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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR
DYNAMIC SYSTEMS WITH A PARAMETER ON A MEASURE

CHAIN

SHUANG-HONG MA, JIAN-PING SUN, DA-BIN WANG

Abstract. In this paper, we consider the following dynamic system with pa-

rameter on a measure chain T,

u∆∆
i (t) + λhi(t)fi(u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) = 0, t ∈ [a, b],

αui(a)− βu∆
i (a) = 0, γui(σ(b)) + δu∆

i (σ(b)) = 0,

where i = 1, 2, . . . , n. Using fixed-point index theory, we find sufficient condi-

tions the existence of positive solutions.

1. Introduction

The theory of dynamic equations on time scales has become a new important
mathematical branch (see, for example, [1, 3, 8, 9]) since it was initiated by Hilger
[14]. At the same time, boundary-value problems (BVPs) for scalar dynamic equa-
tions on time scales have received considerable attention [4, 5, 6, 7, 10, 11, 13, 15, 16].
However, to the best of our knowledge, only a few papers can be found in the lit-
erature for systems of BVPs for dynamic equations on time scales [16].

Sun, Zhao and Li [17] considered the following discrete system with parameter

∆2ui(k) + λhi(k)fi(u1(k), u2(k), . . . , un(k)) = 0, k ∈ [0, T ],

ui(0) = ui(T + 2) = 0,

where i = 1, 2, . . . , n, λ > 0 is a constant, T and n ≥ 2 are two fixed positive
integers. They established the existence of one positive solution by using the theory
of fixed-point index [12].

Motivated by [17], the purpose of this paper is to study the following more
general dynamic system with parameter on a measure chain T,

u∆∆
i (t) + λhi(t)fi(u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) = 0, t ∈ [a, b], (1.1)

αui(a)− βu∆
i (a) = 0, γui(σ(b)) + δu∆

i (σ(b)) = 0, (1.2)

where, i = 1, 2, . . . , n, λ > 0 is constant, a, b ∈ T, α, β, γ, δ ≥ 0, γ(σ(b)−σ2(b))+δ ≥
0, r = γβ + αδ + αγ(σ(b) − a) > 0, and the function σ(t) and [a, b] is defined as
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in Section 2 below. Let R be the set of real numbers, and R+ = [0,∞). For
u = (u1, u2, . . . , un) ∈ Rn

+, let ‖u‖ =
∑n

i=1 ui.
We make the following assumptions for i = 1, 2, . . . , n:

(H1) hi : [a, b] → (0,∞) is continuous.
(H2) fi : Rn

+ → R+ is continuous.

For convenience, we introduce the following notation

f0
i = lim

‖u‖→0

fi(u)
‖u‖

, f∞i = lim
‖u‖→∞

fi(u)
‖u‖

, u ∈ Rn
+,

f0 =
n∑

i=1

f0
i and f∞ =

n∑
i=1

f∞i .

2. Preliminaries

In this section, we introduce several definitions on measure chains and some
notation. Also we give some lemmas which are useful in proving our main result.

Definition 2.1. Let T be a closed subset of R with the properties

σ(t) = inf{τ ∈ T : τ > t} ∈ T
ρ(t) = sup{τ ∈ T : τ < t} ∈ T

for all t ∈ T with t < sup T and t > inf T, respectively. We assume throughout
that T has the topology that it inherits from the standard topology on R. We say
t is right-scattered, left-scattered, right-dense and left-dense if σ(t) > t, ρ(t) < t,
σ(t) = t, ρ(t) = t, respectively.

Throughout this paper we assume that a ≤ b are points in T.

Definition 2.2. If r, s ∈ T ∪ {−∞,+∞}, r < s, then an open interval (r, s) in T
is defined by

(r, s) = {t ∈ T : r < t < s}.

Other types of intervals are defined similarly.

Definition 2.3. Assume that x : T → R and fix t ∈ T. Then, x is called differen-
tiable at t ∈ T if there exists a θ ∈ R, such that, for any given ε > 0, there is an
open neighborhood U of t, such that

|x(σ(t))− x(s)− θ[σ(t)− s]| ≤ ε|σ(t)− s|, s ∈ U.

In this case, θ is called the ∆-derivative of x at t ∈ T and we denote it by θ = x∆(t).
It can be shown that if x : T → R is continuous at t ∈ T, then

x∆(t) =
x(σ(t))− x(t)

σ(t)− t

if t is right-scattered, and

x∆(t) = lim
s→t

x(t)− x(s)
t− s

if t is right-dense.
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In the rest of the paper, we assume that the set [a, σ(b)] is, such that

ξ = min{t ∈ T : t ≥ σ(b) + 3a

4
}, ω = max{t ∈ T : t ≤ 3σ(b) + a

4
},

exist and satisfy
σ(b) + 3a

4
≤ ξ < ω ≤ 3σ(b) + a

4
.

We also assume that if σ(ω) = b and δ = 0, then σ(ω) < σ(b).
We denote by G(t, s) the Green function of the boundary-value problem

−u∆∆(t) = 0, t ∈ [a, b],

αu(a)− βu∆(a) = 0, γu(σ(b)) + δu∆(σ(b)) = 0,

which is explicitly given in [11],

G(t, s) =

{
1
r{α(t− a) + β}{γ(σ(b)− σ(s)) + δ}, t ≤ s,
1
r{α(σ(s)− a) + β}{γ(σ(b)− t) + δ}, t ≥ σ(s),

for t ∈ [a, σ2(b)] and s ∈ [a, b], where r = γβ + αδ + αγ(σ(b) − a). For this Green
function, we have the following lemmas [8, 9, 11].

Lemma 2.4. Assume α, β, γ, δ ≥ 0, γ(σ(b)− σ2(b)) + δ ≥ 0, and

r = γβ + αδ + αγ(σ(b)− a) > 0 .

Then, for (t, s) ∈ [a, σ2(b)]× [a, b], 0 ≤ G(t, s) ≤ G(σ(s), s).

Lemma 2.5. (i) If (t, s) ∈ [(σ(b) + 3a)/4, (3σ(b) + a)/4] × [a, b], then G(t, s) ≥
lG(σ(s), s), where

l = min
{ α[σ(b)− a] + 4β

4α[σ(b)− a] + 4β
,

γ[σ(b)− a] + 4δ

4γ[σ(b)− σ(a)] + 4δ

}
;

(ii) If (t, s) ∈ [ξ, σ(ω)]× [a, b], then G(t, s) ≥ kG(σ(s), s), where

k = min
{

l, min
s∈[a,b]

G(σ(ω), s)
G(σ(s), s)

}
.

The following well-known result of the fixed-point index is crucial in our argu-
ments.

Lemma 2.6 ([12]). Let E be a Banach space and K a cone in E. For r > 0, define
Kr = {u ∈ K : ‖u‖ < r}. Assume that A : K̄r → K is completely continuous, such
that Ax 6= x for x ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.

(i) If ‖Ax‖ ≥ ‖x‖, for x ∈ ∂Kr, then i(A,Kr,K) = 0.
(ii) If ‖Ax‖ ≤ ‖x‖, for x ∈ ∂Kr, then i(A,Kr,K) = 1.

To apply Lemma 2.6 to (1.1) and (1.2), we define the Banach space B = {x|x :
[a, σ2(b)] → R is continuous }, for x ∈ B, let |x|0 = maxt∈[a,σ2(b)] |x(t)| and E =
Bn, for u = (u1, u2, . . . , un) ∈ E, ‖u‖ =

∑n
i=1 |ui|0.

For u ∈ E or Rn
+, ‖u‖ denotes the norm of u in E and Rn

+, respectively.
Define K to be a cone in E by

K =
{
u = (u1, u2, . . . , un) ∈ E : ui(t) ≥ 0, t ∈ [a, σ2(b)], i = 1, 2, . . . , n,

and min
t∈[ξ,σ(ω)]

n∑
i=1

ui(t) ≥ k‖u‖
}
.
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For u = (u1, u2, . . . , un) ∈ K, let

A(u) = (A1(u), A2(u), . . . , An(u)),

where

Ai(u) = λ

∫ σ(b)

a

G(t, s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s, t ∈ [a, σ2(b)].

Lemma 2.7. Assume that (H1) and (H2) hold, then A : K → K is completely
continuous.

Proof. For u = (u1, u2, . . . , un) ∈ K, and i = 1, 2, . . . , n, it follows from Lemma 2.4
that

0 ≤ Ai(u)(t) = λ

∫ σ(b)

a

G(t, s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s

≤ λ

∫ σ(b)

a

G(σ(s), s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s, t ∈ [a, σ2(b)].

So, for i = 1, 2, . . . , n,

|Ai(u)|0 ≤ λ

∫ σ(b)

a

G(σ(s), s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s,

For t ∈ [ξ, σ(ω)], from Lemma 2.5 and the above inequality, we have

Ai(u)(t) = λ

∫ σ(b)

a

G(t, s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s

≥ kλ

∫ σ(b)

a

G(σ(s), s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s

≥ k|Ai(u)|0, i = 1, 2, . . . , n.

So, for t ∈ [ξ, σ(ω)],
n∑

i=1

Ai(u)(t) ≥ k

n∑
i=1

|Ai(u)|0 = k‖Au‖.

Hence,

min
t∈[ξ,σ(ω)]

n∑
i=1

Ai(u)(t) ≥ k‖Au‖;

i.e., A(u) ∈ K. Further, it is easy to see that A : K → K is completely continuous.
The proof is complete. �

Now, it is not difficult to show that the problem (1.1) and(1.2) is equivalent to
the fixed-point equation A(u) = u in K. Let

γi = max
t∈[a,σ2(b)]

∫ σ(ω)

ξ

G(t, s)hi(s)∆s, and Γ = min
1≤i≤n

{γi}.

Lemma 2.8. Assume that (H1) and (H2) hold. Let u = (u1, u2, . . . , un) ∈ K and
η > 0. If there exists fi0 such that

fi0(u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) ≥ η
n∑

i=1

ui(t), t ∈ [ξ, σ(ω)], (2.1)

then ‖A(u)‖ ≥ λkηΓ‖u‖.



EJDE-2007/73 EXISTENCE OF POSITIVE SOLUTIONS 5

Proof. From the definition of K and (2.1), we have

‖A(u)‖ =
n∑

i=1

|Ai(u)|0

≥ |Ai0 |0 = λ max
t∈[a,σ2(b)]

∫ σ(b)

a

G(t, s)hi0(s)fi0(u1(σ(s)), . . . , un(σ(s)))∆s

≥ λ max
t∈[a,σ2(b)]

∫ σ(ω)

ξ

G(t, s)hi0(s)fi0(u1(σ(s)), . . . , un(σ(s)))∆s

≥ λη max
t∈[a,σ2(b)]

∫ σ(ω)

ξ

G(t, s)hi0(s)
n∑

i=1

ui(s)∆s

≥ kλη‖u‖γi0

≥ kληΓ‖u‖.

The proof is complete. �

For each i = 1, 2, . . . , n, we define a new function f̃i : R+ → R+ by

f̃i(t) = max{fi(u) : u ∈ Rn
+, ‖u‖ ≤ t}.

Denote

f̃0
i = lim

t→0

f̃i(t)
t

, ˜f∞i = lim
t→∞

f̃i(t)
t

.

As in [18, Lemma 2.8], we can obtain the following result.

Lemma 2.9. Assume that (H2) holds. Then, f̃0
i = f0

i and ˜f∞i = f∞i .

Lemma 2.10. Assume that (H1) and (H2) hold. Let h > 0. If there exists ε > 0,
such that

f̃i(h) ≤ εh, i = 1, 2, . . . , n, (2.2)

then ‖A(u)‖ ≤ λεC‖u‖, for u ∈ ∂Kh, where

C =
n∑

i=1

[ max
t∈[a,σ2(b)]

∫ σ(b)

a

G(t, s)hi(s)∆s] .

Proof. Suppose u ∈ ∂Kh; i.e., u ∈ K and ‖u‖ = h, then it follows from (2.2) that

Ai(u)(t) = λ

∫ σ(b)

a

G(t, s)hi(s)fi(u1(σ(s)), . . . , un(σ(s)))∆s

≤ λ

∫ σ(b)

a

G(t, s)hi(s)f̃i(h)∆s

≤ λεh

∫ σ(b)

a

G(t, s)hi(s)∆s

≤ λεh max
t∈[a,σ2(b)]

∫ σ(b)

a

G(t, s)hi(s)∆s, t ∈ [a, σ2(b)], i = 1, 2, . . . , n.

So,

|Ai(u)|0 ≤ λεh max
t∈[a,σ2(b)]

∫ σ(b)

a

G(t, s)hi(s)∆s, i = 1, 2, . . . , n.
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Therefore,

‖A(u)‖ =
n∑

i=1

|Ai(u)|0 ≤ λεh
n∑

i=1

[ max
t∈[a,σ2(b)]

∫ σ(b)

a

G(t, s)hi(s)∆s] = λεC‖u‖.

The proof is complete. �

3. Main Result

Our main result is the following theorem.

Theorem 3.1. Assume that (H1) and (H2) hold. Then, for all λ > 0, (1.1) and
(1.2) has a positive solution if one of the following two conditions holds:

(a) f0 = 0 and f∞ = ∞;
(b) f0 = ∞ and f∞ = 0.

Proof. First, we suppose that (a) holds. Since f0 = 0 implies that f0
i = 0, i =

1, 2, . . . , n, it follows from Lemma 2.9 that f̃0
i = 0, i = 1, 2, . . . , n. Therefore, we

can choose r1 > 0, such that

f̃i(r1) ≤ εr1, i = 1, 2, . . . , n,

where the constant ε > 0 satisfies λεC < 1, and C is defined in Lemma 2.10. By
Lemma 2.10, we have

‖A(u)‖ ≤ λεC‖u‖ < ‖u‖, for u ∈ ∂Kr1 . (3.1)

Now, since f∞ = ∞, there exists fi0 so that f∞i0 = ∞. Therefore, there is H > 0,
such that

fi0(u) ≥ η‖u‖, for u ∈ Rn
+, and ‖u‖ ≥ H,

where η > 0 is chosen so that ληkΓ > 1. Let r2 = max{2r1,
1
k H}. If u ∈ ∂Kr2 ,

then

‖u‖ =
n∑

i=1

|ui|0 ≥
n∑

i=1

ui(t) ≥ k‖u‖ = kr2 ≥ H, t ∈ [ξ, σ(ω)],

which implies that

fi0(u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) ≥ η‖u‖ ≥ η
n∑

i=1

ui(t), t ∈ [ξ, σ(ω)].

It follows from Lemma 2.8 that

‖A(u)‖ ≥ ληΓk‖u‖ > ‖u‖, for u ∈ ∂Kr2 . (3.2)

By (3.1), (3.2) and Lemma 2.6,

i(A,Kr1 ,K) = 1 and i(A,Kr2 ,K) = 0.

It follows from the additivity of the fixed-point index that

i(A,Kr2\K̄r1 ,K) = −1,

which implies that A has a fixed point u ∈ Kr2\K̄r1 . The fixed point u ∈ Kr2\K̄r1

is the desired positive solution of (1.1) and (1.2).
Next, we suppose that (b) holds. Since f0 = ∞, there exists fi0 so that f0

i0
= ∞.

Therefore, there is r1 > 0, such that

fi0(u) ≥ η‖u‖, for u ∈ Rn
+, and ‖u‖ ≤ r1,
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where η > 0 is chosen so that ληkΓ > 1. If u ∈ ∂Kr1 , then

fi0(u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) ≥ η‖u‖ ≥ η
n∑

i=1

ui(t), t ∈ [ξ, σ(ω)].

It follows from Lemma 2.8 that

‖A(u)‖ ≥ ληΓk‖u‖ > ‖u‖, for u ∈ ∂Kr1 . (3.3)

In view of f∞ = 0 implies that f∞i = 0, i = 1, 2, . . . , n, it follows from Lemma 2.9
that ˜f∞i = 0, i = 1, 2, . . . , n. Therefore, we can choose r2 > 2r1, such that

f̃i(r2) ≤ εr2, i = 1, 2, . . . , n,

where the constant ε > 0 satisfies

λεC < 1,

and C is defined in Lemma 2.10. We have by Lemma 2.10 that

‖A(u)‖ ≤ λεC‖u‖ < ‖u‖, for u ∈ ∂Kr2 . (3.4)

By (3.3), (3.4) and Lemma 2.6,

i(A,Kr1 ,K) = 0 and i(A,Kr2 ,K) = 1.

It follows from the additivity of the fixed-point index that

i(A,Kr2\K̄r1 ,K) = 1,

which implies that A has a fixed point u ∈ Kr2\K̄r1 , which is the desired positive
solution of (1.1) and (1.2). �

Remark 3.2. It is worth noting that these techniques can be extended to the
following multi-point system based in [6],

(piy
∆
i )∆(t)− qi(t)yi(t) + λhi(t)fi(y1(σ(t)), y2(σ(t)), . . . , ym(σ(t))) = 0, t ∈ (t1, tn),

αyi(t1)− βpi(t1)y∆
i (t1) =

n−1∑
k=2

akiyi(tk), γyi(tn) + δpi(tn)y∆
i (tn) =

n−1∑
k=2

bkiyi(tk),

for i = 1, 2, . . . ,m.

Example 3.3. Let T = {1− ( 1
2 )N0} ∪ [1, 2]. We consider the dynamic system

u∆∆
i (t) + λfi(u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) = 0, t ∈ [0, 1], (3.5)

ui(0)− u∆
i (0) = 0, ui(1) + u∆

i (1) = 0, (3.6)

i = 1, 2, . . . , n, where fi : Rn
+ → R+ is define by

fi(u1, u2, . . . , un) = (u1 + u2 + · · ·+ un)i+1, i = 1, 2, . . . , n.

It is easy to see that
f0 = 0 and f∞ = ∞.

So, it follows from Theorem 3.1 that for all λ > 0, (3.5)-(3.6) has at least one
positive solution.
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