Electronic Journal of Differential Equations, Vol. 2007(2007), No. 73, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR DYNAMIC SYSTEMS WITH A PARAMETER ON A MEASURE CHAIN

SHUANG-HONG MA, JIAN-PING SUN, DA-BIN WANG

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we consider the following dynamic system with pa- } \\
& \text { rameter on a measure chain } \mathbb{T} \text {, } \\
& \qquad \begin{array}{l}
u_{i}^{\Delta \Delta}(t)+\lambda h_{i}(t) f_{i}\left(u_{1}(\sigma(t)), u_{2}(\sigma(t)), \ldots, u_{n}(\sigma(t))\right)=0, \quad t \in[a, b], \\
\\
\alpha u_{i}(a)-\beta u_{i}^{\Delta}(a)=0, \quad \gamma u_{i}(\sigma(b))+\delta u_{i}^{\Delta}(\sigma(b))=0,
\end{array}
\end{aligned}
$$

where $i=1,2, \ldots, n$. Using fixed-point index theory, we find sufficient conditions the existence of positive solutions.

1. Introduction

The theory of dynamic equations on time scales has become a new important mathematical branch (see, for example, [1, 3, 8, 9]) since it was initiated by Hilger [14]. At the same time, boundary-value problems (BVPs) for scalar dynamic equations on time scales have received considerable attention [4, 5, 6, 7, 10, 11, 13, 15, 16. However, to the best of our knowledge, only a few papers can be found in the literature for systems of BVPs for dynamic equations on time scales [16].

Sun, Zhao and Li [17] considered the following discrete system with parameter

$$
\begin{gathered}
\Delta^{2} u_{i}(k)+\lambda h_{i}(k) f_{i}\left(u_{1}(k), u_{2}(k), \ldots, u_{n}(k)\right)=0, \quad k \in[0, T] \\
u_{i}(0)=u_{i}(T+2)=0
\end{gathered}
$$

where $i=1,2, \ldots, n, \lambda>0$ is a constant, T and $n \geq 2$ are two fixed positive integers. They established the existence of one positive solution by using the theory of fixed-point index [12].

Motivated by [17], the purpose of this paper is to study the following more general dynamic system with parameter on a measure chain \mathbb{T},

$$
\begin{gather*}
u_{i}^{\Delta \Delta}(t)+\lambda h_{i}(t) f_{i}\left(u_{1}(\sigma(t)), u_{2}(\sigma(t)), \ldots, u_{n}(\sigma(t))\right)=0, \quad t \in[a, b] \tag{1.1}\\
\alpha u_{i}(a)-\beta u_{i}^{\Delta}(a)=0, \quad \gamma u_{i}(\sigma(b))+\delta u_{i}^{\Delta}(\sigma(b))=0 \tag{1.2}
\end{gather*}
$$

where, $i=1,2, \ldots, n, \lambda>0$ is constant, $a, b \in \mathbb{T}, \alpha, \beta, \gamma, \delta \geq 0, \gamma\left(\sigma(b)-\sigma^{2}(b)\right)+\delta \geq$ $0, r=\gamma \beta+\alpha \delta+\alpha \gamma(\sigma(b)-a)>0$, and the function $\sigma(t)$ and $[a, b]$ is defined as

2000 Mathematics Subject Classification. 34B15, 39A10.
Key words and phrases. Dynamic system; positive solution; cone; fixed point; measure chain. © 2007 Texas State University - San Marcos.
Submitted January 9, 2007. Published May 15, 2007.
in Section 2 below. Let \mathbb{R} be the set of real numbers, and $\mathbb{R}_{+}=[0, \infty)$. For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$, let $\|u\|=\sum_{i=1}^{n} u_{i}$.

We make the following assumptions for $i=1,2, \ldots, n$:
(H1) $h_{i}:[a, b] \rightarrow(0, \infty)$ is continuous.
(H2) $f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$is continuous.
For convenience, we introduce the following notation

$$
\begin{gathered}
f_{i}^{0}=\lim _{\|u\| \rightarrow 0} \frac{f_{i}(u)}{\|u\|}, \quad f_{i}^{\infty}=\lim _{\|u\| \rightarrow \infty} \frac{f_{i}(u)}{\|u\|}, \quad u \in \mathbb{R}_{+}^{n} \\
f^{0}=\sum_{i=1}^{n} f_{i}^{0} \quad \text { and } \quad f^{\infty}=\sum_{i=1}^{n} f_{i}^{\infty}
\end{gathered}
$$

2. Preliminaries

In this section, we introduce several definitions on measure chains and some notation. Also we give some lemmas which are useful in proving our main result.

Definition 2.1. Let \mathbb{T} be a closed subset of \mathbb{R} with the properties

$$
\begin{aligned}
& \sigma(t)=\inf \{\tau \in \mathbb{T}: \tau>t\} \in \mathbb{T} \\
& \rho(t)=\sup \{\tau \in \mathbb{T}: \tau<t\} \in \mathbb{T}
\end{aligned}
$$

for all $t \in \mathbb{T}$ with $t<\sup \mathbb{T}$ and $t>\inf \mathbb{T}$, respectively. We assume throughout that \mathbb{T} has the topology that it inherits from the standard topology on \mathbb{R}. We say t is right-scattered, left-scattered, right-dense and left-dense if $\sigma(t)>t, \rho(t)<t$, $\sigma(t)=t, \rho(t)=t$, respectively.

Throughout this paper we assume that $a \leq b$ are points in \mathbb{T}.
Definition 2.2. If $r, s \in \mathbb{T} \cup\{-\infty,+\infty\}, r<s$, then an open interval (r, s) in \mathbb{T} is defined by

$$
(r, s)=\{t \in \mathbb{T}: r<t<s\}
$$

Other types of intervals are defined similarly.
Definition 2.3. Assume that $x: \mathbb{T} \rightarrow \mathbb{R}$ and fix $t \in \mathbb{T}$. Then, x is called differentiable at $t \in \mathbb{T}$ if there exists a $\theta \in \mathbb{R}$, such that, for any given $\varepsilon>0$, there is an open neighborhood U of t, such that

$$
|x(\sigma(t))-x(s)-\theta[\sigma(t)-s]| \leq \varepsilon|\sigma(t)-s|, \quad s \in U
$$

In this case, θ is called the Δ-derivative of x at $t \in \mathbb{T}$ and we denote it by $\theta=x^{\Delta}(t)$. It can be shown that if $x: \mathbb{T} \rightarrow \mathbb{R}$ is continuous at $t \in \mathbb{T}$, then

$$
x^{\Delta}(t)=\frac{x(\sigma(t))-x(t)}{\sigma(t)-t}
$$

if t is right-scattered, and

$$
x^{\Delta}(t)=\lim _{s \rightarrow t} \frac{x(t)-x(s)}{t-s}
$$

if t is right-dense.

In the rest of the paper, we assume that the set $[a, \sigma(b)]$ is, such that

$$
\xi=\min \left\{t \in \mathbb{T}: t \geq \frac{\sigma(b)+3 a}{4}\right\}, \quad \omega=\max \left\{t \in \mathbb{T}: t \leq \frac{3 \sigma(b)+a}{4}\right\}
$$

exist and satisfy

$$
\frac{\sigma(b)+3 a}{4} \leq \xi<\omega \leq \frac{3 \sigma(b)+a}{4}
$$

We also assume that if $\sigma(\omega)=b$ and $\delta=0$, then $\sigma(\omega)<\sigma(b)$.
We denote by $G(t, s)$ the Green function of the boundary-value problem

$$
\begin{gathered}
-u^{\Delta \Delta}(t)=0, \quad t \in[a, b] \\
\alpha u(a)-\beta u^{\Delta}(a)=0, \quad \gamma u(\sigma(b))+\delta u^{\Delta}(\sigma(b))=0
\end{gathered}
$$

which is explicitly given in [11,

$$
G(t, s)= \begin{cases}\frac{1}{r}\{\alpha(t-a)+\beta\}\{\gamma(\sigma(b)-\sigma(s))+\delta\}, & t \leq s \\ \frac{1}{r}\{\alpha(\sigma(s)-a)+\beta\}\{\gamma(\sigma(b)-t)+\delta\}, & t \geq \sigma(s)\end{cases}
$$

for $t \in\left[a, \sigma^{2}(b)\right]$ and $s \in[a, b]$, where $r=\gamma \beta+\alpha \delta+\alpha \gamma(\sigma(b)-a)$. For this Green function, we have the following lemmas [8, 9, 11].

Lemma 2.4. Assume $\alpha, \beta, \gamma, \delta \geq 0, \gamma\left(\sigma(b)-\sigma^{2}(b)\right)+\delta \geq 0$, and

$$
r=\gamma \beta+\alpha \delta+\alpha \gamma(\sigma(b)-a)>0
$$

Then, for $(t, s) \in\left[a, \sigma^{2}(b)\right] \times[a, b], 0 \leq G(t, s) \leq G(\sigma(s), s)$.
Lemma 2.5. (i) If $(t, s) \in[(\sigma(b)+3 a) / 4,(3 \sigma(b)+a) / 4] \times[a, b]$, then $G(t, s) \geq$ $l G(\sigma(s), s)$, where

$$
l=\min \left\{\frac{\alpha[\sigma(b)-a]+4 \beta}{4 \alpha[\sigma(b)-a]+4 \beta}, \frac{\gamma[\sigma(b)-a]+4 \delta}{4 \gamma[\sigma(b)-\sigma(a)]+4 \delta}\right\}
$$

(ii) If $(t, s) \in[\xi, \sigma(\omega)] \times[a, b]$, then $G(t, s) \geq k G(\sigma(s), s)$, where

$$
k=\min \left\{l, \min _{s \in[a, b]} \frac{G(\sigma(\omega), s)}{G(\sigma(s), s)}\right\} .
$$

The following well-known result of the fixed-point index is crucial in our arguments.

Lemma 2.6 ([12). Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|u\|<r\}$. Assume that $A: \bar{K}_{r} \rightarrow K$ is completely continuous, such that $A x \neq x$ for $x \in \partial K_{r}=\{u \in K:\|u\|=r\}$.
(i) If $\|A x\| \geq\|x\|$, for $x \in \partial K_{r}$, then $i\left(A, K_{r}, K\right)=0$.
(ii) If $\|A x\| \leq\|x\|$, for $x \in \partial K_{r}$, then $i\left(A, K_{r}, K\right)=1$.

To apply Lemma 2.6 to (1.1) and 1.2 , we define the Banach space $B=\{x \mid x$: $\left[a, \sigma^{2}(b)\right] \rightarrow \mathbb{R}$ is continuous $\}$, for $x \in B$, let $|x|_{0}=\max _{t \in\left[a, \sigma^{2}(b)\right]}|x(t)|$ and $E=$ B^{n}, for $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in E,\|u\|=\sum_{i=1}^{n}\left|u_{i}\right|_{0}$.

For $u \in E$ or $\mathbb{R}_{+}^{n},\|u\|$ denotes the norm of u in E and \mathbb{R}_{+}^{n}, respectively.
Define K to be a cone in E by

$$
\begin{aligned}
& K=\left\{u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in E: u_{i}(t) \geq 0, t \in\left[a, \sigma^{2}(b)\right], i=1,2, \ldots, n,\right. \\
&\text { and } \left.\min _{t \in[\xi, \sigma(\omega)]} \sum_{i=1}^{n} u_{i}(t) \geq k\|u\|\right\} .
\end{aligned}
$$

For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in K$, let

$$
A(u)=\left(A_{1}(u), A_{2}(u), \ldots, A_{n}(u)\right),
$$

where

$$
A_{i}(u)=\lambda \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s, \quad t \in\left[a, \sigma^{2}(b)\right]
$$

Lemma 2.7. Assume that (H1) and (H2) hold, then $A: K \rightarrow K$ is completely continuous.

Proof. For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in K$, and $i=1,2, \ldots, n$, it follows from Lemma 2.4 that

$$
\begin{aligned}
0 & \leq A_{i}(u)(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s \\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s, \quad t \in\left[a, \sigma^{2}(b)\right]
\end{aligned}
$$

So, for $i=1,2, \ldots, n$,

$$
\left|A_{i}(u)\right|_{0} \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s
$$

For $t \in[\xi, \sigma(\omega)]$, from Lemma 2.5 and the above inequality, we have

$$
\begin{aligned}
A_{i}(u)(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s \\
& \geq k \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s \\
& \geq k\left|A_{i}(u)\right|_{0}, \quad i=1,2, \ldots, n
\end{aligned}
$$

So, for $t \in[\xi, \sigma(\omega)]$,

$$
\sum_{i=1}^{n} A_{i}(u)(t) \geq k \sum_{i=1}^{n}\left|A_{i}(u)\right|_{0}=k\|A u\|
$$

Hence,

$$
\min _{t \in[\xi, \sigma(\omega)]} \sum_{i=1}^{n} A_{i}(u)(t) \geq k\|A u\| ;
$$

i.e., $A(u) \in K$. Further, it is easy to see that $A: K \rightarrow K$ is completely continuous. The proof is complete.

Now, it is not difficult to show that the problem 1.1) and 1.2 is equivalent to the fixed-point equation $A(u)=u$ in K. Let

$$
\gamma_{i}=\max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{\xi}^{\sigma(\omega)} G(t, s) h_{i}(s) \Delta s, \quad \text { and } \quad \Gamma=\min _{1 \leq i \leq n}\left\{\gamma_{i}\right\}
$$

Lemma 2.8. Assume that (H1) and (H2) hold. Let $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in K$ and $\eta>0$. If there exists $f_{i_{0}}$ such that

$$
\begin{equation*}
f_{i_{0}}\left(u_{1}(\sigma(t)), u_{2}(\sigma(t)), \ldots, u_{n}(\sigma(t))\right) \geq \eta \sum_{i=1}^{n} u_{i}(t), \quad t \in[\xi, \sigma(\omega)] \tag{2.1}
\end{equation*}
$$

then $\|A(u)\| \geq \lambda k \eta \Gamma\|u\|$.

Proof. From the definition of K and (2.1), we have

$$
\begin{aligned}
\|A(u)\| & =\sum_{i=1}^{n}\left|A_{i}(u)\right|_{0} \\
& \geq\left|A_{i_{0}}\right|_{0}=\lambda \max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) h_{i_{0}}(s) f_{i_{0}}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s \\
& \geq \lambda \max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{\xi}^{\sigma(\omega)} G(t, s) h_{i_{0}}(s) f_{i_{0}}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s \\
& \geq \lambda \eta \max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{\xi}^{\sigma(\omega)} G(t, s) h_{i_{0}}(s) \sum_{i=1}^{n} u_{i}(s) \Delta s \\
& \geq k \lambda \eta\|u\| \gamma_{i_{0}} \\
& \geq k \lambda \eta \Gamma\|u\| .
\end{aligned}
$$

The proof is complete.
For each $i=1,2, \ldots, n$, we define a new function $\tilde{f}_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by

$$
\tilde{f}_{i}(t)=\max \left\{f_{i}(u): u \in \mathbb{R}_{+}^{n},\|u\| \leq t\right\}
$$

Denote

$$
\tilde{f_{i}^{0}}=\lim _{t \rightarrow 0} \frac{\tilde{f}_{i}(t)}{t}, \quad \tilde{f_{i}^{\infty}}=\lim _{t \rightarrow \infty} \frac{\tilde{f}_{i}(t)}{t}
$$

As in [18, Lemma 2.8], we can obtain the following result.
Lemma 2.9. Assume that (H2) holds. Then, $\tilde{f_{i}^{0}}=f_{i}^{0}$ and $\tilde{f_{i}^{\infty}}=f_{i}^{\infty}$.
Lemma 2.10. Assume that (H1) and (H2) hold. Let $h>0$. If there exists $\varepsilon>0$, such that

$$
\begin{equation*}
\tilde{f}_{i}(h) \leq \varepsilon h, \quad i=1,2, \ldots, n \tag{2.2}
\end{equation*}
$$

then $\|A(u)\| \leq \lambda \varepsilon C\|u\|$, for $u \in \partial K_{h}$, where

$$
C=\sum_{i=1}^{n}\left[\max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) \Delta s\right] .
$$

Proof. Suppose $u \in \partial K_{h}$; i.e., $u \in K$ and $\|u\|=h$, then it follows from 2.2 that

$$
\begin{aligned}
A_{i}(u)(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) f_{i}\left(u_{1}(\sigma(s)), \ldots, u_{n}(\sigma(s))\right) \Delta s \\
& \leq \lambda \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) \tilde{f}_{i}(h) \Delta s \\
& \leq \lambda \varepsilon h \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) \Delta s \\
& \leq \lambda \varepsilon h \max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) \Delta s, \quad t \in\left[a, \sigma^{2}(b)\right], i=1,2, \ldots, n
\end{aligned}
$$

So,

$$
\left|A_{i}(u)\right|_{0} \leq \lambda \varepsilon h \max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) \Delta s, \quad i=1,2, \ldots, n
$$

Therefore,

$$
\|A(u)\|=\sum_{i=1}^{n}\left|A_{i}(u)\right|_{0} \leq \lambda \varepsilon h \sum_{i=1}^{n}\left[\max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) h_{i}(s) \Delta s\right]=\lambda \varepsilon C\|u\| .
$$

The proof is complete.

3. Main Result

Our main result is the following theorem.
Theorem 3.1. Assume that (H1) and (H2) hold. Then, for all $\lambda>0$, 1.1 and (1.2) has a positive solution if one of the following two conditions holds:
(a) $f^{0}=0$ and $f^{\infty}=\infty$;
(b) $f^{0}=\infty$ and $f^{\infty}=0$.

Proof. First, we suppose that (a) holds. Since $f^{0}=0$ implies that $f_{i}^{0}=0, i=$ $1,2, \ldots, n$, it follows from Lemma 2.9 that $\tilde{f_{i}^{0}}=0, i=1,2, \ldots, n$. Therefore, we can choose $r_{1}>0$, such that

$$
\tilde{f}_{i}\left(r_{1}\right) \leq \varepsilon r_{1}, \quad i=1,2, \ldots, n
$$

where the constant $\varepsilon>0$ satisfies $\lambda \varepsilon C<1$, and C is defined in Lemma 2.10. By Lemma 2.10, we have

$$
\begin{equation*}
\|A(u)\| \leq \lambda \varepsilon C\|u\|<\|u\|, \quad \text { for } u \in \partial K_{r_{1}} \tag{3.1}
\end{equation*}
$$

Now, since $f^{\infty}=\infty$, there exists $f_{i_{0}}$ so that $f_{i_{0}}^{\infty}=\infty$. Therefore, there is $H>0$, such that

$$
f_{i_{0}}(u) \geq \eta\|u\|, \quad \text { for } u \in \mathbb{R}_{+}^{n}, \quad \text { and } \quad\|u\| \geq H
$$

where $\eta>0$ is chosen so that $\lambda \eta k \Gamma>1$. Let $r_{2}=\max \left\{2 r_{1}, \frac{1}{k} H\right\}$. If $u \in \partial K_{r_{2}}$, then

$$
\|u\|=\sum_{i=1}^{n}\left|u_{i}\right|_{0} \geq \sum_{i=1}^{n} u_{i}(t) \geq k\|u\|=k r_{2} \geq H, \quad t \in[\xi, \sigma(\omega)]
$$

which implies that

$$
f_{i_{0}}\left(u_{1}(\sigma(t)), u_{2}(\sigma(t)), \ldots, u_{n}(\sigma(t))\right) \geq \eta\|u\| \geq \eta \sum_{i=1}^{n} u_{i}(t), \quad t \in[\xi, \sigma(\omega)]
$$

It follows from Lemma 2.8 that

$$
\begin{equation*}
\|A(u)\| \geq \lambda \eta \Gamma k\|u\|>\|u\|, \quad \text { for } u \in \partial K_{r_{2}} \tag{3.2}
\end{equation*}
$$

By (3.1), 3.2 and Lemma 2.6

$$
i\left(A, K_{r_{1}}, K\right)=1 \quad \text { and } \quad i\left(A, K_{r_{2}}, K\right)=0
$$

It follows from the additivity of the fixed-point index that

$$
i\left(A, K_{r_{2}} \backslash \bar{K}_{r_{1}}, K\right)=-1
$$

which implies that A has a fixed point $u \in K_{r_{2}} \backslash \bar{K}_{r_{1}}$. The fixed point $u \in K_{r_{2}} \backslash \bar{K}_{r_{1}}$ is the desired positive solution of 1.1 and 1.2 .

Next, we suppose that (b) holds. Since $f^{0}=\infty$, there exists $f_{i_{0}}$ so that $f_{i_{0}}^{0}=\infty$. Therefore, there is $r_{1}>0$, such that

$$
f_{i_{0}}(u) \geq \eta\|u\|, \quad \text { for } u \in \mathbb{R}_{+}^{n}, \quad \text { and } \quad\|u\| \leq r_{1}
$$

where $\eta>0$ is chosen so that $\lambda \eta k \Gamma>1$. If $u \in \partial K_{r_{1}}$, then

$$
f_{i_{0}}\left(u_{1}(\sigma(t)), u_{2}(\sigma(t)), \ldots, u_{n}(\sigma(t))\right) \geq \eta\|u\| \geq \eta \sum_{i=1}^{n} u_{i}(t), \quad t \in[\xi, \sigma(\omega)]
$$

It follows from Lemma 2.8 that

$$
\begin{equation*}
\|A(u)\| \geq \lambda \eta \Gamma k\|u\|>\|u\|, \quad \text { for } u \in \partial K_{r_{1}} . \tag{3.3}
\end{equation*}
$$

In view of $f^{\infty}=0$ implies that $f_{i}^{\infty}=0, i=1,2, \ldots, n$, it follows from Lemma 2.9 that $\tilde{f_{i}^{\infty}}=0, i=1,2, \ldots, n$. Therefore, we can choose $r_{2}>2 r_{1}$, such that

$$
\tilde{f}_{i}\left(r_{2}\right) \leq \varepsilon r_{2}, \quad i=1,2, \ldots, n
$$

where the constant $\varepsilon>0$ satisfies

$$
\lambda \varepsilon C<1
$$

and C is defined in Lemma 2.10. We have by Lemma 2.10 that

$$
\begin{equation*}
\|A(u)\| \leq \lambda \varepsilon C\|u\|<\|u\|, \quad \text { for } u \in \partial K_{r_{2}} . \tag{3.4}
\end{equation*}
$$

By (3.3), (3.4) and Lemma 2.6

$$
i\left(A, K_{r_{1}}, K\right)=0 \quad \text { and } \quad i\left(A, K_{r_{2}}, K\right)=1
$$

It follows from the additivity of the fixed-point index that

$$
i\left(A, K_{r_{2}} \backslash \bar{K}_{r_{1}}, K\right)=1
$$

which implies that A has a fixed point $u \in K_{r_{2}} \backslash \bar{K}_{r_{1}}$, which is the desired positive solution of 1.1 and 1.2 .

Remark 3.2. It is worth noting that these techniques can be extended to the following multi-point system based in 6],
$\left(p_{i} y_{i}^{\Delta}\right)^{\Delta}(t)-q_{i}(t) y_{i}(t)+\lambda h_{i}(t) f_{i}\left(y_{1}(\sigma(t)), y_{2}(\sigma(t)), \ldots, y_{m}(\sigma(t))\right)=0, \quad t \in\left(t_{1}, t_{n}\right)$,
$\alpha y_{i}\left(t_{1}\right)-\beta p_{i}\left(t_{1}\right) y_{i}^{\Delta}\left(t_{1}\right)=\sum_{k=2}^{n-1} a_{k i} y_{i}\left(t_{k}\right), \quad \gamma y_{i}\left(t_{n}\right)+\delta p_{i}\left(t_{n}\right) y_{i}^{\Delta}\left(t_{n}\right)=\sum_{k=2}^{n-1} b_{k i} y_{i}\left(t_{k}\right)$,
for $i=1,2, \ldots, m$.
Example 3.3. Let $\mathbb{T}=\left\{1-\left(\frac{1}{2}\right)^{\mathbb{N}_{0}}\right\} \cup[1,2]$. We consider the dynamic system

$$
\begin{align*}
u_{i}^{\Delta \Delta}(t)+\lambda f_{i}\left(u_{1}(\sigma(t)), u_{2}(\sigma(t)), \ldots, u_{n}(\sigma(t))\right) & =0, \quad t \in[0,1] \tag{3.5}\\
u_{i}(0)-u_{i}^{\Delta}(0)=0, \quad u_{i}(1)+u_{i}^{\Delta}(1) & =0 \tag{3.6}
\end{align*}
$$

$i=1,2, \ldots, n$, where $f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$is define by

$$
f_{i}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(u_{1}+u_{2}+\cdots+u_{n}\right)^{i+1}, \quad i=1,2, \ldots, n
$$

It is easy to see that

$$
f^{0}=0 \quad \text { and } \quad f^{\infty}=\infty
$$

So, it follows from Theorem 3.1 that for all $\lambda>0,3.5-3.6$ has at least one positive solution.

Acknowledgment. The authors would like to thank the anonymous referees for their valuable suggestions which led to an improvement of this paper.

References

[1] B. Aulbach, S. Hilger; Linear dynamic processes with inhomogeneous time scale, Nonlinear Dyn. Quantum Dyn. Sys., (Gaussig, 1990) volume 59 of Math. Res., 9-20. Akademie Verlag, Berlin, 1990.
[2] R. P. Agarwal, M. Bohner; Basic calculus on time scales and some of its applications. Results Math., 35 (1999), 3-22.
[3] R. P. Agarwal, M. Bohner, P. Wong; Sturm-Liouville eigenvalue problems on time scales. Apply. Math. Comput., 99 (1999), 153-166.
[4] R. P. Agarwal, D. O'Regan; Triple solutions to boundary value problems on time scales. Appl. Math. Lett., 13(4) (2000), 7-11.
[5] R. P. Agarwal, D. O'Regan; Nonlinear boundary value problems on time scales, Nonlinear Anal., 44 (2001), 527-535.
[6] D. R. Anderson; Second-order n-point problems on time scales with changing-sign nonlinearity, Advances in Dynamical Systems and Applications, 1:1 (2006), 17-27.
[7] R. I. Avery, D. R. Anderson; Existence of three positive solutions to a second-order boundary value problem on a measure chain. J. Comput. Appl. Math., 141 (2002), 65-73.
[8] M. Bohner, A. Peterson, Dynamic Equations on Time scales, An Introduction with Applications, Birkhäuser, Boston, 2001.
[9] M. Bohner, A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[10] C. J. Chyan, J. Henderson; Twin solutions of boundary value problems for differential equations on measure chains. J. Comput. Appl. Math., 141 (2002), 123-131.
[11] L. Erbe, A. Peterson; Positive Solutions for a nonlinear differential equation on a measure chain. Math. Comput. Modelling, 32 (5-6) (2000), 571-585.
[12] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, CA, 1988.
[13] J. Henderson; Multiple solutions for $2 m^{\text {th }}$-order Sturm-Liouville boundary value problems on a measure chain. J. Difference Equations and Appl., 6 (2-3) (2000), 417-429.
[14] S. Hilger; Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math., 18 (1990), 18-56.
[15] W. C. Lian, C. C. Chou, C. T. Liu, F. H. Wong; Existence of solutions for nonlinear BVPs of second-order differential equations on measure chains. Math. Comput. Modelling, 34 (7/8) (2001), 821-837.
[16] W. T. Li, H. R. Sun; Multiple positive solutions for nonlinear dynamical system on a measure chain. J. Comput. Appl. Math., 162 (2004), 421-430.
[17] J. P. Sun, Y. H. Zhao, W. T. Li; Existence of positive solution for second-order nonlinear discrete system with parameter. Math. Comput. Modelling, 41 (2005), 493-499.
[18] H. Wang; On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl., 281 (2003), 287-306.

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

E-mail address, S.-H. Ma: mashuanghong@lut.cn
E-mail address, J.-P. Sun: jpsun@lut.cn
E-mail address, D.-B. Wang (Corresponding author): wangdb@lut.cn

