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RADIAL SELFSIMILAR SOLUTIONS OF A NONLINEAR
ORNSTEIN-UHLENBECK EQUATION

ARIJ BOUZELMATE, ABDELILAH GMIRA, GUILLERMO REYES

Abstract. This paper concerns the existence, uniqueness and asymptotic

properties (as r = |x| → ∞) of radial self-similar solutions to the nonlinear
Ornstein-Uhlenbeck equation

vt = ∆pv + x · ∇(|v|q−1v)

in RN × (0, +∞). Here q > p− 1 > 1, N ≥ 1, and ∆p denotes the p-Laplacian

operator. These solutions are of the form

v(x, t) = t−γU(cxt−σ),

where γ and σ are fixed powers given by the invariance properties of differential

equation, while U is a radial function, U(y) = u(r), r = |y|. With the choice

c = (q−1)−1/p, the radial profile u satisfies the nonlinear ordinary differential

equation

(|u′|p−2u′)′ +
N − 1

r
|u′|p−2u′ +

q + 1− p

p
ru′ + (q − 1)r(|u|q−1u)′ + u = 0

in R+. We carry out a careful analysis of this equation and deduce the corre-

sponding consequences for the Ornstein-Uhlenbeck equation.

1. Introduction and Main Results

We are interested in radial, selfsimilar solutions of the nonlinear degenerate par-
abolic equation

vt = ∆pv + x · ∇(|v|q−1v), (1.1)

posed in RN × (0,+∞), where q > p − 1 > 1, N ≥ 1. As usual, ∇ denotes the
spatial gradient, while ∆pv = div(|∇v|p−2∇v) stands for the p-Laplacian operator.
Equation (1.1) can be considered as a nonlinear version of the Ornstein-Uhlenbeck
equation (see for example [7] and [4]), which is an important model of diffusion.

The study of radial self-similar solutions is motivated by the role that they have
played in the general theory for related equations. Thus, it is well known that
for the purely p-laplacian equation, the so called Barenblatt solutions having the
same (invariant) norm ‖U(t)‖L1 describe the asymptotics of general solutions with
integrable data, see [5]. In the same spirit, in the papers [11, 6] it is proved that
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the long time behaviour of solutions to the diffusion-absorption equation

vt = ∆pv − vq

is also given by a family of radial self-similar solutions of the equation itself or
of some reduced equation. The particular member of the family depends on the
behaviour of initial data at infinity. The same questions for related equations can
be found in [2, 3, 8, 9, 10]. The radial self-similar solutions to (1.1) constructed in
the present paper are also related to the long time behaviour of solutions to the
initial value problem. The authors intend to report on this in a forthcoming paper.

We show that, under certain assumptions on p, q and N , the equation (1.1)
admits a family of radial self-similar solutions of the form

v(x, t) = t−γU(cxt−σ), (1.2)

defined for x ∈ RN and t > 0. Here U : RN → R, is a radial function. The
scaling powers γ, σ are determined by the equation in the usual manner (dimensional
analysis):

γ =
1

q − 1
, σ =

q + 1− p

p(q − 1)
. (1.3)

With the choice of the scaling constant c = (q − 1)−1/p, it can be easily checked
that U satisfies the degenerate elliptic equation

∆pU +
q + 1− p

p
x · ∇U + (q − 1)x · ∇(|U |q−1U) + U = 0

in RN . If we put U(x) = u(|x|), it is easy to see that u : R+ → R is a solution of
the ODE

(|u′|p−2u′)′ +
N − 1
r

|u′|p−2u′ +
q + 1− p

p
ru′ + (q − 1)r(|u|q−1u)′ + u = 0. (1.4)

We study this equation by classical methods, suitably modified in order to deal
with its degenerate character at r = 0 as well as at points where u′ = 0. This is
particularly important for local existence, since we are interested in radial solutions
and it is natural to impose u′(0) = 0. Actually, we will deal with a more general
equation, containing (1.4) as a particular case. Thus, consider the following initial
value problem.

Problem (P). Find a function u, defined on [0,+∞[ such that |u′|p−2u′ is in
C1([0,+∞[) and

(|u′|p−2u′)′ +
N − 1
r

|u′|p−2u′ + αru′ + βr(|u|q−1u)′ + u = 0 in ]0,+∞[, (1.5)

u(0) = A, u′(0) = 0, (1.6)

where q > p− 1 > 1, N ≥ 1, α ≥ 0, β > 0, A 6= 0. Note that in the application to
the nonlinear Ornstein-Uhlenbeck equation (1.1) the choice of parameters is

α =
q + 1− p

p
, β = (q − 1). (1.7)

Our results concerning problem (P) can be summarized as follows. For this brief
account we assume that A > 0, for the sake of clarity.

By reducing the initial value problem (P) to a fixed point problem for a suitable
integral operator, we prove that for each A 6= 0 there exists a unique function
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u(·, A) defined in [0,+∞[ satisfying (1.5)and (1.6). This is the content of Theorem
2.1.

Once these basic facts are established, we perform a careful analysis of the qual-
itative properties of the solutions to (P). First, we prove that the solutions are
ordered. Moreover, we show that they are strictly ordered while the smaller is
positive. See Theorem 2.6.

Next, we consider the behavior of solutions as r → +∞. It turns out that this
behaviour strongly depends on the size of α.

More precisely, we show that lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0. If α > 0, we prove

that there exists the finite limit L := lim
r→+∞

r1/αu(r) ≥ 0. Moreover, L > 0 if

αN > 1. See Theorems 3.1, 3.3 and 3.6 for the precise statements.
Concerning the sign of u, we prove that (i) if αN ≥ 1, then solutions are strictly

positive, whereas (ii) if 0 < αN < 1 solutions with small data change sign, while
those with large data are strictly positive. As a direct consequence, we obtain
the existence and uniqueness of a compactly supported solution in this range. See
Theorems 3.7, 4.2, 4.3 and 4.9.

This paper is organized as follows: Section 2 is devoted to basic theory: we prove
local existence, uniqueness and extendability of solutions for problem (P), as well as
monotonicity of solutions with respect to the datum A. In Section 3 we describe the
asymptotic behavior of positive solutions as r → ∞. In Section 4 we give a fairly
complete classification of solutions according to their behaviour at infinity (strictly
positive, compactly supported or oscillating), depending on the parameters α, and
β. Finally, in Section 5, we apply the obtained results to the original equation,
taking into account the relations (1.7).

2. Basic Theory

Unless otherwise specified, we assume throughout that

q > p− 1 > 1, N ≥ 1, α ≥ 0, β > 0.

Moreover, we restrict ourselves to the case A > 0 in (1.6), since equation (1.5)
is invariant under the change of unknown u → v = −u; i.e., if u solves (P) with
u(0) = A, then v = −u solves the same problem with v(0) = −A. We start with
existence and uniqueness result.

Theorem 2.1. Problem (P) has a unique solution u(·, A, α, β). Moreover,

(|u′|p−2u′)′(0) = −A/N. (2.1)

Some ideas for the proof are inspired by [2] and [3].

Proof. The proof will be done in three steps.
Step 1: Existence of a local solution. Integrating (1.5)twice from 0 to r and taking
into account (1.6), we see that problem (P) is equivalent to the integral equation

u(r) = A−
∫ r

0

G(F [u](s)) ds, (2.2)

where
G(s) = |s|(2−p)/(p−1)s, s ∈ R (2.3)
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and the nonlinear mapping F is given by the formula

F [ϕ](s) = αsϕ(s)+βs|ϕ|q−1ϕ(s)+s1−N

∫ s

0

σN−1[−βN |ϕ|q−1(σ)+(1−Nα)]ϕ(σ)dσ.

(2.4)
Let us introduce the functional setting. For R > 0 we denote by C([0, R]), the
Banach space of real continuous functions on [0, R] with the uniform norm, denoted
by ‖ · ‖0. Then F [ϕ] is well defined as an operator from C([0, R]) into itself. Given
A,M > 0 we consider the complete metric space

EA,M ;R =
{
ϕ ∈ C([0, R]) : ‖ϕ−A‖0 ≤M

}
. (2.5)

Next we define the mapping T on EA,M ;R by

T [ϕ](r) = A−
∫ r

0

G(F [φ](s))ds. (2.6)

Claim 1: T maps EA,M ;R into itself for some small M and R > 0.

Proof. Obviously T [ϕ] ∈ C([0, R]). Let us first choose M . From the definition of
the space EA,M ;R, ϕ(r) ∈ [A −M,A +M ], for any r ∈ [0, R]. Simple calculations
show the existence of M1 with 0 < M1 < A, such that for any M ∈ [0,M1], F [ϕ]
has a constant sign in [0, R] for every ϕ ∈ EA,M ;R. Fix one such M . Moreover,
there exists a constant K > 0, depending on p, q,N,A,R,M,α and β, such that

|F [ϕ](s)| ≥ Ks for all s ∈ [0, R]. (2.7)

Taking into account that the function r → G(r)/r is decreasing on (0,+∞), we
have

|T [ϕ](r)−A| ≤
∫ r

0

G(F [ϕ](s))
F [ϕ](s)

|F [ϕ](s)|ds ≤
∫ r

0

G(Ks)
Ks

|F [ϕ](s)|ds

for r ∈ (0, R). On the other hand,

|F [ϕ](s)| ≤ Cs, C = [|α|+ |1/N − α|+ 2β(M +A)q−1](M +A).

We thus get

|T [ϕ](r)−A| ≤ p− 1
p

CK
2−p
p−1 r

p
p−1

for every r ∈ (0, R). Choose R small enough such that

|T [ϕ](r)−A| ≤M, for ϕ ∈ EA,M ;R, (2.8)

and thereby T [ϕ] ∈ EA,M,R (observe that the value of K may be kept fixed). The
claim is thus proved. �

Claim 2: T is a contraction in some interval [0, rA].

Proof. According to Claim 1, if rA is small enough, the space EA,M ;rA
applies into

itself. For such rA and any ϕ,ψ ∈ EA,MA;rA
we have

|T [ϕ](r)− T [ψ](r)| ≤
∫ r

0

|G(F [ϕ](s))−G(F [ψ](s))|ds (2.9)

where F [ϕ] is given by (2.4). Next, let

Φ(s) = min(|F [ϕ](s)|, |F [ψ](s)|).
As a consequence of estimate (2.7) (which is also valid for F [ψ](s)), we have

Φ(s) ≥ Ks for 0 ≤ s ≤ r < rA
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and then

|G(F [ϕ](s))−G(F [ψ](s))| ≤ G(Φ(s))
Φ(s)

|F [ϕ](s)− F [ψ](s)|

≤ G(Ks)
Ks

|F [ϕ](s)− F [ψ](s)|.
(2.10)

Moreover,

|F [ϕ](s)−F [ψ](s)| ≤ C ′‖ϕ−ψ‖0s; C ′ = [|α|+|1/N−α|+6β(M+A)q−1]. (2.11)

Combining (2.9), (2.10) and (2.11), we have

|T [ϕ](r)− T [ψ](r)| ≤ p− 1
p

C ′K
2−p
p−1 r

p
p−1 ‖ϕ− ψ‖0

for any r ∈ [0, rA]. Choosing rA small enough, T , is a contraction. This proves the
claim. �

The Banach Fixed Point Theorem then implies the existence of a unique fixed
point of T in EA,M ;rA

, which is a solution of (2.2) and, consequently, of problem
(P). As usual, this solution can be extended to a maximal interval [0, rmax[, 0 <
rmax ≤ +∞.
Step 2: Existence of a global solution. We define the energy function

E(r) =
p− 1
p

|u′|p(r) +
1
2
u2(r). (2.12)

According to equation (1.5), the energy satisfies

E′(r) = −ru′2{N − 1
r2

|u′|p−2(r) + α+ βq|u|q−1}. (2.13)

From our hypothesis it follows that E is decreasing, hence it is bounded. Conse-
quently, u and u′ are also bounded and the local solution constructed above can be
extended to R+.
Step 3: (|u′|p−2u′)′(0) = −A/N . Taking the first derivative in (2.2), inverting the
function G , dividing both members by r and passing to the limit as r → 0 gives,
after a standard application of L’Hopital’s rule,

lim
r→0

|u′|p−2u′(r)
r

= −A

N
, (2.14)

as desired. The proof of Theorem 2.1 is complete. �

Remark 2.2. (i) It is not difficult to see that the solutions of (P) are C∞ func-
tions in the set {r > 0 : u′(r) 6= 0}. However, we only have u ∈ C1+1/(p−1) as
global regularity, see (2.15) and (4.17) below. This is exactly the regularity of the
Barenblatt solutions to the pure p-laplacian equation.

(ii) It is easy to see from (1.5) that local minima (resp. maxima) of the function
u can take place only at points where u ≤ 0 (resp. u ≥ 0).

Remark 2.3. In the general case, near the origin we have E′(r) ∼ −N−1
r |u′|p(r).

Remark 2.4. Since the vector field F(r,X, Y ), is locally Lipschitz continuous in
the set

{(r,X, Y ) ∈ R∗+ × R∗ × R∗},
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there exists a unique solution of (2.11) in a neighborhood of (r0, A,B) if r0 > 0,
A,B 6= 0. The same method above can be used to extend this result to the cases
r0 = 0 or B = 0.

Remark 2.5. Local existence holds with β ≤ 0, α < 0 and the same proof applies.

The following result concerns monotonicity of solutions with respect to the initial
data.

Theorem 2.6. Let u(·, A) and u(·, B) be two solutions of problem (P) with 0 <
A < B. Then u(·, A) and u(·, B) can not intersect each other before their first zero.

Before giving the proof of theorem 2.6, we need an asymptotic expansion near
r = 0, which is given by the following lemma.

Lemma 2.7. Let u be the solution to (P) with A > 0. There holds

u(r) = A− C1r
p/(p−1) + C2r

2p/(p−1) + o(r2p/(p−1)) as r → 0 (2.15)

with

C1 =
p− 1
p

(
A

N

)1/(p−1)

; C2 =
C2

1κN

2A(N + pκ)
[βpqκAq−1 + αpκ+ 1]

and κ := 1/(p− 1).

Proof. It follows from (2.14) that, as r → 0,

−u′(r) =
(A
N

)κ
rκ + o(rκ).

Integrating on [0, r] we obtain

u(r) = A− C1r
pκ + . . . (2.16)

with C1 as above (in the sequel we omit the o′s for simplicity). L’Hopital’s rule
and the integral equation (2.1) imply

C2 := lim
r→0

u(r)−A+ C1r
pκ

r2pκ
= lim

r→0

C1pκr
κ −G(Fu(r))

2pκr2pκ−1
.

Write

Fu(r) = αru+βruq+H(r); H(r) := r1−N

∫ r

0

σN−1[−βNuq(σ)+(1−Nα)u(σ)]dσ.

Again, l’Hopital’s rule and the fact that u(r) → A as r → 0 imply

lim
r→0

H(r)
r

= lim
r→0

∫ r

0
σN−1[−βNuq(σ) + (1−Nα)u(σ)]dσ

rN

=
−βNAq + (1−Nα)A

N
=: C ′.

This information does not allow to find the value of C2, since the leading order
of the numerator is still unknown. We need the next term. Toward this end, we
compute

H(r)−C ′r = [βNC1qA
q−1−C1(1−Nα)]r1−N

∫ r

0

σN+κdσ+· · · = C ′′r(2p−1)κ+. . . ,

where

C ′′ :=
[βNC1qA

q−1 − C1(1−Nα)]
N + pκ

.
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(here we have used (2.16)). Consequently, H(r) = C ′r+C ′′r(2p−1)κ + . . . . Plugging
this expansion into Fu and using again (2.16) we obtain

Fu(r) =
A

N
r + C ′′′r(2p−1)κ + . . . ; C ′′′ = C ′′ − αC1 − βC1qA

q−1.

Therefore, since Fu(r) > 0 for r ∼ 0,

G(Fu(r)) = C1pκr
κ +

C1C
′′′pκ2N

A
r2pκ−1 + . . .

where G is given by (2.3) and then

C2 = −C1C
′′′κN

2A
=

C2
1κ

2A(N + pκ)
[βpqκAq−1 + αpκ+ 1].

This concludes the proof of the Lemma. �

Proof of Theorem 2.6. Let R1 (resp. R2) denote the first zero of u(·, A) (resp.
u(·, B)) or R1 = +∞ (resp R2 = +∞) if u(·, A) > 0 ∈ R+(resp. u(·, B) > 0 ∈ R+).
For ease of notation, we write u(r) = u(r,A) and v(r) = u(r,B).

We argue by contradiction. Suppose there exists R0 ∈]0, min(R1, R2)[ such that
u(r) < v(r) for r ∈ [0, R0[and u(R0) = v(R0). For k > 0 we define

uk(r) = k−
p

p−2u(kr). (2.17)

Since u is decreasing, we can choose k ∈]0, 1[ such that uk(r) > v(r) for r ∈ [0, R0].
Set

K = sup
{
0 < k < 1 : uk(r) > v(r) for r ∈ [0, R0]

}
.

We claim that uK(r) ≥ v(r) for r ∈ [0, R0]. Indeed, assume there exists r1 ∈ [0, R0]
such that uK(r1) < v(r1). Since the function k → uk(r1) is continuous, there exists
ε > 0 such that uk(r1) < v(r1) for K − ε < k < K, contrary to the definition of K.
Hence uK(r) ≥ v(r) for r ∈ [0, R0].

Moreover uK(R0) > v(R0), and uK(0) > v(0). In fact, observe first that if
uK(R0) = v(R0) = u(R0), then K = 1, this contradicts u(r) < v(r) for 0 < r < R0.
Secondly assume uK(0) = v(0) = B. Then uK solves the same problem as v but
for a different value of β. Put βK := βK

p(q−1)
p−2 < β (recall that K < 1). Applying

the lemma above to uK and v we have

uK(r) = B − C1r
p/(p−1) + C̃2r

2p/(p−1) + . . .

v(r) = B − C1r
p/(p−1) + C2r

2p/(p−1) + . . . ,

where C̃2 < C2, since βK < β. Thus uK < v in a right neighborhood of r = 0, a
contradiction. Then necessarily uK(0) > v(0).

Next, we claim that there exists R ∈]0, R0[ such that uK(R) = v(R). Assume
the opposite. Then there would exist ε > 0 such that uK − v > ε on [0, R0] and
therefore, by continuity of k → uk as a map from ]0, 1[ to C[0, R0], the same would
hold with K replaced by k,K < k < K + δ, for some δ(ε) > 0, contradicting the
definition of K. This proves the claim.

Clearly, u′K(R) = v′(R), since otherwise one would have uK < v on some one-
sided neighborhood of R, which is impossible. Thus the function ϕ = uK − v has
a local minimum at R. On the other hand, it is easy to see that uK satisfies the
equation

(|u′K |p−2u′K)′ +
N − 1
r

|u′K |p−2u′K + αru′K + uK + βK
p(q−1)

p−2 r(uq
K)′ = 0.
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Subtracting this equation from the one satisfied by v we obtain at r = R:

(p− 1)|v′|p−2(R)ϕ′′(R) + β[K
p(q−1)

p−2 − 1]R(uq
K)′ = 0.

Since K < 1, β > 0, uK(R) = v(R) > 0 and u′K(R) = v′(R) < 0, we deduce
ϕ′′(R) < 0, thus contradicting the fact that ϕ has a local minimum at R. The
obtained contradiction proves the assertion. This completes the proof of the theo-
rem. �

3. Behaviour at infinity

This section deals with some qualitative properties of solutions of problem (P).

Theorem 3.1. Let u be a solution of (P). Then,

lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0.

Proof. By (2.12), it is enough to show that limr→+∞E(r) = 0. Since E′(r) ≤ 0 and
E(r) ≥ 0 for all r > 0, there exists a constant l ≥ 0 such that limr→+∞E(r) = l.
Suppose l > 0. Then, there exists r1 > 0, such that

E(r) ≥ l/2 for r ≥ r1. (3.1)

Now consider the function

D(r) = E(r) +
N − 1

2r
|u′|p−2u′(r)u(r) +

α(N − 1)
4

u2(r)

+
qβ(N − 1)
2(q + 1)

|u|q+1 + α

∫ r

0

su′2(s)ds.

Then

D′(r) = −qβr|u|q−1u′2 − (N − 1)
2r

[|u′|p +
N

r
|u′|p−2u′u+ u2].

Since β > 0, we have

D′(r) ≤ −N − 1
2r

[|u′|p + u2 +
N

r
|u′|p−2u′u].

Recalling that u and u′ are bounded,

lim
r→+∞

|u′|p−2u′ u(r)
r

= 0.

Moreover, by (3.1) we have

|u′(r)|p + u2(r) ≥ p− 1
p

|u′(r)|p +
u2(r)

2
= E(r) > l/2 for r ≥ r1.

Consequently, there exist two constants c > 0 and r2 ≥ r1 such that

D′(r) ≤ −c/r for r ≥ r2.

Integrating this last inequality between r2 and r, we get

D(r) ≤ D(r2)− c ln(r/r2) for r ≥ r2.

In particular we obtain limr→+∞D(r) = −∞. Since

E(r) +
N − 1

2r
|u′|p−2u′u(r) ≤ D(r),

we get limr→+∞E(r) = −∞. This is impossible, hence the conclusion. �
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Theorem 3.2. Let Pu := {r > 0 : u(r) > 0}. Then u′ < 0 in the connected
component of Pu containing a right neighborhood of r = 0.

Proof. We argue by contradiction. Let r0 > 0 be the first zero of u′ in the connected
component of Pu containing a right neighborhood of r = 0. Then, it follows from
(1.5)that (|u′|p−2u′)′(r0) = −u(r0) < 0. On the other hand, we know from (2.14)
that u′ < 0 for r ∼ 0. By continuity and the definition of r0, there exists a left
neighborhood ]r0−ε, r0[ (for some ε > 0) where u′ is strictly increasing and strictly
negative, that is (|u′|p−2u′)′(r) > 0 for any r ∈ ]r0 − ε, r0[; hence by letting r → r0
we get (|u′|p−2u′)′(r0) ≥ 0, a contradiction. �

Theorem 3.3. Assume α > 0. Let u be a strictly positive solution of (P). Then
limr→+∞ r1/αu(r) = L exists and lies in [0,+∞[.

We postpone the proof of this theorem until establishing some preliminary re-
sults.

Lemma 3.4. Assume α > 0. Let u be a strictly positive solution of (P). Suppose
there are some σ ≥ 0and r0 > 0 such that

u(r) ≤ K(1 + r)−σ for r ≥ r0. (3.2)

Then, there exists a constant M depending on K,σ, and r0 such that

|u′(r)| ≤M(1 + r)−σ−1 for r ≥ r0. (3.3)

Proof. Consider the function ρ defined by

ρ(r) = exp[
α

p− 1

∫ r

r0

s|u′(s)|2−pds].

Note that the function u′ is strictly negative and then ρ(r) is well defined for r ≥ r0
and it is an increasing C∞ function. Set

F (r) = (p− 1)u′(r)r
N−1
p−1 ρ(r) for r ≥ r0.

Using the fact that ρ′(r) = α
p−1r|u

′(r)|2−pρ(r) and equation (1.5), we deduce that,
for any r ≥ r0,

F ′(r) = −p− 1
α

r
N−p
p−1 ρ′(r)[u(r) + βqru(r)q−1u′(r)]

Integrating this last equation in (r0, r) with r > r0 and using the expression of
F (r), we get

u′(r) =
r

1−N
p−1

ρ(r)
u′(r0)r

N−1
p−1
0 − 1

α

r
1−N
p−1

ρ(r)

∫ r

r0

s
N−p
p−1 ρ′(s)[u(s) + βqsu(s)q−1u′(s)]ds.

Since u′(r) < 0, α > 0, β > 0 and ρ′(r) > 0 it follows that

|u′(r)| ≤ r
1−N
p−1

ρ(r)
r

N−1
p−1
0 |u′(r0)|+

1
α

r
1−N
p−1

ρ(r)
I for r ≥ r0, (3.4)

where
I =

∫ r

r0

s
N−p
p−1 ρ′(s)u(s)ds.

Since u′ is continuous in ]0,+∞[ and limr→+∞ u′(r) = 0 (from Theorem 3.1), there
exists a constant K0 depending on r0 such that

|u′(r)|2−p ≥ K0 for r ≥ r0. (3.5)
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As a consequence,
ρ(r) ≥ K2 exp(K1r

2) for r ≥ r0, (3.6)

where K1 = α
2(p−1)K0 and K2 = exp[−K1r

2
0]. Therefore, the first term in the right

hand side of (3.4) can be estimated as

r
1−N
p−1

ρ(r)
r

N−1
p−1
0 |u′(r0)| ≤

1
K2

|u′(r0)| exp(−K1r
2). (3.7)

Next we estimate the second term in the right-hand side of (3.4). It follows from
(3.2) that, for r ≥ 2r0,

I ≤ C

∫ r
2

r0

s
N−p
p−1 ρ′(s)(1 + s)−σds+ C

∫ r

r/2

s
N−p
p−1 ρ′(s)(1 + s)−σds. (3.8)

Plainly, ∫ r
2

r0

s
N−p
p−1 ρ′(s)(1 + s)−σds ≤ (1 + r0)−σ max

(r0,r/2)
(s

N−p
p−1 )ρ(r/2), (3.9)

and ∫ r

r/2

s
N−p
p−1 ρ′(s)(1 + s)−σds ≤ (1 + r/2)−σ max

(r/2,r)
(s

N−p
p−1 )ρ(r). (3.10)

Now note that
ρ(r/2)
ρ(r)

= exp
[
− α

p− 1

∫ r

r/2

s|u′(s)|2−pds
]
≤ exp(−K3r

2), (3.11)

where K3 = 3α
8(p−1)K0. Combining (3.8)—(3.11), we obtain

1
α

r
1−N
p−1

ρ(r)
I ≤ C(1 + r)−σ−1 + Cr

1−N
p−1 max

(r0, r
2 )

(s
N−p
p−1 ) exp(−K3r

2), (3.12)

where C > 0 is a constant depending on r0, p,N and σ. Putting together (3.7) and
(3.12) the desired estimate (3.3) follows. �

Lemma 3.5. Assume α > 0. Let u be a strictly positive solution of (P). Then

u(r) ≤ C r−1/α for large r. (3.13)

Proof. Multiplying the equation (1.5) by u/r and rearranging we obtain

u2(r)
r

=
|u′|p

r
− αuu′ − N

r2
u|u′|p−2u′ − [

u|u′|p−2u′

r
]′ − βququ′(r).

Recalling the definition of the energy function given by (2.12) we have the inequality

E(r)
r

≤ 3p− 2
2p

|u′|p

r
− α

2
uu′ +

N

2r2
u|u′|p−1 − 1

2
[u|u′|p−2u′

r

]′ − β

2
ququ′(r).

By Theorem 3.2, u′ < 0. Integrating the last inequality on some interval (r,R) we
obtain ∫ R

r

E(s)
s

ds≤ 3p− 2
2p

∫ R

r

|u′(s)|p

s
ds+

N

2

∫ R

r

u(s)|u′(s)|p−1

s2
ds

+
u(R)|u′(R)|p−1

2R
+
α

4
u2(r) +

qβ

2(q + 1)
uq+1(r).
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Since E is strictly decreasing and converges to zero when r → ∞, we deduce that
E′ ∈ L1(]r0,∞[) for any r0 > 0. Thereby |u′|p/r ∈ L1(]r0,∞[). Letting R → +∞
the following inequality holds∫ ∞

r

E(s)
s

ds≤ α

4
u2(r) +

3p− 2
2p

∫ ∞

r

|u′(s)|p

s
ds+

+
N

2

∫ ∞

r

u(s)|u′(s)|p−1

s2
ds+

qβ

2(q + 1)
uq+1(r).

(3.14)

Set

H(r) =
∫ ∞

r

E(s)
s

ds. (3.15)

From the expression of E(r), we have u2(r) ≤ 2E(r), then inequality (3.14) gives

H(r) +
α

2
rH ′(r)≤ 3p− 2

2p

∫ ∞

r

|u′(s)|p

s
ds+

N

2

∫ ∞

r

u(s)|u′(s)|p−1

s2
ds

+
qβ

2(q + 1)
uq+1(r).

(3.16)

Assume now that u satisfies

u(r) ≤ Cr−σ for r ≥ 1 (3.17)

with some fixed σ ≥ 0 and some constant C > 0 (this is possible because u(r) ≤ A
for r ≥ 0). Then Lemma (3.4) implies |u′(r)| ≤ Cr−σ−1, for large r, and then
(3.16) and (3.17) imply

[r2/αH(r)]′ ≤ Cr−p(1+σ)+2/α−1 + Cr−σ(q+1)+2/α−1. (3.18)

We claim that
u(r) ≤ Cr−m for large r, (3.19)

with

m = min
{ 1
α
,
σ(p+ 2) + p

4
,
σ(1 + q+1

2 )
2

}
.

In fact, we have to distinguish two cases.
Case (I): [2/α− p(1 + σ)][2/α− σ(q + 1)] 6= 0. Using (3.18) there holds

H(r) ≤ Cr−2/α + Cr−p(1+σ) + Cr−σ(q+1) for large r. (3.20)

Case (II): [2/α− p(1 + σ)][2/α− σ(q + 1)] = 0. Here we have three subcases:
Case (IIa): 2/α = p(1 + σ) and 2/α 6= σ(q + 1). Then

H(r) ≤ Cr
−σ(p+2)−p

2 + Cr−σ(q+1) for large r. (3.21)

Case (IIb): 2/α 6= p(1 + σ) and 2/α = σ(q + 1). Then

H(r) ≤ Cr−p(σ+1) + Cr−σ(1+ q+1
2 ) for large r. (3.22)

Case (IIc): 2/α = p(1 + σ) and 2/α = σ(q + 1). Then

H(r) ≤ Cr
−σ(p+2)−p

2 for large r. (3.23)

Now using the inequality

H(r) ≥
∫ 2r

r

E(s)
s

ds ≥ E(2r)
2

≥ u2(2r)
4

, (3.24)

and combining (3.20), (3.21), (3.22), (3.23) and (3.24), the estimate (3.19) follows.
If m = 1/α we have exactly the estimate (3.13). Otherwise, observe that m > σ
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and (3.13) follows by induction starting with σ = min
{σ(p+2)+p

4 , σ[1+(q+1)/2]
2

}
.

This finishes the proof of the lemma. �

Now we turn to the proof of Theorem 3.3.

Proof of Theorem 3.3. . Let u be the solution of (P). Set

I(r) = r1/α[u+
1
αr
|u′|p−2u′]. (3.25)

By a simple computation we get

I ′(r) = − 1
α
r1/α[(N − 1/α)

|u′|p−2u′(r)
r2

+ β(uq)′(r)]

By lemmas 3.4 and 3.5, the functions r → r1/α(uq)′(r) and r → r1/α−2|u′(r)|p−1 be-
long to L1(]r0,∞[) for any r0 > 0; therefore I ′(r) ∈ L1(]r0,∞[), and consequently,
the limit

lim
r→+∞

I(r) =
∫ ∞

r0

I ′(r)dr + I(r0) (3.26)

exists and is finite. Again (3.13) and (3.3) imply

r1/α−1|u′|p−1 ≤ Cr−(p−2)/α−p (3.27)

for large r. As a consequence, limr→+∞ r1/αu(r) = L exists and is finite, thus
concluding the proof. �

Theorem 3.6. Assume L = 0 in Theorem 3.6. Then rmu(r) → 0 and rmu′(r) → 0
as r → +∞ for all positive integers m.

Proof. Since L = limr→+∞ r1/αu(r) = 0, limr→+∞ I(r) = 0 (where I is given by
(3.25)). Hence I(r) = −

∫ +∞
r

I ′(t)dt. This yields

u(r)≤ 1
αr
|u′|p−1 +

qβ

α
r−1/α

∫ +∞

r

s1/αuq−1|u′|(s)ds

+
1
α
|N − 1

α
|r−1/α

∫ +∞

r

s1/α−2|u′(s)|p−1ds

(3.28)

In view of Lemma 3.5,

u(r) ≤ C(r−p−(p−1)/α + r−q/α),

for some C > 0. If we define the sequence {mk}k∈N by{
m0 = 1

α

mk = min {p+ (p− 1)mk−1, qmk−1} ; k ≥ 1,

then limr→+∞mk = +∞, and the theorem follows by induction starting with
m0 = 1/α. This completes the proof. �

Theorem 3.7. Suppose αN ≥ 1. Then any solution of (P) is strictly positive.

Proof. We argue by contradiction. Thus, assume that u(r0) = 0 (where r0 > 0 is
the first zero of u). Then u′(r0) ≤ 0. On the other hand, multiplying the equation
(E1) by rN−1 and integrating on (0, r0) we get

rN−1
0 |u′(r0)|p−2u′(r0) = (αN − 1)

∫ r0

0

sN−1u(s)ds+ βN

∫ r0

0

sN−1uq(s)ds. (3.29)
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Under our hypotheses, the right-hand side of (3.29) is strictly positive. The obtained
sign contradiction proves our assertion. �

Next, we consider the function

J(r) = [u(r) +
1
αr
|u′(r)|p−2u′(r)]rN . (3.30)

Lemma 3.8. Let the hypotheses in Theorem 3.7 hold. Then the function J is
strictly positive for any r > 0.

Proof. It easy to see that

J ′(r) =
1
α
rN−1[αN − 1− qβruq−2(r)u′(r)]u(r). (3.31)

Since u′ is strictly negative, J(r) is strictly increasing for r > 0. On the other
hand, (|u′|p−2u′)′(0) is finite (= −A/N), hence J(0) = 0. Consequently, J(r) > 0
for r > 0, concluding the proof. �

Theorem 3.9. Assume αN > 1. Then L = limr→+∞ r1/αu(r) > 0.

Proof. By Theorem 3.7, solutions are strictly positive. Then, by Theorem 3.3, the
limit L ∈ [0,+∞[ exists. Suppose L = 0. By Theorem 3.6 we have

lim
r→+∞

rmu(r) = lim
r→+∞

rmu′(r) = 0

for any m > 0 and thereby limr→+∞ J(r) = 0, in contradiction with the fact that
J is strictly increasing and strictly positive. The theorem is proved. �

4. Classification of Solutions

In this section we give a classification of solutions of problem (P), according to
whether they are strictly positive, change sign or are compactly supported. We
define the following sets:

S+ = {A > 0 : u(r,A) > 0 for r > 0} ;

S− = {A > 0 : ∃r0 > 0 : u(r0, A) = 0 and u′(r0;A) < 0} ;

SC = {A > 0 : ∃r0 > 0 : u(r,A) > 0 for r ∈ [0, r0[ and u(r,A) = 0 for r ≥ r0} ,

corresponding respectively to strictly positive, changing sign and compactly sup-
ported solutions.

Observe that R+ = S− ∪S+ ∪SC . Indeed, let A > 0 be given. Suppose A /∈ S+.
Then there exists r0 such that u(r) > 0, for 0 ≤ r < r0, and u(r0) = 0. If
u′(r0) < 0,, then u changes sign and A ∈ S−. Assume now u′(r0) = 0. Since the
energy function given by (2.12) is non-negative and decreasing, we get u(r) = 0 for
any r ≥ r0 and A ∈ SC .

Remark 4.1. Theorem 3.7 can be reformulated as: If αN ≥ 1 then S+ = R+.

Next, we investigate the range 0 < αN < 1. It turns out that in this range non
of the sets S+, S−, SC is empty. To show this, we apply below the well known
shooting technique.

Theorem 4.2. Assume 0 < αN < 1. Then S− is an open nonempty set.
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Proof. Step 1. First, we prove that S− 6= Ø. More precisely, we claim that there
exists a constant A0 > 0 such that for each A ∈ (0, A0), the solution u(·, A) changes
sign. To this end, we make the following scaling transformation

u(r) = Av(ζ), where ζ = A−
p−2

p r.

Then v solves the problem

(|v′|p−2v′)′ +
N − 1
ζ

|v′|p−2v′ + αζv′ + v + βqAq−1ζ|v|q−1v′ = 0 ζ > 0;

v(0) = 1, v′(0) = 0.
(4.1)

Recall that the energy function given by (2.12) is positive and decreasing. Then

E(r) ≤ E(0) =
A2

2
,

which implies
|u(r)| ≤ A and |u′(r)| ≤ (

p

2(p− 1)
)1/pA

2
p .

Therefore, v and v′ are bounded. More precisely

|v(ζ)| ≤ 1 and |v′(ζ)| ≤ (
p

2(p− 1)
)1/p.

Consequently, for small A, the problem (4.1) can be seen as a perturbation of the
problem

(|w′|p−2w′)′ +
N − 1
ζ

|w′|p−2w′(ζ) + αζw′ + w = 0 for ζ > 0;

w(0) = 1, w′(0) = 0.
(4.2)

The first equation of the last problem can be written as

[ζN−1|w′|p−2w′ + αζNw]′ = (αN − 1)ζN−1w(ζ).

We claim that w changes sign. In fact, if w were strictly positive, we would have
w′ < 0. On the other hand, as αN < 1, the function

ϕ : ζ → ζN−1|w′|p−2w′ + αζNw

is strictly decreasing; hence ϕ(ζ) ≤ ϕ(0) = 0 for ζ > 0. That is,

|w′|p−2w′(ζ) ≤ −αζw(ζ),

which gives
p− 1
p− 2

(w
p−2
p−1 )′(ζ) ≤ −p− 1

p
α

1
p−1

(
ζ

p
p−1

)′
,

and after integration,

w
p−2
p−1 (ζ) ≤ 1− p− 2

p
α

1
p−1 ζ

p
p−1 .

By letting ζ → +∞, we get a contradiction. Thereby w and also u change sign.
That is, u ∈ S−.
Step 2. S− is open. This follows easily from local continuous dependence of
solutions on the initial value. The proof is concluded. �

Theorem 4.3. Assume 0 < αN < 1. Then S+ is an open nonempty set.

The proof of the theorem will be done in several lemmas.
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Lemma 4.4. Assume α > 0. Then, for large initial data A, the solution u(·, A) is
strictly positive.

Proof. As in the previous theorem, we introduce a new function v defined by

u(r) = Av(ζ), where ζ = A
q+1−p

p r.

It is easy to see that v solves the problem

(|v′|p−2v′)′ +
N − 1
ζ

|v′|p−2v′ + βζ
(
|v|q−1v

)′
+A1−q(αζv′ + v) = 0, ζ > 0;

v(0) = 1, v′(0) = 0.
(4.3)

Similarly, we have

|v(ζ)| ≤ 1 and |v′(ζ)| ≤ (
p

2(p− 1)
)1/pA

1−q
p .

Then, for large A > 0, (4.3) is a perturbation of the problem

(|w′|p−2w′)′ +
N − 1
ζ

|w′|p−2w′ + βζ
(
|w|q−1w

)′
= 0 for ζ > 0;

w(0) = 1, w′(0) = 0.
(4.4)

We claim that w is strictly positive. Otherwise, let r0 the first zero of w. Then
w′(r0) ≤ 0. On the other hand, multiplying the equation in (4.4) by ζN−1 and
integrating on (0, r0) we obtain

rN−1
0 |w′|p−2w′(r0) = βN

∫ r0

0

ζN−1wq(ζ)dζ,

which is impossible. Consequently, u(·, A) ∈ S+. �

Proving that S+ is open requires much more effort. For c > 0, define the function

Ec(r) = cu(r) + ru′(r), r > 0. (4.5)
Note that if Ec(r0) = 0 for some r0 > 0, equation (1.5) gives

(p− 1)|u′|p−2(r0)E′c(r0)

= r0u(r0)
[
αc− 1 + cβq|u|q−1(r0) + cp−1(p− 1)(

N − p

p− 1
− c)

|u|p−2(r0)
rp
0

]
.

(4.6)

from which the sign of Ec(r) for large r can be obtained.

Theorem 4.5. Let u be a strictly positive solution of (P) and α > 0. Then, for
large r, Ec(r) has a constant sign in the following cases.

(i) c 6= 1
α ;

(ii) c = 1
α = N−p

p−1 ;
(iii) c = 1

α 6= N−p
p−1 , and limr→+∞ r1/αu(r) = 0.

Proof. Assume there is a sequence {rn} with rn → +∞ and such that Ec(r) > 0
for r2k < r < r2k+1 and Ec(r) < 0 for r2k+1 < r < r2k+2, (k = 0, 1, . . . ). (i)
Since limr→+∞ u(r) = 0 and according to (4.6), we have E′c(rn) > 0 (respectively
E′c(rn) < 0) for c > 1/α (respectively c < 1/α) and large n. On the other hand, it
is clear that E′c(r2k+1) ≤ 0 (respectively E′c(r2k) ≥ 0). The obtained contradiction
proves our assertion for c 6= 1/α.
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When c = 1/α, equation (4.6) at point r = rn becomes

(p− 1)|u′|p−2(rn)E′1/α(rn)

= rnu
q(rn)

[βq
α

+
( 1
α

)p−1(p− 1)(
N − p

p− 1
− 1
α

)
up−1−q(rn)

rp
n

]
.

Then, if 1
α = N−p

p−1 , the leading term of the right hand of the above equality is
βq
α rnu

q(rn). Hence (ii) follows.
Finally, for (iii), recalling Theorem 3.6, we get that E′1/α(rn) has the same sign

as

(p− 1)
(

1
α

)p−1 (
N − p

p− 1
− 1
α

)
up−1(rn)
rp−1
n

.

This completes the proof. �

Next we introduce the following auxiliary function:

g(r) = u(r) + |u′|p−2u′(r). (4.7)

Lemma 4.6. Assume α > 0. Let u be a strictly positive solution of (P). Then the
function g(r) is strictly positive for large r.

Proof. From Theorem 3.3 we know that limr→+∞ r1/αu(r) = L ∈ [0,+∞[.
Case A. L > 0. Then u(r) ∼ Lr−1/α as r → +∞ and, by Lemma 3.4,
limr→+∞ r1/α|u′|p−2u′ = 0. Hence, for large r, g(r) ∼ u(r) ∼ Lr−1/α and thereby
g is strictly positive.
Case B. L = 0. The proof will be done in two steps.
Step 1. g is not negative for large r. Suppose the opposite holds; i.e., that there
exists a large R1 such that g(r) ≤ 0 for r ≥ R1. Integrating this inequality on
(R1, r), we get

u
p−2
p−1 (r) ≤ u

p−2
p−1 (R1)−

p− 2
p− 1

r +
p− 2
p− 1

R1.

By letting r → +∞, we obtain a contradiction.
Step 2. g(r) is monotone for large r. First note that for any r > 0,

g′(r) = u′(r)− N − 1
r

|u′|p−2u′ − βqruq−1u′ − αru′ − u.

By (ii) of Theorem 4.5, E1/α(r) has a constant sign for large r, while u and u′, go
to zero as r → +∞. This implies g′(r) ∼ −αE1/α(r) as r → +∞. Consequently,
the function g is monotone for large r. Combining steps 1 and 2 we get the desired
result. �

Now we use the phase plane arguments introduced by [1]. For this purpose we
consider the equivalent non-autonomous first order system in the plane (X,Y ):

X ′ = |Y |−
p−2
p−1Y,

Y ′ = −N − 1
r

Y − αr|Y |−
p−2
p−1Y − βqr|X|q−1|Y |−

p−2
p−1Y −X,

(4.8)

where X = u, Y = |u′|p−2u′, and ′ is the derivative d/dr.
For λ > 0, we consider the following triangular subset of the (X,Y )- plane:

Lλ = {(X,Y ) : 0 < X < 1, −λX < Y < 0} (4.9)
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Lemma 4.7. For any λ > 0 let rλ = λ
α (1 + λ−

p
p−1 ). If (X(rλ), Y (rλ)) ∈ Lλ then

the semi-orbit (X(r), Y (r))r≥rλ
of (4.8) can leave Lλ only through (1, 0).

Proof. We shall show that if r ≥ rλ, then the vector field determined by (4.8) points
into Lλ. Indeed, on the line Y = −λX,

Y ′

X ′ =
Y ′

|Y |−
p−2
p−1Y

= −N − 1
r

|Y |
p−2
p−1 − αr − X

Y
|Y |

p−2
p−1 − qβr|X|q−1

= −N − 1
r

λ
p−2
p−1 |X|

p−2
p−1 − αr + λ−

1
p−1 |X|

p−2
p−1 − qβr|X|q−1.

To have Y ′/X ′ < −λ it suffices that −αr + λ−
1

p−1 < −λ or, equivalently, r > rλ.
On the top (Y = 0),

Y ′ = −N − 1
r

Y − αr|Y |−
p−2
p−1Y −X − βqr|Y |−

p−2
p−1Y |X|q−1 = −X < 0

for all r > 0. Consequently, if the orbit leaves Lλ, it must be through the point
(1, 0). The proof is complete. �

Remark 4.8. As a consequence of the previous Lemma, the orbits (X(r), Y (r))
corresponding to strictly positive solutions (hence strictly decreasing), can not leave
Lλ.

Proof of Theorem 4.3. . First, note that from Lemma 4.4, the set S+ is non
empty. To prove that S+ is open, take A0 ∈ S+ and fix r0 > 0 large, such that
u(r0, A0) < 1 and g(r0) = u(r0, A0) + |u′|p−2u′(r0, A0) > 0 (this is possible by
virtue of Lemma 4.6). Then, by continuous dependence of solutions on the initial
data, there is a neighborhood O(A0) of A0 such that

0 < u(r0, A) < 1; g(r0) = u(r0, A) + |u′|p−2u′(r0, A) > 0, (4.10)

for any A ∈ O(A0). In terms of the first order system (4.8), (4.10) reads 0 <
X(r0) < 1 and (X +Y )(r0) > 0; i.e., (X,Y )(r0) ∈ L1. By Remark 4.8, (X,Y )(r) ∈
L1 for r ≥ r0. Thus in particular X(r) = u(r,A) > 0 for any r ≥ r0 and A ∈ O(A0).
Consequently, O(A0) ⊂ S+. The proof is complete. �

Theorem 4.9. Assume 0 < αN < 1. Then there exists a unique A > 0 such that
u(·, A) has compact support; i.e., Sc 6= ∅.

Existence follows easily from Theorem 4.2 and Theorem 4.3. For the proof of
uniqueness the keystone is to compute series development of a generic compactly
supported solution around the point where it vanishes. which is the content of the
following lemma.

Lemma 4.10. Assume 0 < αN < 1 and β > 0. Let u be a solution with compact
support [0, R].

(i) If kp−(2k−1)
p−1 < q < (k+1)p−(2k+1)

p−1 , (k = 1, 2, 3, . . . ), then

|u′|p−1

u
(r) =

k−1∑
i=0

Ci(R− r)i + C̃(R− r)(q−1)(p−1)/(p−2) + . . . (4.11)
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(ii) If q = kp−(2k−1)
p−1 (k = 2, 3, . . . ), then

|u′|p−1

u
(r) =

k−1∑
i=0

Di(R− r)i + . . . (4.12)

where
(a) Ci = Di for i = 0, 1, . . . k − 2 and depend on p,N, α,R;
(b) Ck−1 depends on p,N, α,R for k ≥ 2;
(c) C̃ = βRCq−1, C =

(
p−2
p−1

)(p−1)/(p−2);
(d) Dk−1 = Ck−1 + C̃ for k ≥ 2,

and the dots denote higher order infinitesimals as r → R.

Proof. For the sake of simplicity and clarity, we give the proof for k = 1 and k = 2.
From this it will be clear how to proceed by induction. Let ε > 0 be small. By
integrating equation (1.5) on (r,R) ⊂ (R− ε,R), we get

rN−1|u′|p−1(r) = αrNu(r) + βrNuq(r)−
∫ R

r

[1− αN − βNuq−1(s)]sN−1u(s)ds.

(4.13)
Dividing both sides by rN−1u(r),

|u′|p−1(r)
u(r)

= αr + βruq−1(r)− 1
rN−1u(r)

∫ R

r

[1− αN − βNuq−1(s)]sN−1u(s) ds.

(4.14)
Note that, as 0 < αN < 1 and u(R) = 0, then 1 − αN − βNuq−1(s) > 0 in (r,R)
if ε is sufficiently small. Thereby,

|u′|p−1(r)
u(r)

< αr + βruq−1(r) (4.15)

and

|u′|p−1(r)
u(r)

≥ αr + βruq−1(r)− 1
rN−1u(r)

∫ R

r

[1− αN + |β|Nuq−1(s)]sN−1u(s)ds

(4.16)
Since 0 < u(s) < u(r) for s ∈ (r,R), by letting r → R in (4.15) and (4.16), it
follows that

|u′|p−1

u
(r) = C0 + o(1); C0 = αR,

as r → R. Integrating this equation, we get

u(r) = C(R− r)(p−1)/(p−2) + o((R− r)(p−1)/(p−2)), (4.17)

with C as in (c) above. Plugging this expression in (4.14) and taking into account
that αr = αR− α(R− r) and

| 1
rN−1u(r)

∫ R

r

[1− αN − βNuq−1(s)]sN−1u(s)ds| ≤ C ′(R− r)

for r ∼ R, part (i) of the assertion follows for k = 1. For part (ii) we need to refine
the last estimate. An application of L’Hopital’s rule gives

lim
r→R

∫ R

r
[1− αN − βNuq−1(s)]sN−1u(s)ds

uRN−1(R− r)
= C ′′ :=

(1− αN)(p− 2)
2p− 3

,
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and therefore in case (ii) with k = 1 we get the desired result

|u′|p−1(r)
u(r)

= αR+ [C̃ − (α+ C ′′)](R− r) + · · · = D0 +D1(R− r) + . . . ,

since (q − 1)(p− 1)/(p− 2) = 1.
Assume now k = 2. In case (i), the previous calculations give

|u′|p−1(r)
u(r)

= αR− (α+ C ′′)(R− r) + · · · = C0 + C1(R− r) + . . . ,

which is not enough for our purposes, since the dependence on β is still unknown.
Integrating the last equality, we get the more precise development

u(r) = C(R− r)(p−1)/(p−2) +D(R− r)(p−1)/(p−2)+1 + . . . ; D =
CC1

2C0(p− 2)
.

Using this last formula and the assumption q > (2p− 3)/(p− 1), we compute

lim
r→R

∫ R

r
[1− αN − βNuq−1(s)]sN−1u(s)ds− C ′′RN−1(R− r)u

uRN−1(R− r)2
=

= C ′′′ := − (3p− 5)C ′′DR− (p− 2)(1− αN)DR+ (p− 2)(N − 1)(1− αN)C
(3p− 5)CR

.

Since q < (3p− 5)/(p− 1), we have (q − 1)(p− 1)/(p− 2) < 2 and therefore

|u′|p−1(r)
u(r)

= αR− (α+ C ′′)(R− r) + C̃(R− r)(q−1)(p−1)/(p−2) + . . .

= C0 + C1(R− r) + C̃(R− r)(q−1)(p−1)/(p−2) + . . .

If (ii) holds, (q − 1)(p− 1)/(p− 2) = 2 and the last formula is replaced by

|u′|p−1(r)
u(r)

= αR− (α+ C ′′)(R− r) + (C̃ + C ′′′)(R− r)2 + . . .

= D0 +D1(R− r) +D2(R− r)2 + . . .

�

Now we are able to establish Theorem 4.9.

Poof of Theorem 4.9. Since S+ and S− are nonempty, open and disjoint, the con-
nectedness of R+ implies that there exists A ∈ R+ \ (S+ ∪ S−) = Sc. This settles
the existence question.

For uniqueness we use the same ideas of the proof of Theorem 2.6. For this
purpose let u = u(·, A) and v = u(·, B) be two solutions of problem (P) with
0 < A < B, suppu = [0, R], supp v = [0, R1]. Much as in the aforementioned proof,
consider the rescaled versions of u given by (2.17). By Theorem 2.6, we know that
u < v in [0, R[. Hence R ≤ R1.

Define K as in that proof. The same arguments allow to conclude that uK ≥ v
on [0, R1] and that there exists R0 ∈]0, R1] such that uK(R0) = v(R0).

If R = R1, then R0 = R is easily discarded, thus necessarily R0 ∈]0, R[ and the
proof concludes exactly as that of Theorem 2.6.
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If, on the contrary, R < R1, then R0 = R1. Hence, both uK and v are supported
on [0, R1]. Applying to them the lemma above, and taking into account the equation
satisfied by uK

(|u′K |p−2u′K)′ +
N − 1
r

|u′K |p−2u′K + αru′K + uK + β̃r(uq
K)′ = 0, (4.18)

where β̃ = βK
p(q−1)

p−2 < β, we conclude that, in some left neighborhood of r = R1,

(−u′K)p−1

uK
<

(−v′)p−1

v
.

Equivalently, (u(p−2)/(p−1)
K )′ > (v(p−2)/(p−1))′. Integrating on [r,R1] with r suffi-

ciently close to R1, we obtain uK(r) < v(r). This is impossible, hence R0 6= R1

and we conclude as in the proof of Theorem 2.6. �

5. Results for the Ornstein-Uhlenbeck equation

In this section we apply the results obtained in the previous sections with the
particular choice of the constants (1.7), related to the Ornstein-Uhlenbeck equation
(1.1).

Theorem 5.1. Let q ≥ p(1 + 1/N) − 1. Then, for every A > 0 equation (1.1)
admits a radial, strictly positive self-similar solution UA(x, t), of the form (1.2)–
(1.3), with A = UA(0, 1). Moreover, |x|p/(q+1−p)UA(x, t) is bounded for each t > 0
and there exists L(A) ≥ 0 such that

lim
t→0+

UA(x, t) = L(A)|x|−p/(q+1−p) for each x 6= 0. (5.1)

If q > p(1 + 1/N) − 1, then L(A) > 0. If L(A) = 0, |x|mU(x, t) is bounded for
every t > 0 and m > 0.

Theorem 5.2. Let p − 1 < q < p(1 + 1/N) − 1. Then, for every A > 0 equation
(1.1) admits a radial, self-similar solution UA(x, t), of the form (1.2)–(1.3), with
A = UA(0, 1). These solutions change sign for small A and are strictly positive for
large A. In the later case, |x|p/(q+1−p)U(x, t) is bounded for each t > 0 and there
exists L(A) ≥ 0 such that (5.1) holds. Moreover, there exists a unique non-negative
and compactly supported element UA0 in the family with support

suppUA0(·, t) =
{
x ∈ RN : |x| < Ct(q+1−p)/p(q−1)

}
, C > 0. (5.2)

Proof of Theorem 5.1. Put UA(x, t) = t−1/(q−1)u(|x|t−(q+1−p)/p(q−1)), where u(r)
is the solution of (P). This range of p, q corresponds to α ≥ 1/N,, β > 0. Existence
and uniqueness follow from Theorems 2.1. Positivity follows from Theorem 3.7. By
Lemma 3.5,

|x|p/(q+1−p)UA(x, t) = t−1/(q−1)rp/(q+1−p)u(rt−(q+1−p)/p(q−1)) ≤ C

for each t > 0. Moreover, by Theorem 3.3 we have

lim
t→0+

UA(x, t) = lim
y→+∞

y−p/(q+1−p)u(y) = L(A) ≥ 0.

The remaining assertions follow at once from Theorems 3.9 and 3.6. �

The proof of Theorem 5.2 is completely analogous to the proof above, and we
omit it.
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Remark 5.3. It is worth mentioning that the compactly supported solution UA0

from Theorem 5.2 is very singular in the sense of [1]. Indeed, since q > p− 1, the
support (5.2) shrinks to {0} as t→ 0+, while an easy calculation shows that

‖UA0(t)‖L1(RN ) = C1t
N(q+1−p)−p

p(q−1) → +∞
as t→ 0+.
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