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MAXIMUM PRINCIPLE AND EXISTENCE OF POSITIVE
SOLUTIONS FOR NONLINEAR SYSTEMS INVOLVING

DEGENERATE P-LAPLACIAN OPERATORS

SALAH A. KHAFAGY, HASSAN M. SERAG

Abstract. We study the maximum principle and existence of positive solu-

tions for the nonlinear system

−∆p,P u = a(x)|u|p−2u + b(x)|u|α|v|βv + f in Ω,

−∆Q,qv = c(x)|u|α|v|βu + d(x)|v|q−2v + g in Ω,

u = v = 0 on ∂Ω,

where the degenerate p-Laplacian defined as ∆p,P u = div[P (x)|∇u|p−2∇u].

We give necessary and sufficient conditions for having the maximum principle
for this system and then we prove the existence of positive solutions for the

same system by using an approximation method.

1. Introduction

One of the most useful and best known tools employed in the study of partial
differential equations is the maximum principle, since they are an useful tool to
prove many results such as existence, multiplicity and qualitative properties for
their solutions.

The maximum principle have been studied for linear elliptic systems. In partic-
ular, de Figueiredo and Mitidieri [6, 7, 8] gave a necessary and sufficient conditions
for the maximum principle. In [12, 13] the authors proved sufficient and necessary
conditions for having the maximum principle and the existence of positive solu-
tions for linear systems involving Laplace operator with variable coefficients. These
results have been extended in [11], to the nonlinear system

−∆pui =
n∑
j=1

aij |uj |p−2uj + fi(x) in Ω,

ui = 0, i = 1, 2, . . . n on ∂Ω.

(1.1)

Boushkief, Serag and de Thélin [5], proved the validity of the maximum principle
and the existence of positive solutions for the following nonlinear elliptic system of
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two equations involving different operators ∆p,∆q defined on bounded domain Ω
of Rn, with constant coefficients a, b, c and d

−∆pu = a|u|p−2u+ b|u|α|v|βv + f in Ω,

−∆qv = c|u|α|v|βu+ d|v|q−2v + g in Ω,
u = u = 0 on Ω.

(1.2)

These results have been extended in [16] to the following nonlinear system defined
on unbounded domain with variable coefficients

−∆pu = a(x)|u|p−2u+ b(x)|u|α|v|βv + f x ∈ Rn,

−∆qv = c(x)|u|α|v|βu+ d(x)|v|q−2v + g x ∈ Rn,
lim

|x|→∞
u(x) = lim

|x|→∞
v(x) = 0, u, v > 0 in Rn.

(1.3)

Here, we consider nonlinear system involving degenerated p-Laplacian operators.
We study the following nonlinear system

−∆p,P u = a(x)|u|p−2u+ b(x)|u|α|v|βv + f in Ω,

−∆Q,qv = c(x)|u|α|v|βu+ d(x)|v|q−2v + g in Ω,
u = v = 0 on ∂Ω,

(1.4)

where Ω is a bounded subset of Rn with a smooth boundary ∂Ω, ∆p,P with p > 1,
p 6= 2 and P (x) a weight function, denotes the degenerate p-Laplacian defined by
∆p,P u = div[P (x)|∇u|p−2∇u], α, β ≥ 0, f, g are given functions and a(x), b(x), c(x)
and d(x) are bounded variable coefficients. We consider here a generalization for
the p-Laplacian to the degenerated p-Laplacian. We obtain necessary and sufficient
conditions on the variable coefficients for having the maximum principle for system
(1.4) and then we prove the existence of positive solutions for this system by using
an approximation method.

This paper is organized as follows: In section 2, we give some assumptions on
the coefficients a(x), b(x), c(x) and d(x), and on the functions f, g to insure the
existence of solution for system (1.4) in a suitable weighted Sobolev space. We
also introduce some technical results and some notations, which are established
in [1, 2, 3, 10]. Section 3 is devoted to the maximum principle of system (1.4).
Finally, in section 4, we prove the existence of solutions for system (1.4) using an
approximation method already used in [4].

2. Technical Results

Now, we introduce some technical results [10] concerning the degenerated homo-
geneous eigenvalue problem

−∆H,P u = div[H(x)|∇u|p−2∇u] = λG(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

(2.1)

where H(x) and G(x) are measurable functions satisfying

ν(x)
c1

< H(x) < c1ν(x), (2.2)

for a.e. x ∈ Ω with some constant c1 ≥ 1, where ν(x) is a weight function, i.e., a
function which is measurable and positive a.e. in Ω, satisfying the conditions

ν ∈ L1
Loc(Ω), ν−

1
p−1 ∈ L1

Loc(Ω), ν−s ∈ L1(Ω), (2.3)
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with

s ∈ (
N

p
,∞) ∩ [

1
p− 1

,∞), (2.4)

G(x) ∈ L
k

k−p (Ω), (2.5)

for some constant k satisfying p < k < p∗s, where p∗s = NPs

N−Ps
with Ps = ps

s+1 < p <
p∗s.

Lemma 2.1. There exists the least (i.e. the first or principal) eigenvalue λ =
λG(p,Ω) > 0 and at least one corresponding eigenfunction u = uG ≥ 0 a.e. in Ω of
the eigenvalue problem (2.1).

Theorem 2.2. Let H(x) satisfy (2.2) and G(x) satisfy (2.5), then (2.1) admits a
positive principal eigenvalue λG(p). Moreover, it is characterized by

λG(p)
∫

Ω

G(x)|u|p ≤
∫

Ω

H(x)|∇u|p. (2.6)

Now, let us introduce the weighted Sobolev space W 1,p(ν,Ω) which is the set of
all real valued functions u defined in Ω for which (see [3, 10])

‖u‖W 1,p(ν,Ω) =
[ ∫

Ω

|u|p +
∫

Ω

ν(x)|∇u|p
]1/p

<∞. (2.7)

Since we are dealing with the Dirichlet problem, we introduce also the space
W 1,p

0 (ν,Ω) as the closure of C∞0 (Ω) in W 1,p(ν,Ω) with respect to the norm

‖u‖W 1,p
0 (ν,Ω) =

[ ∫
Ω

ν(x)|∇u|p
]1/p

<∞, (2.8)

which is equivalent to the norm given by (2.7). Both spaces W 1,p(ν,Ω) and
W 1,p

0 (ν,Ω) are well defined reflexive Banach Spaces. The space W 1,p
0 (ν,Ω) is com-

pactly imbedding into the space Lp(Ω), under the conditions given by (2.3) and
(2.4), i.e.

W 1,p
0 (ν,Ω) ↪→↪→ Lp(Ω), (2.9)

which means that∫
Ω

|u|p ≤ c2

∫
Ω

ν(x)|∇u|p, i.e., ‖u‖Lp(Ω) ≤ c ‖u‖W 1,p
0 (ν,Ω). (2.10)

3. maximum principle

In this paper, we assume that

α, β ≥ 0; p, q > 1,
α+ 1
p

+
β + 1
q

= 1,

f ∈ Lp
∗
(Ω), g ∈ Lq

∗
(Ω),

1
p

+
1
p∗

= 1,
1
q

+
1
q∗

= 1.
(3.1)

and
P (x) ∈ L1

Loc(Ω), (P (x))−
1

p−1 ∈ L1
Loc(Ω), (P (x))−s ∈ L1(Ω)

with s ∈ (
N

p
,∞) ∩ [

1
p− 1

,∞),

Q(x) ∈ L1
Loc(Ω), (Q(x))−

1
q−1 ∈ L1

Loc(Ω), (Q(x))−t ∈ L1(Ω)

with t ∈ (
N

q
,∞) ∩ [

1
q − 1

,∞),

(3.2)
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We also assume that the variable coefficients a(x), b(x), c(x), and d(x) are bounded
smooth positive functions such that

a(x) ∈ L
k

k−p (Ω) ∩ Lp(Ω), with p < k < p∗s,

d(x) ∈ L
l

l−q (Ω) ∩ Lq(Ω), with q < l < q∗t

(3.3)

and
b(x) < (a(x))

α+1
p (d(x))

β+1
q , c(x) < (a(x))

α+1
p (d(x))

β+1
q . (3.4)

We say that system (1.4) satisfies the maximum principle if f ≥ 0, g ≥ 0 implies
u ≥ 0, v ≥ 0 for any solution (u, v) for system (1.4)

Theorem 3.1. Assume that (3.1)–(3.4) are satisfied. Then, the maximum principle
holds for system (1.4) if

λa(p) > 1, λd(q) > 1, (3.5)

(λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q − 1 > 0. (3.6)

Conversely, if the maximum principle holds, then (3.5) and (3.7) are satisfied,
where

(λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q > Θ inf
x∈Ω

(
b(x)
a(x)

)
α+1

p inf
x∈Ω

(
c(x)
d(x)

)
β+1

q , (3.7)

where

Θ =
infΩ( φ

p

ψq )
α+1

p
β+1

q

supΩ( φ
p

ψq )
α+1

p
β+1

q

< 1,

and φ (respectively ψ) is the positive eigenfunction associated to λa(p) (respectively
λd(q)) normalized by ‖φ‖∞ = ‖ψ‖∞ = 1.

Proof. The condition is necessary: If λa(p) ≤ 1, then the functions f := a(x)(1 −
λa(p))φp−1, g := 0 are nonnegative, nevertheless (−φ, 0) satisfies (1.4), which con-
tradicts the maximum principle.

Similarly, if λd(q) ≤ 1, then the functions f := 0, g := d(x)(1 − λd(q))ψq−1 are
nonnegative, nevertheless (0,−ψ) satisfies (1.4), which means that the maximum
principle does not hold.

Now suppose that λa(p) > 1, λd(q) > 1 and (3.7), and hence (3.6), does not
hold, i.e.

(λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q ≤ Θ inf
x∈Ω

( b(x)
a(x)

)α+1
p inf

x∈Ω

( c(x)
d(x)

) β+1
q .

Now, we want to fined a positive real number ξ such that

A
(φp
ψq

)α+1
p

β+1
q ≤ ξ, A > 0,

B(
ψq

φp
)

α+1
p

β+1
q ≤ 1

ξ
, B > 0.

(3.8)

Equation (3.8) is satisfied if

A sup
Ω

(φp
ψq

)α+1
p

β+1
q ≤ ξ ≤ 1

B
inf
Ω

(φp
ψq

)α+1
p

β+1
q . (3.9)
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Let

A =
[
(λa(p)− 1) sup

x∈Ω
(
a(x)
b(x)

)
]α+1

p and B =
[
(λd(q)− 1) sup

x∈Ω
(
d(x)
c(x)

)
] β+1

q ,

then (3.9) becomes[
(λa(p)− 1) sup

x∈Ω
(
a(x)
b(x)

)
]α+1

p sup
Ω

(φp
ψq

)α+1
p

β+1
q

≤ ξ ≤ 1[
(λd(q)− 1) supx∈Ω(d(x)c(x) )

] β+1
q

inf
Ω

(φp
ψq

)α+1
p

β+1
q .

Then, ξ exists if

(λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q

≤ 1

(supx∈Ω(a(x)b(x) ))
α+1

p (supx∈Ω(d(x)c(x) ))
β+1

q

infΩ
(
φp

ψq

)α+1
p

β+1
q

supΩ

(
φp

ψq

)α+1
p

β+1
q

Therefore,

(λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q ≤ Θ inf
x∈Ω

(
b(x)
a(x)

)
α+1

p inf
x∈Ω

(
c(x)
d(x)

)
β+1

q .

So, ζ exists if (3.7), and hence (3.6), does not hold.

If ξ =
(
Dq

Cp

)α+1
p

β+1
q with C,D > 0, then (3.8) implies[

(λa(p)− 1) sup
x∈Ω

(
a(x)
b(x)

)
]α+1

p (
(Cφ)p

(Dψ)q
)

α+1
p

β+1
q

≤ 1 ≤ 1[
(λd(q)− 1) supx∈Ω(d(x)c(x) )

] β+1
q

(
(Cφ)p

(Dψ)q
)

α+1
p

β+1
q ,

and hence, for some x ∈ Ω, we have[
(λa(p)− 1)(

a(x)
b(x)

)
]( ( Cφ)p

(Dψ)q
) β+1

q ≤
[
(λa(p)− 1) sup

x∈Ω
(
a(x)
b(x)

)
]( (Cφ)p

(Dψ)q
) β+1

q ≤ 1,

1 ≤ 1[
(λd(q)− 1) supx∈Ω(d(x)c(x) )

] (
(Cφ)p

(Dψ)q
)

α+1
p ≤

( c(x)d(x) )

(λd(q)− 1)
(
(Cφ)p

(Dψ)q
)

α+1
p ,

which implies

a(x)(λa(p)− 1)((Cφ)p)
β+1

q ≤ b(x)(Dψ)β+1,

d(x)(λd(q)− 1)((Dψ)q)
α+1

p ≤ c(x)(Cφ)α+1.

Using (3.1), we have

a(x)(λa(p)− 1)(Cφ)p−1 ≤ b(x)(Dψ)β+1(Cφ)α,

d(x)(λd(q)− 1)(Dψ)q−1 ≤ c(x)(Cφ)α+1(Dψ)β .

Then

f = −a(x)(λa(p)− 1)(Cφ)p−1 + b(x)(Dψ)β+1(Cφ)α ≥ 0,

g = −d(x)(λd(q)− 1)(Dψ)q−1 + c(x)(Cφ)α+1(Dψ)β ≥ 0,



6 S. A. KHAFAGY, H. M. SERAG, EJDE-2007/66

are nonnegative functions, nevertheless (−Cφ,−Dψ) is a solution of (1.4), and the
maximum principle does not hold.

The condition is sufficient: Assume that (3.5) and (3.6) hold; if (u, v) is a solution
of (1.4) for f, g ≥ 0, we obtain by multiplying the first equation of (1.4) by u− :=
max(0,−u) and integrating over Ω∫

Ω

P (x)|∇u−|p

=
∫

Ω

a(x)|u−|p −
∫

Ω

b(x)|u−|α+1|v+|β+1 +
∫

Ω

b(x)|u−|α+1|v−|β+1 −
∫

Ω

fu−,

then ∫
Ω

P (x)|∇u−|p ≤
∫

Ω

a(x)|u−|p +
∫

Ω

b(x)|u−|α+1|v−|β+1.

By using (2.6) and (3.4), we have

(λa(p)− 1)
∫

Ω

a(x)|u−|p ≤
∫

Ω

b(x)|u−|α+1|v−|β+1

≤
∫

Ω

(a(x)|u−|p)
α+1

p (d(x)|v−|q)
β+1

q .

Applying Hölder inequality, we get

(λa(p)− 1)
∫

Ω

a(x)|u−|p ≤
[ ∫

Ω

(a(x)|u−|p)
]α+1

p
[ ∫

Ω

(d(x)|v−|q)
β+1

q

] β+1
q

,

and hence[
(λa(p)− 1)

( ∫
Ω

a(x)|u−|p
) β+1

q −
( ∫

Ω

(d(x)|v−|q)
) β+1

q
]( ∫

Ω

a(x)|u−|p
)α+1

p ≤ 0.

Now, if ∫
Ω

a(x)|u−|p = 0,

then u− = 0, (where a(x) 6= 0 for any x), which implies that u ≥ 0. If not, we get

(λa(p)− 1)
α+1

p

[ ∫
Ω

a(x)|u−|p
]α+1

p
β+1

q ≤
[ ∫

Ω

d(x)|v−|q
]α+1

p
β+1

q

. (3.10)

Similarly, from the second equation of (1.4), we deduce that

(λd(q)− 1)
β+1

q

[ ∫
Ω

d(x)|v−|q
]α+1

p
β+1

q ≤
[ ∫

Ω

a(x)|u−|p
]α+1

p
β+1

q

. (3.11)

Multiplying (3.10) by (3.11), we obtain

((λa(p)−1)
α+1

p (λd(q)−1)
β+1

q −1)
[ ∫

Ω

a(x)|u−|p
]α+1

p
β+1

q
[ ∫

Ω

d(x)|v−|q
]α+1

p
β+1

q ≤ 0.

Using (3.6), we have u− = v− = 0, which implies that u ≥ 0, v ≥ 0, i.e. the
maximum principle holds. �
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4. Existence of Positive Solutions

Now, we shall prove that the system (1.4) has a solution in the spaceW 1,p
0 (P,Ω)×

W 1,q
0 (Q,Ω), by an approximation method.
Following [4], for ε ∈ (0, 1), we introduce the system

−∆P,puε = a(x)
(|uε|p−2uε)

(1 + |ε1\puε|p−1)
+ b(x)

|vε|βvε
(1 + |ε1\qvε|β+1)

|uε|α

(1 + |ε1\puε|α)
+ f,

−∆Q,qvε = c(x)
|vε|β

(1 + |ε1\qvε|β)
|uε|αuε

(1 + |ε1\puε|α+1)
+ d(x)

(|vε|q−2vε)
(1 + |ε1\qvε|q−1)

+ g,

uε = vε = 0 on ∂Ω.
(4.1)

Letting (ζ, η) = (uε, vε), then the system above can be written in the form

−∆P,pζ = h(ζ, η) + f in Ω,

−∆Q,qη = k(ζ, η) + g in Ω,
ζ = η = 0 on ∂Ω.

where

h(ζ, η) = a(x)
(|ζ|p−2ζ)

(1 + |ε1\pζ|p−1)
+ b(x)

|η|βη
(1 + |ε1\qη|β+1)

|ζ|α

(1 + |ε1\pζ|α)
,

k(ζ, η) = c(x)
|η|β

(1 + |ε1\qη|β)
|ζ|αζ

(1 + |ε1\pζ|α+1)
+ d(x)

(|η|q−2η)
(1 + |ε1\qη|q−1)

.

It is easy to prove that h(ζ, η) and k(ζ, η) are bounded, since a(x), b(x), c(x) and
d(x) are also bounded. Then, there exists M > 0 such that |h(ζ, η)| ≤ M and
|k(ζ, η)| ≤M for all ζ, η.

Lemma 4.1. System (4.1) has a solution Uε = (uε, vε) in W 1,p
0 (P,Ω)×W 1,q

0 (Q,Ω).

Proof. We complete the proof in the following steps
(a) Construction of sub-super solutions for system (4.1) as follows; Let

ζ0 ∈W 1,p
0 (P,Ω) be a solution of −∆P,pζ

0 = M + f,

η0 ∈W 1,q
0 (Q,Ω) be a solution of −∆Q,qη

0 = M + g,

ζ0 ∈W 1,p
0 (P,Ω) be a solution of −∆P,pζ0 = −M + f,

η0 ∈W 1,q
0 (Q,Ω) be a solution of −∆Q,qη0 = −M + g.

(4.2)

Then , as in [14], we say that (ζ0, η0) is a super solution of (4.1) and (ζ0, η0) is a
sub solution of the same system, since we have

−∆P,pζ
0 − h(ζ0, η)− f ≥ −∆P,pζ

0 − (M + f) = 0 ∀η ∈ [η0,η
0] in Ω,

−∆Q,qη
0 − k(ζ, η0)− g ≥ −∆Q,qη

0 − (M + g) = 0 ∀ζ ∈ [ζ0, ζ0] in Ω.

−∆P,pζ0 − h(ζ0, η)− f ≤ −∆P,pζ0 +M − f = 0 ∀η ∈ [η0,η
0] in Ω,

−∆Q,qη0 − k(ζ, η0)− g ≤ −∆Q,qη0 +M − g = 0 ∀ζ ∈ [ζ0, ζ0]in Ω,

Let us assume that K = [ζ0, ζ0]× [η0,η
0].
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(b) Definition of the operator T : We define the operator T : (ζ, η) → (w, z) by

−∆P,pw = h(ζ, η) + f in Ω,

−∆Q,qz = k(ζ, η) + g in Ω,
w = z = 0 on ∂Ω.

(4.3)

(c) T (K) ⊂ K: Since (ζ, η) ∈ [ζ0, ζ0]× [η0,η
0], then from(4.2) and (4.3), we get

−∆P,pw + ∆P,pζ
0 ≤ h(ζ, η)−M. (4.4)

Multiplying this equation by (w − ζ0)+ = max(w − ζ0, 0) and integrating over Ω,
we obtain∫

Ω

(−∆P,pw + ∆P,pζ
0)(w − ζ0)+ ≤

∫
Ω

(h(ζ, η)−M)(w − ζ0)+ ≤ 0,

which implies∫
Ω

P (x)
[
|∇w|p−2∇w − |∇ζ0|p−2∇ζ0

]
∇(w − ζ0)+ ≤ 0.

It is well known by [17], that the following inequality holds

|x− y|p ≤ C{(|x|p−2x− |y|p−2y)(x− y)}
γ
2 (|x|p + |y|p)1−

γ
2 . (4.5)

for all x, y ∈ RN , where γ = p if 1 < p ≤ 2 and γ = 2 if p > 2.
Applying (4.5), we obtain∫

Ω

P (x)|∇(w − ζ0)|p ≤ 0

which implies that, since P (x) is a weight function, (w − ζ0)+ = 0, and hence
w ≤ ζ0.

Again, as above, we can deduce that w ≥ ζ0 . So, we have ζ0 ≤ w ≤ ζ0.
Similarly, we can deduce that η0 ≤ z ≤ η0, and hence (w, z) ∈ [ζ0, ζ0]× [η0, η0].

(d) T is completely continuous: First, we prove that T is continuous; for this, we
need the following lemma. �

Lemma 4.2. If (ζk, ηk) → (ζ, η), in Lp(Ω)× Lq(Ω), then, as in [5, 16],( ∫
Ω

(
a(x)[

|ζk|p−2ζk
(1 + |ε1\pζk|p−1)

− |ζ|p−2ζ

(1 + |ε1\pζ|p−1)
]
)p∗)1/p∗

→ 0,( ∫
Ω

(
b(x)[

|ζk|α

(1 + |ε1\pζk|α)
|ηk|βηk

(1 + |ε1\qηk|β+1)

− |ζ|α

(1 + |ε1\pζ|α)
|η|βη

(1 + |ε1\qη|β+1)
]
)p∗)1/p∗

→ 0,( ∫
Ω

(
c(x)[

|ζk|αζk
(1 + |ε1\pζk|α+1)

|ηk|β

(1 + |ε1\qηk|β)

− |ζ|αζ
(1 + |ε1\pζ|α+1)

|η|β

(1 + |ε1\qη|β)
]
)q∗)1/q∗

→ 0,( ∫
Ω

(
d(x)[

|ηk|q−2ηk
(1 + |ε1\qηk|q−1)

− |η|q−2η

(1 + |ε1\qη|q−1)
]
)q∗)1/q∗

→ 0,

as k → +∞.
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Proof. If (ζk) → (ζ) in Lp(Ω), then there exists a subsequence still denoted by (ζk)
itself such that ζk(x) → ζ(x) a.e. on Ω and |ζk(x)| ≤ l(x) a.e. on Ω, for all k, with
l ∈ Lp(Ω). Hence,

∣∣ |ζk|p−2ζk
1 + |ε1\pζk|p−1

∣∣ ≤ |ζk|p−1 ≤ lp−1 ∈ Lp
∗
(Ω),

and, since a(x) 6= 0 is bounded, we have

a(x)
|ζk(x)|p−2ζk(x)

1 + |ε1\pζk(x)|p−1
→ a(x)

|ζ(x)|p−2ζ(x)
1 + |ε1\pζ(x)|p−1

a.e. on Ω as k → +∞.

Thus from the Dominated Convergence Theorem, we obtain the first statement of
this theorem.

Prove of the second statement: If (ηk) → (η) in Lq(Ω), then there exists a
subsequence still denoted also by (ηk), such that ηk(x) → η(x) a.e. on Ω and
|ηk(x)| ≤ m(x) a.e. on Ω, for all k, with m ∈ Lq(Ω).

Now, from (3.1) and (3.2), we obtain

αp∗

p
+

(β + 1)p∗

q
= 1,

and hence,∫
Ω

[lαmβ+1]p
∗
≤

∫
Ω

|l|αp
∗
|m|(β+1)p∗ ≤

( ∫
Ω

|l|p
)p∗α/p( ∫

Ω

|m|q
)p∗(β+1)/q

<∞.

So that

|(|ζk|α|ηk|β+1)| ≤ lαmβ+1 ∈ Lp
∗
(Ω).

Hence, since b(x) is bounded, we have

b(x)
|ζk|α(

1 + |ε1\pζk|α
) |ηk|βηk(

1 + |ε1\qηk|β+1
) → b(x)

|ζ|α

(1 + |ε1\pζ|α)
|η|βη(

1 + |ε1\qη|β+1
) ,

a.e. on Ω as k → +∞. Thus from the Dominated Convergence Theorem, we obtain
the second statement in this theorem. Similarly we prove the third and fourth
statements.

Now, we prove the continuity of T . Assume that (ζk, ηk) → (ζ, η), in Lp(Ω) ×
Lq(Ω), then we have from the first equation of (4.3)

−∆P,pwk + ∆P,pw

= a(x)
[ (|ζk|p−2ζk)
(1 + |ε1\pζk|p−1)

− (|ζ|p−2ζ)
(1 + |ε1\pζ|p−1)

]
+ b(x)

[ |ζk|α

(1 + |ε1\pζk|α)
|ηk|βηk

(1 + |ε1\qηk|β+1)
− |ζ|α

(1 + |ε1\pζ|α)
|η|βη

(1 + |ε1\qη|β+1)
]
,
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multiplying this equation by (wk − w) and integrating over Ω, we obtain∫
Ω

P (x)
[
|∇wk|p−2∇wk − |∇w|p−2∇w

]
∇(wk − w)

=
∫

Ω

a(x)
[ (|ζk|p−2ζk)
(1 + |ε1\pζk|p−1)

− (|ζ|p−2ζ)
(1 + |ε1\pζ|p−1)

]
(wk − w)

+
∫

Ω

b(x)
[ |ζk|α

(1 + |ε1\pζk|α)
|ηk|βηk

(1 + |ε1\qηk|β+1)

− |ζ|α

(1 + |ε1\pζ|α)
|η|βη

(1 + |ε1\qη|β+1)
]
(wk − w).

Using Hölder’s inequality, we get∫
Ω

P (x)
[
|∇wk|p−2∇wk − |∇w|p−2∇w

]
∇(wk − w)

≤
( ∫

Ω

(
(a(x)[

|ζk|p−2ζk
(1 + |ε1\pζk|p−1)

− |ζ|p−2ζ

(1 + |ε1\pζ|p−1)
]
)p∗)1/p∗( ∫

Ω

|wk − w|p
)1/p

+
( ∫

Ω

(
b(x)[

|ζk|α

(1 + |ε1\pζk|α)
|ηk|βηk

(1 + |ε1\qηk|β+1)

− |ζ|α

(1 + |ε1\pζ|α)
|η|βη

(1 + |ε1\qη|β+1)
]
)p∗)1/p∗( ∫

Ω

|wk − w|p
)1/p

.

Applying (4.5) and lemma 4.2, we obtain∫
Ω

P (x)|∇(wk − w)|p → 0 as k → +∞,

which implies that wk → w in W 1,p
0 (P,Ω). Similarly, we can deduce that zk → z

in W 1,q
0 (Q,Ω). Then, (wk, zk) → (w, z) in W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω).

To prove that T is compact, let (ζj , ηj) be a bounded sequence in K. Multiplying
the first equation in (4.3) by wj and integrating over Ω, we obtain∫

Ω

P (x)|∇wj |p

=
∫

Ω

[
a(x)

|ζj |p−2ζj
1 + |ε1\pζj |p−1

+ b(x)
|ζj |α

1 + |ε1\pζj |α
|ηj |βηj

1 + |ε1\qηj |β+1

]
wj +

∫
Ω

fwj

≤
∫

Ω

a(x)|ζj |p−2ζjwj +
∫

Ω

b(x)|ζj |α|ηj |βηjwj +
∫

Ω

fwj

≤
( ∫

Ω

[a(x)|ζj |p−1]p
∗
)1/p∗( ∫

Ω

(wj)p
)1/p

+
( ∫

Ω

[b(x)|ζj |α|ηj |β+1]p
∗
)1/p∗( ∫

Ω

(wj)p
)1/p

+
( ∫

Ω

|f |P
∗
)1/p∗( ∫

Ω

(wj)p
)1/p

.

Hence, (wj) is bounded in W 1,p
0 (P,Ω) and it possesses a strongly convergent sub-

sequence in Lp(Ω). The same is true for (zj) in Lq(Ω).
Since K is a convex, bounded, closed subset of Lp(Ω) × Lq(Ω), we can apply

Schauder’s Fixed Point Theorem to obtain the existence of a fixed point for T ,
which gives the existence of solution Uε = (uε, vε) of (4.1), and this completes the
proof. �

Now, we are in a position to prove the existence of a solution for system (1.4).
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Theorem 4.3. Assume that (2.2)-(2.6) and (2.10) are satisfied, then system (1.4)
admits a solution (u, v) in W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω).

Proof. This proof is done in three steps:
(a) First, we proof that (ε1\puε, ε1\qvε) is bounded in W 1,p

0 (P,Ω) × W 1,q
0 (Q,Ω).

Multiplying the first equation of ( 4.1) by (εuε) and integrating over Ω , we obtain∫
Ω

P (x)|∇(ε1\puε)|p

≤
∫

Ω

a(x)|(ε1\puε)|p +
∫

Ω

b(x)|(ε1\puε)|+ ε1\p
∗
∫

Ω

|f | × |(ε1\puε)|.
(4.6)

From (2.6), we get

(λa(p)− 1)
∫

Ω

a(x)|(ε1\puε)|p ≤
∫

Ω

b(x)|(ε1\puε)|+ ε1\p
∗
∫

Ω

|f | × |(ε1\puε)|.

Using Hölder’s inequality, we have

(λa(p)− 1)
( ∫

Ω

|(ε1\puε)|p
)1/p∗

≤ c with c > 0,

which implies that (ε1\puε) is bounded in Lp(Ω) and from (4.6) it is bounded in
W 1,p

0 (P,Ω). similarly (ε1\qvε) is bounded in W 1,q
0 (Q,Ω).

(b) (ε1\puε, ε1\qvε) converges to (0, 0) strongly in W 1,p
0 (P,Ω)×W 1,q

0 (Q,Ω).
From (a), (ε1\puε, ε1\qvε) converges to (u∗, v∗) strongly in LP (Ω) × Lq(Ω) and

weakly in W 1,p
0 (P,Ω)×W 1,q

0 (Q,Ω).
Multiplying the first equation of (4.1) by (ε1\p

∗
), we get

−∆P,p(ε1\puε)

= a(x)
|ε1\puε|p−2(ε1\puε)
(1 + |ε1\puε|p−1)

+ b(x)
|ε1\puε|α

(1 + |ε1\puε|α)
(ε1\q|vε|)β(ε1\qvε)
(1 + |ε1\qvε|β+1)

+ fε1\p
∗
,

since the sequence (ε1\puε) is bounded in W 1,p
0 (P,Ω), then, we can find subsequence

(ε1\puε) such that

ε1\puε → u∗ weakly in W 1,p
0 (P,Ω) and ε1\puε → u∗ a.e. on Ω.

Again, using Dominated Convergence Theorem as in Lemma 4.2, we have

a(x)
|ε1\puε|p−2(ε1\puε)
(1 + |ε1\puε|p−1)

→ a(x)
|u∗|p−2u∗

(1 + |u∗|p−1)
,

strongly in LP
∗
(Ω) and

b(x)
|ε1\puε|α

(1 + |ε1\puε|α)
(ε1\q|vε|)β(ε1\qvε)
(1 + |ε1\qvε|β+1)

→ b(x)
|u∗|α

(1 + |u∗|α)
|v∗|βv∗

(1 + |v∗|β+1)
,

strongly in LP
∗
(Ω). Using a classical result in [15], and passing to the limit, we

obtain

−∆P,p(u∗) = a(x)
|u∗|p−2u∗

(1 + |u∗|p−1)
+ b(x)

|u∗|α

(1 + |u∗|α)
|v∗|βv∗

(1 + |v∗|β+1)
. (4.7)

Multiplying this equation by (u−∗ ) and integrating over Ω, then applying (2.6), we
get

(λa(p)− 1)
∫

Ω

a(x)|u−∗ |p ≤
∫

Ω

b(x)|u−∗ |α+1|v−∗ |β+1.
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Using (3.4) and applying Hölder’s inequality, as in the proof of theorem 3.1, we
deduce

(λa(p)− 1)
α+1

p

( ∫
Ω

a(x)|u−∗ |p
)α+1

p
β+1

q ≤
( ∫

Ω

d(x)|v−∗ |q
)α+1

p
β+1

q

, (4.8)

similarly, from the second equation of (4.1), we have

(λd(q)− 1)
β+1

q

( ∫
Ω

d(x)|v−∗ |q
)α+1

p
β+1

q ≤
( ∫

Ω

a(x)|u−∗ |p
)α+1

p
β+1

q

. (4.9)

Multiplying (4.8) by (4.9), we obtain

((λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q − 1)
( ∫

Ω

a(x)|u−|p
∫

Ω

d(x)|v−|q
)α+1

p
β+1

q ≤ 0.

From (3.6), we have u−∗ = v−∗ = 0, which implies that u∗, v∗ ≥ 0.
Now, we show that u∗ = v∗ = 0. Multiplying equation (4.7) by (u∗) and inte-

grating over Ω, we get, as above

((λa(p)− 1)
α+1

p (λd(q)− 1)
β+1

q − 1)
( ∫

Ω

a(x)|u∗|p
∫

Ω

d(x)|v∗|q
)α+1

p
β+1

q ≤ 0,

which implies that u∗ = v∗ = 0.
(c) (uε, vε) is bounded in W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω). Assume that

‖uε‖W 1,p
0 (P,Ω) →∞ or ‖vε‖W 1q

0 (Q,Ω) →∞.

Set

tε = max(‖uε‖pW 1,p
0 (P,Ω)

, ‖vε‖qW 1q
0 (Q,Ω)

), zε = uεt
−1\p
ε , wε = vεt

−1\q
ε .

Dividing the first equation of (4.1) by (t1\p
∗

ε ) and the second by (t1\q
∗

ε ), we obtain

−∆P,pzε = a(x)
(|zε|p−2zε)

(1 + |ε1\puε|p−1)
+ b(x)

|zε|α

(1 + |ε1\puε|α)
|wε|βwε

(1 + |ε1\qvε|β+1)

+ ft−1\p∗
ε ,

−∆Q,qwε = d(x)
(|wε|q−2wε)

(1 + |ε1\qvε|q−1)
+ c(x)

|zε|αzε
(1 + |ε1\puε|α+1)

|vε|β

(1 + |ε1\qvε|β)
+ gt−1\q∗

ε .

As in (b) above, we can prove that (zε, wε) → (z, w) strongly in W 1,p
0 (P,Ω) ×

W 1,q
0 (Q,Ω), and taking the limit, as ε→ 0, we obtain

−∆P,pz = a(x)|z|p−2z + b(x)|w|β |z|αw,

−∆Q,qw = d(x)|w|q−2w + c(x)|w|β |z|αz,

and hence, we deduce that w = z = 0.
Since there exists a sequence (εn)n∈N such that either ‖zεn‖ = 1 or ‖wεn‖ = 1,

we obtain a contradiction.
Hence, (uε, vε) is bounded in W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω), we can extract a subse-

quence denoted by (uε, vε) which converges to (u0, v0) strongly in LP (Ω)×Lq(Ω) and
weakly in W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω) as ε→ 0. By using a similar procedure as above,

we can prove that (uε, vε) converges strongly to (u0, v0) in W 1,p
0 (P,Ω)×W 1,q

0 (Q,Ω).
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Indeed, since ε1\puε → 0 a.e. on Ω, we have∣∣ |uε|p−2uε
1 + |ε1\puε|p−1

∣∣ ≤ |uε|p−1 ≤ lp−1 ∈ LP
∗
(Ω),

with l ∈ LP (Ω) and

a(x)
|uε|p−2uε

1 + |ε1\puε|p−1
→ a(x)|u0|p−2u0 a.e. on Ω.

Hence, from the Dominated Convergence Theorem, we obtain∫
Ω

(
a(x)[(|uε|p−2uε)

(
1 + |ε1\puε|p−1

)−1 − |u0|p−2u0]
)p∗ → 0, as ε→ 0.

Also, since ε1\puε → 0 and ε1\qvε → 0 a.e. on Ω, then

|uε|α
(
1 + |ε1\puε|α

)−1|vε|βvε
(
1 + |ε1\qvε|β+1

)−1 → |u0|α|v0|βv0, a.e. on Ω,

and, as in the proof of Lemma 4.2, we have∣∣ |uε|α(
1 + |ε1\puε|α

) |vε|βvε(
1 + |ε1\qvε|β+1

) ∣∣ ≤ |uε|α|vε|β+1 ≤ lαmβ+1 ∈ LP
∗
(Ω)

with m ∈ Lq(Ω). From the Dominated Convergence Theorem, we have∫
Ω

(
b(x)[

|uε|α

(1 + |ε1\puε|α)
|vε|βvε

(1 + |ε1\qvε|β+1)
− |u0|α|v0|βv0]

)p∗ → 0,

asε→ 0. Similarly, we have∫
Ω

(
c(x)[

|uε|αuε
(1 + |ε1\puε|α+1)

|vε|β
(1 + |ε1\qvε|β)

− |u0|αu0|v0|β ])q
∗
→ 0 as ε→ 0,∫

Ω

d(x)[
|vε|q−2vε

(1 + |ε1\qvε|q−1)
− |v0|q−2v0)]q

∗
→ 0 as ε→ 0.

Therefore, passing to the limit, (uε, vε) → (u0, v0), and hence we obtain from (4.1)

−∆P,pu0 = a(x)|u0|p−2u0 + b(x)|u0|α|v0|βv0 + f in Ω,

−∆Q,qv0 = d(x)|v0|q−2v0 + c(x)|u0|αu0|v0|β + g in Ω.

Hence, (u0, v0) satisfies the system (1.4). �

Remark 4.4. (i) When P (x) = Q(x) = 1, p = q = 2 and α = β = 0, we obtain
some results presented in [4]. (ii) When P (x) = Q(x) = 1 and the coefficients
a(x), b(x), c(x) and d(x) are constants, we have some results presented in [5].
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