation
(2.1), multiplying the limit result by h′′j,m(t) we get∫ L0

0

|um
tt (0)|2 dx+

∫ L

L0

|vm
tt (0)|2 dx

= −k1

∫ L0

0

um
x (0)um

xtt(0) dx− k2

∫ L

L0

vm
x (0)vm

xtt(0) dx− α

∫ L0

0

um
t (0)um

tt (0) dx.

Integrating by parts the equation above, we get∫ L0

0

|um
tt (0)|2 dx+

∫ L

L0

|vm
tt (0)|2 dx

= k1

∫ L0

0

um
xx(0)um

tt (0) dx+ k2

∫ L

L0

vm
xx(0)vm

tt (0) dx− α

∫ L0

0

um
t (0)um

tt (0) dx.

(2.3)
After application of Young’s inequality in equation (2.3) we find∫ L0

0

|um
tt (0)|2 dx+

∫ L

L0

|vm
tt (0)|2 dx

≤ c
{∫ L0

0

|um
xx(0)|2 dx+

∫ L

L0

|vm
xx(0)|2 dx

}
+ c

∫ L0

0

|um
t (0)|2 dx.

which implies that the initial data

(um
tt (0), vm

tt (0)) is bounded in L2(0, L0)× L2(L0, L)),

and so is Em(0). Whence we have

Em(t) is bounded for every m ∈ N.

The first and second order energy boundedness implies that there exists a subse-
quence of (um, vm), which we still denote in the same way, such that

(um, vm) ∗
⇀ (u, v) in L∞(0.T ;V),

(um
t , v

m
t ) ∗

⇀ (ut, vt) in L∞(0.T ;V),

(um
tt , v

m
tt ) ∗

⇀ (utt, vtt) in L∞(0.T ;L2(0, L0)× L2(L0, L))).
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Therefore the couple (u, v) satisfies

utt − k1uxx + αut = 0
vtt − k2vxx = 0.

The rest of the proof is a matter of routine. �

3. Exponential stability

With a view toward proving the main result of this paper we formulate and prove
a series of five lemmas. They will provide some technical inequalities which play
fundamental role in the proof of Theorem 3.6.

Lemma 3.1. The total energy E(t) satisfies

d

dt
E(t) = −α

∫ L0

0

|ut|2 dx.

Proof. Multiplying equation (1.1) by ut and integrating in (0, L0) we have∫ L0

0

ututt dx− k1

∫ L0

0

utuxx dx = −α
∫ L0

0

|ut|2 dx

which integrated by parts leads to

d

dt

1
2

∫ L0

0

[|ut|2 + k1|ux|2] dx = −α
∫ L0

0

|ut|2 dx+ k1ux(L0)ut(L0). (3.1)

Multiplying equation (1.2) by vt and performing an integration in (L0, L) we get∫ L

L0

vtvtt dx− k2

∫ L

L0

vtvxx dx = 0.

After integrating by parts we arrive at

d

dt

1
2

∫ L

L0

[|vt|2 + k2|vx|2] dx = −k2vx(L0)vt(L0). (3.2)

Adding (3.1) with (3.2) and using the transmission conditions (1.4) we conclude

d

dt
E(t) = −α

∫ L0

0

|ut|2 dx. (3.3)

�

Lemma 3.2. There exist positive constants C0 and C1, independent of initial data,
such that the functional defined by

J1(t) =
∫ L0

0

(x− L0)utux dx

satisfies

d

dt
J1(t) ≤ −C1E1(t) + C0

∫ LO

0

|ut|2 dx+
k1L0

2
|ux(0)|2.
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Proof. Multiplying equation (1.1) by (x− L0)ux and performing an integration in
(0, L0) we get∫ L0

0

(x−L0)uxutt dx− k1

∫ L0

0

(x−L0)uxuxx dx = −α
∫ L0

0

(x−L0)uxut dx. (3.4)

Note that
d

dt
(x− L0)uxut = (x− L0)uxutt + (x− L0)uxtut. (3.5)

Now using (3.5) in (3.4) we get

d

dt

∫ L0

0

(x− L0)uxut dx =
∫ L0

0

(x− L0)
1
2
[
d

dx
|ut|2] dx

+ k1

∫ L0

0

(x− L0)
1
2
[
d

dx
|ux|2] dx− α

∫ L0

0

(x− L0)uxut dx

and performing integration by parts we get

d

dt

∫ L0

0

(x− L0)uxut dx. = −1
2

∫ L0

0

|ut|2 dx−
k1

2

∫ L0

0

|ux|2 dx

− α

∫ L0

0

(x− L0)uxut dx+
k1L0

2
|ux(0)|2

from which it follows that
d

dt
J1(t) ≤ −C1E1(t) + C0

∫ L0

0

|ut|2 dx+
k1L0

2
|ux(0)|2.

�

Lemma 3.3. There exists a positive constant C2, independent of initial data, such
that the functional defined by

J2(t) =
∫ L

L0

(x− L0)vtvx dx

satisfies
d

dt
J2(t) ≤ −C2E2(t) +

k2(L− L0)
2

|vx(L)|2.

Proof. Multiplying equation (1.2) by (x− L0)vx and performing an integration in
(L0, L) we get ∫ L

L0

(x− L0)vxvtt dx− k2

∫ L

L0

(x− L0)vxvxx dx = 0. (3.6)

Notice that
d

dt
(x− L0)vxvt = (x− L0)vxvtt + (x− L0)vxtvt. (3.7)

Now using (3.7) in (3.6) we get

d

dt

∫ L

L0

(x− L0)vxvt dx =
∫ L

L0

(x− L0)
1
2
[
d

dx
|vt|2] dx+ k2

∫ L

L0

(x− L0)
1
2
[
d

dx
|vx|2] dx

and performing integration by parts we get

d

dt

∫ L

L0

(x− L0)vxvt dx. = −1
2

∫ L

L0

|vt|2 dx−
k2

2

∫ L

L0

|vx|2 dx+
k2(L− L0)

2
|vx(L)|2
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from which it follows that
d

dt
J2(t) ≤ −C2E2(t) +

k2(L− L0)
2

|vx(L)|2.

�

Now we must control the punctual terms |ux(0)|2 and |vx(L)|2 present in the
inequalities given by the lemmas 3.2 and 3.3 respectively. In order to do so we
introduce the two following lemmas.

Lemma 3.4. Let us take p ∈ C1(0, L0) with p(0) > 0 and p(L0) = 0. Then,
there exist positive constants C0, C4, N0 independent of initial data, such that the
functional defined by

J3(t) = N0J1(t) +
∫ L0

0

putux dx

satisfies
d

dt
J3(t) ≤ −C4E1(t) +N0C0

∫ L0

0

|ut|2 dx.

Proof. Multiplying equation (1.1) by p ux and performing an integration in (0, L0)
we get ∫ L0

0

p uxutt dx− k1

∫ L0

0

p uxuxx dx = −α
∫ L0

0

p uxut dx. (3.8)

Notice that
d

dt
p uxut = p uxutt + p uxtut. (3.9)

Now using (3.9) in (3.8) we get

d

dt

∫ L0

0

p uxut dx

=
∫ L0

0

p
1
2
[
d

dx
|ut|2] dx+ k1

∫ L0

0

p
1
2
[
d

dx
|ux|2] dx− α

∫ L0

0

p uxut dx

and performing integration by parts we get

d

dt

∫ L0

0

p uxut dx

= −1
2

∫ L0

0

p′ |ut|2 dx−
k1

2
p(0) |ux(0)|2 − k1

2

∫ L0

0

p′ |ux|2 dx− α

∫ L0

0

p uxut dx,

from which it follows that
d

dt

∫ L0

0

p uxut dx ≤ −k1

2
p(0) |ux(0)|2 + C3E1(t).

Denoting

J3(t) = N0J1(t) +
∫ L0

0

putux dx,

we have
d

dt
J3(t) ≤ −N0C1E1(t) + C3E1(t) +

N0k1L0

2
|ux(0)|2 − k1

2
p(0) |ux(0)|2

+N0 C0

∫ L0

0

|ut|2 dx.
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Now taking N0 such that N0 C1 > C3 and choosing p(0) = N0L0 we conclude that

d

dt
J3(t) ≤ −C4E1(t) +N0C0

∫ L0

0

|ut|2 dx.

�

Lemma 3.5. Let us take q ∈ C1(L0, L) with q(L0) = 0 and q(L) < 0. Then,
there exist positive constants C5 and N1 independent of initial data such that the
functional defined by

J4(t) = N1J2(t) +
∫ L

L0

qvtvx dx

satisfies d
dtJ4(t) ≤ −C5E2(t).

Proof. Multiplying equation (1.2) by q vx and performing an integration in (L0, L)
we get ∫ L

L0

q vxvtt dx− k2

∫ L

L0

q vxvxx dx = 0. (3.10)

Notice that
d

dt
q vxvt = q vxvtt + q vxtvt. (3.11)

Now using (3.11) in (3.10) we get

d

dt

∫ L

L0

q vxvt dx =
∫ L

L0

q
1
2
[
d

dx
|vt|2] dx+ k2

∫ L

L0

q
1
2
[
d

dx
|vx|2] dx

and performing integration by parts we arrive at

d

dt

∫ L

L0

q vxvt dx = −1
2

∫ L

L0

q′ |vt|2 dx+
k2

2
q(L) |vx(L)|2 − k2

2

∫ L

L0

q′ |vx|2 dx,

from which it follows that

d

dt

∫ L

L0

q vxvt dx ≤
k2

2
q(L) |vx(L)|2 + C4E2(t).

Denoting

J4(t) = N1J2(t) +
∫ L

L0

qvtvx dx,

we have
d

dt
J4(t) ≤ −N1C2E2(t) + C4E2(t) +

N1k2(L− L0)
2

|vx(L)|2 +
k2

2
q(L) |vx(L)|2.

Now taking N1 such that N1 C2 > C4 and choosing q(L) = −N1(L − L0) we
conclude that

d

dt
J4(t) ≤ −C5E2(t).

�

Now we are in position to show the main result of this paper.

Theorem 3.6. Let us denote by (u, v) a strong solution of system (1.1)–(1.5), as
in Theorem 2.2. Then there exist positive constants C and ω, such that

E(t) ≤ C E(0)e−ω t.
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Proof. Let us define
L(t) = N2E(t) + J3(t) + J4(t).

From Lemma 3.1 we have

d

dt
E(t) = −α

∫ L0

0

|ut|2 dx.

From Lemma 3.4 we have

d

dt
J3(t) ≤ −C4E1(t) +N0C0

∫ L0

0

|ut|2 dx.

From Lemma 3.5 we have
d

dt
J4(t) ≤ −C5E2(t).

In fact we have

d

dt
L(t) ≤ −C4E1(t)− C5E2(t) + (N0C0 −N2α)

∫ L0

0

|ut|2 dx.

Taking N2 large enough it follows

d

dt
L(t) ≤ −C6E(t)

Since L(t) is equivalent to E(t), we conclude that there exist positive constants C
and ω, such that

E(t) ≤ C E(0)e−ω t.

�

Theorem 3.6 can be extended easily to weak solutions by using density arguments
and the lower semicontinuity of the energy functional E(t). This is the content of
the following corollary whose proof is omitted.

Corollary 3.7. Under the same hypotheses of Theorem 3.6, there exists positive
constants C̄ and ω̄, such that

E(t) ≤ C̄ E(0)e−ω̄t.
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