EXISTENCE OF POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR ONE-DIMENSIONAL p-LAPLACIAN BOUNDARY-VALUE PROBLEMS

YITAO YANG

Abstract

We prove the existence of positive pseudo-symmetric solutions for four-point boundary-value problems with p-Laplacian. Also we present an monotone iterative scheme for approximating the solution. The interesting point here is that the nonlinear term f involves the first-order derivative.

1. Introduction

In this paper, we consider the four-point boundary value problem

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}(t)+q(t) f\left(t, u(t), u^{\prime}(t)\right)=0, \quad t \in(0,1), \tag{1.1}\\
u(0)-\alpha u^{\prime}(\xi)=0, \quad u(\xi)-\gamma u^{\prime}(\eta)=u(1)+\gamma u^{\prime}(1+\xi-\eta), \tag{1.2}
\end{gather*}
$$

where $\phi_{p}(s)=|s|^{p-2} s, p>1,\left(\phi_{p}\right)^{-1}=\phi_{q}, \frac{1}{p}+\frac{1}{q}=1, \alpha, \gamma \geq 0, \xi, \eta \in(0,1)$ are prescribed and $\xi<\eta$.

The study of multipoint boundary-value problems for linear second-order ordinary differential equations was initiated by Il'in and Moiseer [7, 8]. Since then, the more general nonlinear multipoint boundary-value problems have been studied by many authors by using the Leray-Schauder continuation theorem, nonlinear alternative of Leray-Schauder and coincidence degree theory, we refer the reader to (1) 2, 3, 6) for some recent results. Recently, Avery and Henderson [4 consider the existence of three positive solutions for the problem

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}(t)+q(t) f(t, u(t))=0, \quad t \in(0,1), \tag{1.3}\\
u(0)=0, \quad u(\eta)=u(1) \tag{1.4}
\end{gather*}
$$

The definition of pseudo-symmetric was introduced in their paper. Based on this definition, Ma 9$]$ studied the existence and iteration of positive pseudo-symmetric solutions for the problem (1.3)-(1.4). However, to the best of our knowledge, no work has been done for BVP (1.1)-(1.2) using the monotone iterative technique. The aim of this paper is to fill the gap in the relevant literatures. We obtain not only the existence of positive solutions for $\sqrt{1.1})-(\sqrt{1.22}$, but also give an iterative scheme for approximating the solutions. It is worth stating that the first term of our iterative scheme is a constant function or a simple function. Therefore, the

[^0]iterative scheme is significant and feasible. At the same time, we give a way to find the solution which will be useful from an application viewpoint.

We consider the Banach space $E=C^{1}[0,1]$ equipped with norm

$$
\|u\|:=\max \left\{\|u\|_{0},\left\|u^{\prime}\right\|_{0}\right\}
$$

where $\|u\|_{0}=\max _{0 \leq t \leq 1}|u(t)|,\left\|u^{\prime}\right\|_{0}=\max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right|$. In this paper, a positive solution $u(t)$ of BVP (1.1), 1.2 means a solution $u(t)$ of (1.1), 1.2 satisfying $u(t)>0$, for $0<t<1$.

We recall that a function u is said to be concave on $[0,1]$, if

$$
u\left(\lambda t_{2}+(1-\lambda) t_{1}\right) \geq \lambda u\left(t_{2}\right)+(1-\lambda) u\left(t_{1}\right), \quad t_{1}, t_{2}, \lambda \in[0,1]
$$

Definition 1.1. For $\xi \in(0,1)$ a function $u \in E$ is said to be pseudo-symmetric if u is symmetric over the interval $[\xi, 1]$. That is, for $t \in[\xi, 1]$ we have $u(t)=u(1+\xi-t)$.

Remark 1.2. For $\xi \in(0,1)$, if $u \in E$ is pseudo-symmetric, we have $u^{\prime}(t)=$ $-u^{\prime}(1+\xi-t), t \in[\xi, 1]$.

Define the cone K of E as
$K=\left\{u \in C^{1}[0,1]: u(t) \geq 0, u\right.$ is concave on $[0,1]$ and u is symmetric on $\left.[\xi, 1]\right\}$.
For x, y in K a cone of E, recall that $x \leq y$ if $y-x \in K$.
In the rest of the paper, we make the following assumptions:
(H1) $q(t) \in L^{1}[0,1]$ is nonnegative and $q(t)=q(1+\xi-t)$, a.e. $t \in[\xi, 1]$, and $q(t) \not \equiv 0$ on any subinterval of $[0,1]$;
(H2) $f \in C([0,1] \times[0, \infty) \times R,[0, \infty))$ and $f(t, x, y)=f(1+\xi-t, x,-y),(t, x, y) \in$ $[\xi, 1] \times[0, \infty) \times R$. Moreover, $f(t, \cdot, y)$ is nondecreasing for $(t, y) \in\left[0, \frac{\xi+1}{2}\right] \times$ $R, f(t, x, \cdot)$ is nondecreasing for $(t, x) \in\left[0, \frac{\xi+1}{2}\right] \times[0, \infty)$.

2. Existence Result

Lemma 2.1 (9$]$). Each $u \in K$ satisfies the following properties:
(i) $u(t) \geq \frac{2}{1+\xi}\|u\|_{0} \min \{t, 1+\xi-t\}, t \in[0,1]$;
(ii) $u(t) \geq \frac{2 \xi}{1+\xi}\|u\|_{0}, t \in\left[\xi, \frac{1+\xi}{2}\right]$;
(iii) $\|u\|_{0}=u\left(\frac{1+\xi}{2}\right)$.

For $x \in K$, we define a mapping $T: K \rightarrow E$ given by

$$
(T x)(t)=\left\{\begin{array}{l}
\alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) \tag{2.1}\\
+\int_{0}^{t} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s, \quad 0 \leq t \leq \frac{1+\xi}{2} \\
\alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) \\
+\int_{0}^{\xi} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
+\int_{t}^{1} \phi_{q}\left(\int_{\frac{1+\xi}{s}}^{s} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s, \quad \frac{1+\xi}{2} \leq t \leq 1
\end{array}\right.
$$

Obviously, $T x \in E$, and we can prove $T x$ is a solution of the boundary-value problem

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}(t)+q(t) f\left(t, x(t), x^{\prime}(t)\right)=0, \quad t \in(0,1), \tag{2.2}\\
u(0)-\alpha u^{\prime}(\xi)=0, \quad u(\xi)-\gamma u^{\prime}(\eta)=u(1)+\gamma u^{\prime}(1+\xi-\eta) . \tag{2.3}
\end{gather*}
$$

Therefore, each fixed point of T is a solution of problem (1.1)- 1.2 .

Lemma 2.2. Suppose (H1), (H2) hold, then $T: K \rightarrow K$ is completely continuous and nondecreasing.
Proof. For $t \in\left[\xi, \frac{1+\xi}{2}\right]$, we have $1+\xi-t \in\left[\frac{1+\xi}{2}, 1\right]$. Therefore,

$$
\begin{align*}
&(T x)(1+\xi-t) \\
&= \alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right)+\int_{0}^{\xi} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
&+\int_{1+\xi-t}^{1} \phi_{q}\left(\int_{\frac{1+\xi}{2}}^{s} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
&= \alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right)+\int_{0}^{\xi} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
&+\int_{\xi}^{t} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
&= \alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right)+\int_{0}^{t} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
&=(T x)(t) . \tag{2.4}
\end{align*}
$$

So that, $T x$ is symmetric on $[\xi, 1]$ with respect to $\frac{1+\xi}{2}$. Obviously, $(T x)(t) \geq 0, T x$ is concave on $[0,1]$. Therefore, $T: K \rightarrow K$. It is easy to see that $T: K \rightarrow K$ is completely continuous.

For $x_{1}(t), x_{2}(t) \in K$ and $x_{1}(t) \leq x_{2}(t)$, thus $x_{2}(t)-x_{1}(t) \in K$. So that $x_{2}^{\prime}(t)-$ $x_{1}^{\prime}(t) \geq 0, t \in\left[0, \frac{1+\xi}{2}\right]$ and $x_{2}^{\prime}(t)-x_{1}^{\prime}(t) \leq 0, t \in\left[\frac{1+\xi}{2}, 1\right]$. Assumption (H2) implies $\left(T x_{1}\right)(t) \leq\left(T x_{2}\right)(t)$.

Lemma 2.3 (5]). Let $u_{0}, v_{0} \in E, u_{0}<v_{0}$ and $T:\left[u_{0}, v_{0}\right] \rightarrow E$ be an increasing operator such that

$$
u_{0} \leq T u_{0}, \quad T v_{0} \leq v_{0}
$$

Suppose that one of the following conditions is satisfied:
(C1) K is normal and T is condensing;
(C2) K is regular and T is semicontinuous, i.e., $x_{n} \rightarrow x$ strongly implies $T x_{n} \rightarrow$ Tx weakly.
Then T has a maximal fixed point x^{*} and a minimal fixed point x_{*} in $\left[u_{0}, v_{0}\right]$; moreover

$$
x^{*}=\lim _{n \rightarrow \infty} v_{n}, \quad x_{*}=\lim _{n \rightarrow \infty} u_{n}
$$

where $v_{n}=T v_{n-1}, u_{n}=T u_{n-1}(n=1,2,3, \ldots)$, and

$$
u_{0} \leq u_{1} \leq \cdots \leq u_{n} \leq \cdots \leq v_{n} \leq \cdots \leq v_{1} \leq v_{0}
$$

Denote the positive quantities

$$
\begin{gather*}
A=1 / \max \left\{\alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) d \tau\right)+\int_{0}^{\frac{1+\xi}{2}} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) d \tau\right) d s, \phi_{q}\left(\int_{0}^{\frac{1+\xi}{2}} q(\tau) d \tau\right)\right\} \tag{2.5}\\
B=1 / \int_{\xi}^{\frac{1+\xi}{2}} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) d \tau\right) d s \tag{2.6}
\end{gather*}
$$

Theorem 2.4. Assume (H1), (H2) hold. If there exist two positive numbers a, b with $\frac{2 b}{1+\xi}<a$, such that

$$
\begin{equation*}
\sup _{t \in[0,1]} f(t, a, a) \leq \phi_{p}(a A), \quad \inf _{t \in\left[\xi, \frac{1+\xi}{2}\right]} f\left(t, \frac{2 \xi b}{1+\xi}, 0\right) \geq \phi_{p}(b B) \tag{2.7}
\end{equation*}
$$

Then, (1.1)-(1.2) has at least one positive pseudo-symmetric solution $v^{*} \in K$ with

$$
b \leq\left\|v^{*}\right\|_{0} \leq a, \quad 0 \leq\left\|\left(v^{*}\right)^{\prime}\right\|_{0} \leq a, \quad \lim _{n \rightarrow \infty} T^{n} v_{0}=v^{*}
$$

where $v_{0}(t)=\frac{2 b}{1+\xi} \min \{t, 1+\xi-t\}, t \in[0,1]$.
Proof. We denote $K[b, a]=\left\{\omega \in K: b \leq\|\omega\|_{0} \leq a, 0 \leq\left\|\omega^{\prime}\right\|_{0} \leq a\right\}$. Next, we first prove $T K[b, a] \subset K[b, a]$. Let $\omega \in K[b, a]$, then $0 \leq \omega(t) \leq \max _{t \in[0,1]} \omega(t) \leq$ $\|\omega\|_{0} \leq a$,
$t \in[0,1], 0 \leq \omega^{\prime}(t) \leq \max _{t \in[0,1]}\left|\omega^{\prime}(t)\right|=\left\|\omega^{\prime}\right\|_{0} \leq a, t \in\left[0, \frac{1+\xi}{2}\right]$. By lemma 2.1 (ii), $\min _{t \in\left[\xi, \frac{1+\xi}{2}\right]} \omega(t) \geq \frac{2 \xi}{1+\xi}\|\omega\|_{0} \geq \frac{2 \xi b}{1+\xi}, \min _{t \in\left[\xi, \frac{1+\xi}{2}\right]} \omega^{\prime}(t) \geq \omega^{\prime}\left(\frac{1+\xi}{2}\right)=0$. So, by assumption (2.7), we have

$$
\begin{align*}
& 0 \leq f\left(t, \omega(t), \omega^{\prime}(t)\right) \leq f(t, a, a) \leq \sup _{t \in[0,1]} f(t, a, a) \leq \phi_{p}(a A), \quad t \in\left[0, \frac{1+\xi}{2}\right], \tag{2.8}\\
& f\left(t, \omega(t), \omega^{\prime}(t)\right) \geq f\left(t, \frac{2 \xi b}{1+\xi}, 0\right) \geq \inf _{t \in\left[\xi, \frac{1+\xi}{2}\right]} f\left(t, \frac{2 \xi b}{1+\xi}, 0\right) \geq \phi_{p}(b B), \quad t \in\left[\xi, \frac{1+\xi}{2}\right] . \tag{2.9}
\end{align*}
$$

By lemma 2.2, we know $T \omega \in K$. So, lemma 2.1 (iii) implies $\|T \omega\|_{0}=(T \omega)\left(\frac{1+\xi}{2}\right)$. As a result,
$\|T \omega\|_{0}$

$$
\begin{aligned}
& =(T \omega)\left(\frac{1+\xi}{2}\right) \\
& =\alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right)+\int_{0}^{\frac{1+\xi}{2}} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \\
& \leq a A\left(\alpha \phi_{q}\left(\int_{\xi}^{\frac{1+\xi}{2}} q(\tau) d \tau\right)+\int_{0}^{\frac{1+\xi}{2}} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) d \tau\right) d s\right) \leq a
\end{aligned}
$$

$$
\left\|(T \omega)^{\prime}\right\|_{0}=(T \omega)^{\prime}(0)
$$

$$
=\phi_{q}\left(\int_{0}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right)
$$

$$
\leq a A \phi_{q}\left(\int_{0}^{\frac{1+\xi}{2}} q(\tau) d \tau\right) \leq a
$$

$$
\|T \omega\|_{0}=(T \omega)\left(\frac{1+\xi}{2}\right)
$$

$$
\geq \int_{\xi}^{\frac{1+\xi}{2}} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s
$$

$$
\geq b B \int_{\xi}^{\frac{1+\xi}{2}} \phi_{q}\left(\int_{s}^{\frac{1+\xi}{2}} q(\tau) d \tau\right) d s=b
$$

Thus, $b \leq\|T \omega\|_{0} \leq a, 0 \leq\left\|(T \omega)^{\prime}\right\|_{0} \leq a$, which implies $T K[b, a] \subset K[b, a]$.
Let $v_{0}(t)=\frac{2 b}{1+\xi} \min \{t, 1+\xi-t\}, t \in[0,1]$, then $\left\|v_{0}\right\|_{0}=b$ and $\left\|v_{0}^{\prime}\right\|_{0}=\frac{2 b}{1+\xi}<a$, so $v_{0} \in K[b, a]$. Let $v_{1}=T v_{0}$, then $v_{1} \in K[b, a]$, we denote

$$
\begin{equation*}
v_{n+1}=T v_{n}=T^{n+1} v_{0}, \quad(n=0,1,2, \ldots) \tag{2.10}
\end{equation*}
$$

Since $T K[b, a] \subset K[b, a]$, we have $v_{n} \in K[b, a],(n=0,1,2, \ldots)$. From $v_{1} \in K[b, a]$, thus
$v_{1}(t) \geq \frac{2}{1+\xi}\left\|v_{1}\right\|_{0} \min \{t, 1+\xi-t\} \geq \frac{2 b}{1+\xi} \min \{t, 1+\xi-t\}=v_{0}(t), \quad t \in[0,1]$,
which implies $T v_{0} \geq v_{0} . K$ is normal and T is completely continuous. By Lemma 2.3. we have T has a fixed point $v^{*} \in K[b, a]$. Moreover, $v^{*}=\lim _{n \rightarrow \infty} v_{n}$. Since $\left\|v^{*}\right\|_{0} \geq b>0$ and v^{*} is a nonnegative concave function on $[0,1]$, we conclude that $v^{*}(t)>0, t \in(0,1)$. Therefore, v^{*} is a positive pseudo-symmetric solution of (1.1)-1.2).

Corollary 2.5. Assume (H1),(H2) hold. If

$$
\begin{equation*}
\limsup _{l \rightarrow 0} \inf _{t \in\left[\xi, \frac{1+\xi}{2}\right]} \frac{f(t, l, 0)}{\phi_{p}(l)} \geq \phi_{p}\left(\frac{1+\xi}{2 \xi} B\right) \tag{2.11}
\end{equation*}
$$

particularly, $\lim \sup _{l \rightarrow 0} \inf _{t \in\left[\xi, \frac{1+\xi}{2}\right]} \frac{f(t, l, 0)}{\phi_{p}(l)}=+\infty$,

$$
\begin{equation*}
\liminf _{l \rightarrow+\infty} \sup _{t \in[0,1]} \frac{f(t, l, l)}{\phi_{p}(l)} \leq \phi_{p}(A) \tag{2.12}
\end{equation*}
$$

particularly, $\liminf _{l \rightarrow+\infty} \sup _{t \in[0,1]} \frac{f(t, l, l)}{\phi_{p}(l)}=0$. Where A, B are defined as 2.5, (2.6). Then there exist two positive numbers a, b with $\frac{2 b}{1+\xi}<a$, such that problem (1.1), (1.2) has at least one positive pseudo-symmetric solution $v^{*} \in K$ with

$$
b \leq\left\|v^{*}\right\|_{0} \leq a, 0 \leq\left\|\left(v^{*}\right)^{\prime}\right\|_{0} \leq a, \lim _{n \rightarrow \infty} T^{n} v_{0}=v^{*}
$$

where $v_{0}(t)=\frac{2 b}{1+\xi} \min \{t, 1+\xi-t\}, t \in[0,1]$.
Remark 2.6. Problem (1.1)-1.2 may have two positive pseudo-symmetric solutions $\omega^{*}, v^{*} \in K$, if we make another iteration by choosing $\omega_{0}(t)=a$ and $\omega_{n}=\lim _{n \rightarrow \infty} T^{n} \omega_{0}=\omega^{*}$. However, ω^{*} and v^{*} may be the same solution.

Example 2.7. We consider the problem

$$
\begin{gather*}
\left(\left|u^{\prime}\right|^{3} u^{\prime}\right)^{\prime}(t)+\frac{1}{t^{\frac{1}{2}}\left(\frac{4}{3}-t\right)^{\frac{1}{2}}}\left[\left(u^{\prime}(t)\right)^{2}+\ln \left((u(t))^{2}+1\right)\right]=0, \quad t \in(0,1) \tag{2.13}\\
u(0)-2 u^{\prime}\left(\frac{1}{3}\right)=0, \quad u\left(\frac{1}{3}\right)-3 u^{\prime}\left(\frac{1}{2}\right)=u(1)+3 u^{\prime}\left(\frac{5}{6}\right) \tag{2.14}
\end{gather*}
$$

We notice that $p=5, \alpha=2, \xi=\frac{1}{3}, \gamma=3, \eta=\frac{1}{2}$. Obviously, $f\left(t, u, u^{\prime}\right)=$ $\left(u^{\prime}(t)\right)^{2}+\ln \left((u(t))^{2}+1\right)$ is nondecreasing for $\left(t, u^{\prime}\right) \in\left[0, \frac{2}{3}\right] \times R, f\left(t, u, u^{\prime}\right)=\left(u^{\prime}(t)\right)^{2}+$ $\ln \left((u(t))^{2}+1\right)$ is nondecreasing for $(t, u) \in\left[0, \frac{2}{3}\right] \times[0, \infty), q(t)=\frac{1}{t^{\frac{1}{2}}\left(\frac{4}{3}-t\right)^{\frac{1}{2}}}$ is nonnegative and pseudo-symmetric about $\frac{2}{3}$. So, conditions (H1),(H2) are satisfied.

On the other hand,

$$
\begin{aligned}
& \limsup _{l \rightarrow 0} \inf _{t \in\left[\xi, \frac{1+\xi}{2}\right]} \frac{f(t, l, 0)}{\phi_{p}(l)}=\limsup _{l \rightarrow 0} \inf _{t \in\left[\frac{1}{3}, \frac{2}{3}\right]} \frac{\ln \left(l^{2}+1\right)}{l^{4}}=\infty \\
& \liminf _{l \rightarrow+\infty} \sup _{t \in[0,1]} \frac{f(t, l, l)}{\phi_{p}(l)}=\liminf _{l \rightarrow+\infty} \sup _{t \in[0,1]} \frac{l^{2}+\ln \left(l^{2}+1\right)}{l^{4}}=0 .
\end{aligned}
$$

Therefore, from Corollary 2.5, it follows that $2.13-2.14$ has at least one positive pseudo-symmetric solution.

References

[1] R. P. Agarwal and D. O'Regan; Nonlinear boundary-value problems on time scales, Nonlinear Anal. 44 (2001), 527-535.
[2] R. P. Agarwal and D. O'Regan; Lidstone continuous and discrete boundary-value problems, Mem. Diff. Equ. Math. Phys. 19 (2000), 107-125.
[3] R. P. Agarwal, H. Lü and D. O'Regan; Positive solutions for the boundary-value problem $\left(\left|u^{\prime \prime}\right|^{p-2} u^{\prime \prime}\right)-\lambda q(t) f(u(t))=0$, Mem. Diff. Equ. Math. Phys. 28 (2003), 33-44.
[4] R. I. Avery, J. Henderson; Existence of three positive pseudo-symmetric solutions for a onedimensional p-laplacian, J. Math. Anal. Appl. 277 (2003), 395-404.
[5] D. Guo, V. Lakshmikantham; Nonlinear problems in abstrat cone, Academic Press, Sandiego, 1988.
[6] X. He, W. Ge; A remark on some three-point boundary value problem for the one-dimensional p-laplacian, ZAMM. 82 (2002), 728-731.
[7] V. A. Il'in, E. I. Moiseer; Nonlocal boundary value problem of the first kind for a sturmliouville operator in its differential and finite difference aspects, Differential Equations. 23 (1987), 803-810.
[8] V. A. Il'in, E. I. Moiseer; Nonlocal boundary value problem of the second kind for a sturmliouville operator, Differential Equations. 23 (1987), 979-987.
[9] Dexiang Ma, Weigao Ge; Existence and iteration of positive pseudo-symmetric solutions for a three-point second-order p-Laplacian BVP, Appl. Math. Lett. (2007), doi: 10.1016 j.aml.2006.05.025.

Yitao Yang
Institute of Automation, Qufu Normal University, Qufu, Shandong 273165, China
E-mail address: yitaoyangqf@163.com

[^0]: 2000 Mathematics Subject Classification. 34B15, 34B18.
 Key words and phrases. Iterative; pseudo-symmetric positive solution; p-Laplacian.
 © 2007 Texas State University - San Marcos.
 Submitted March 12, 2007. Published May 10, 2007.

