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INVERSE SPECTRAL PROBLEMS FOR NONLINEAR
STURM-LIOUVILLE PROBLEMS

TETSUTARO SHIBATA

Abstract. This paper concerns the nonlinear Sturm-Liouville problem

−u′′(t) + f(u(t)) = λu(t), u(t) > 0, t ∈ I := (0, 1), u(0) = u(1) = 0,

where λ is a positive parameter. We try to determine the nonlinear term

f(u) by means of the global behavior of the bifurcation branch of the positive

solutions in R+ × L2(I).

1. Introduction

We consider the nonlinear Sturm-Liouville problem

−u′′(t) + f(u(t)) = λu(t), t ∈ I := (0, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(0) = u(1) = 0, (1.3)

where λ is a positive parameter. We assume that f(u) satisfies the following con-
ditions:

(A1) f(u) is a function of C1 for u ≥ 0 satisfying f(0) = f ′(0) = 0,
(A2) g(u) := f(u)/u is strictly increasing for u ≥ 0 (g(0) := 0),
(A3) g(u) →∞ as u →∞.
Then for each given α > 0, there exists a unique solution (λ, u) = (λ(α), uα) ∈

R+ × C2(Ī) with ‖uα‖2 = α. The set {(λ(α), uα);α > 0} gives all solutions of
(1.1)–(1.3) and is an unbounded curve of class C1 in R+ × L2(I) emanating from
(π2, 0) (cf. [1, 7]).

Typical examples of f(u) are as follows:

f(u) = up (u ≥ 0),

f(u) = up
(
1− 1

1 + uq

)
(u ≥ 0),

where p > 1 and q > 0 are constants.
The equation (1.1)–(1.3) is motivated by the logistic equation of population

dynamics and vibration of string with self-interaction, and has been extensively
investigated by many authors. We refer to [1, 7, 11, 12, 13] and the references therein
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for the works in L∞-framework from a viewpoint of local and global bifurcation
theory. On the other hand, since (1.1)–(1.3) is regarded as an eigenvalue problem,
it seems important to study (1.1)–(1.3) in L2-framework. We refer to [2, 3, 4, 5, 6,
8, 9, 10, 14] for other works in this direction. In particular, the asymptotic formulas
for λ(α) as α → 0 have been established in [4, 5]. Therefore, the problem we have
to consider here is a global behavior of uα as α →∞, and it is known from [1] that

uα(t)
g−1(λ(α))

→ 1 (1.4)

locally uniformly on I as α →∞. By this, it is easy to see that for α � 1

α = ‖uα‖2 = (1 + o(1))g−1(λ(α)).

It follows from this that, in many cases, as α →∞

λ(α) = g(α) + o(g(α)). (1.5)

Note that if f(u) = up (p > 1), then g(α) = αp−1. Motivated by (1.5), the following
asymptotic formula for λ(α) as α →∞ has been given in [14].

Theorem 1.1 ([14]). Let f(u) = up (p > 1). Let n be an arbitrary, fixed, number
in N0 = {0, 1, 2, . . . }. Then the following asymptotic formula holds as α →∞:

λ(α) = αp−1 + C0α
(p−1)/2 +

n∑
k=0

ak(p)
(p− 1)k+1

Ck+2
0 αk(1−p)/2 + o(αn(1−p)/2), (1.6)

where

C0 = (p + 3)
∫ 1

0

√
p− 1
p + 1

− ξ2 +
2

p + 1
ξp+1dξ

and ak(p) is the polynomial (deg ak(p) ≤ k + 1) which is determined by a0 =
1, a1, . . . , ak−1.

Consider now the implication of Theorem 1.1 and (1.6) from the standpoint of
inverse spectral problems.

Problem A. Assume that (1.6) holds for any n ∈ N0. Then does f(u) = up

(p > 1) hold?
For the first step to solve this problem, we simplified the problem as follows in

[15]:

Problem B. Assume that the following asymptotic formula is valid as α →∞.

λ(α) = αp−1 + C0α
(p−1)/2 + o(α(p−1)/2).

Then does f(u) = up hold?
The answer to Problem B was given in [15].

Theorem 1.2 ([15]). Let f(u) = up(1 − 1/(1 + u2)). Furthermore, assume that
1 < p < 5. Then as α →∞

λ(α) = αp−1 + C0α
(p−1)/2 + o(α(p−1)/2). (1.7)

Therefore, we regret to say that the answer to the Problem B is negative. How-
ever, it seems worth considering the following problem on which it is imposed
stronger conditions than those in Problem B.
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Problem C. Assume that the following asymptotic formula is valid as α →∞.

λ(α) = αp−1 + C0α
(p−1)/2 +

1
p− 1

C2
0 + o(1). (1.8)

Then does f(u) = up hold?
The purpose of this paper is to answer this question.

Theorem 1.3. Let f(u) = up(1− 1/(1 + uq)), where p > 1.
(i) Assume that (p− 1)/2 < q < p + 1. Then (1.7) holds as α →∞.
(ii) Assume that p− 1 < q < p + 1. Then (1.8) holds as α →∞.

Therefore, unfortunately, the answer to the Problem C is not valid, either. It
seems that the assumption in Problem C is still weak to solve the inverse spectral
problem. However, it seems that Theorem 1.3 certainly is the meaningful step to
give the answer to Problem A.

Our arguments here to prove Theorem 1.3 are quite straightforward and are
different from those of Theorem 1.2, which are variant of the proof of Theorem
1.1. Therefore, in [15], it seems that the restriction 1 < p < 5 for the case q = 2
is technical. However, it follows from Theorem 1.3 (i) that this restriction is not
technical but optimal.

2. Proof of Theorem 1.3

In this section, C denotes various positive constants independent of λ � 1. We
begin with the fundamental tools which play important roles in what follows. We
denote by (λ, uλ) the solution pair of (1.1)–(1.3) for λ > π2. We know from [1] that
there exists a unique solution uλ ∈ C2(Ī) of (1.1)–(1.3) for a given λ > π2. We use
this notation in what follows. Therefore, α = ‖uλ‖2. It is well known that

uλ(t) = uλ(1− t), t ∈ I, (2.1)

u′λ(t) > 0, 0 ≤ t <
1
2
, (2.2)

‖uλ‖∞ = uλ(
1
2
). (2.3)

We know by [1] that

λ = ‖uλ‖p−1
∞

‖uλ‖q
∞

1 + ‖uλ‖q
∞

+ λ1, (2.4)

where λ1 > 0 is the remainder term of λ with respect to ‖uλ‖∞ and depends on λ.
For λ � 1, we have

λ1 ≤ Cλe−
√

κλ/2. (2.5)
Here κ > 0 is a constant. For completeness, we give the proof of (2.5) in Appendix.
Now multiply (1.1) by u′λ(t). Then(

u′′λ(t) + λuλ(t)− uλ(t)p +
up

λ(t)
1 + uq

λ(t)

)
u′λ(t) = 0.

This along with (2.3) implies that

1
2
u′λ(t)2 +

1
2
λuλ(t)2 − 1

p + 1
uλ(t)p+1 +

∫ uλ(t)

0

ξp

1 + ξq
dξ ≡ constant

=
1
2
λ‖uλ‖2∞ − 1

p + 1
‖uλ‖p+1

∞ +
∫ ‖uλ‖∞

0

ξp

1 + ξq
dξ (put t = 1/2).

(2.6)
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Let

Lλ(θ) = λ(‖uλ‖2∞ − θ2)− 2
p + 1

(‖uλ‖p+1
∞ − θp+1) + 2

∫ ‖uλ‖∞

θ

ξp

1 + ξq
dξ. (2.7)

This along with (2.2) and (2.6) implies that u′λ(t) =
√

Lλ(uλ(t)) for 0 ≤ t ≤ 1/2.
By this and (2.1), we obtain

‖uλ‖2∞ − α2 = 2
∫ 1/2

0

(‖uλ‖2∞ − u2
λ(t))u′λ(t)√

Lλ(uλ(t))
dt

= 2
∫ ‖uλ‖∞

0

(‖uλ‖2∞ − θ2)√
Lλ(θ)

dθ

=
2‖uλ‖2∞√

λ

∫ 1

0

1− s2√
Bλ(s)

ds

=
2‖uλ‖2∞√

λ

{∫ 1

0

1− s2√
A(s)

ds +
∫ 1

0

( 1− s2√
Bλ(s)

− 1− s2√
A(s)

)
ds

}
=

2‖uλ‖2∞√
λ

(C1 + Mλ),

(2.8)

where

A(s) := 1− s2 − 2
p + 1

(1− sp+1), (2.9)

Bλ(s) := 1− s2 − 2
p + 1

‖uλ‖p−1
∞

λ
(1− sp+1) +

2
λ‖uλ‖2∞

∫ ‖uλ‖∞

‖uλ‖∞s

ξp

1 + ξq
dξ, (2.10)

C1 :=
∫ 1

0

1− s2√
A(s)

ds, (2.11)

Mλ :=
∫ 1

0

( 1− s2√
Bλ(s)

− 1− s2√
A(s)

)
ds. (2.12)

By (2.8), we prove Theorem 1.3. Therefore, it is important to obtain the asymptotic
formula for Mλ as λ →∞. To this end, we first prove the following lemma.

Lemma 2.1. Let 0 < ε � 1 be fixed. Then there exists a constant 0 < δ � 1 such
that for 1− ε ≤ s ≤ 1 and λ � 1,

A(s) = K0(s)(1− s)2, (2.13)

Bλ(s) = K1(λ)(1− s) + K2(λ, s)(1− s)2, (2.14)

where

(p− 1)(1− δ) ≤ K0(s) ≤ p− 1 , (2.15)

K1(λ) =
2λ1

λ
, (2.16)

(p− 1)(1− δ) ≤ K2(λ, s) ≤ p− 1 . (2.17)

Proof. We have A(1) = 0. Furthermore,

A′(s) = −2s + 2sp, A′′(s) = −2 + 2psp−1. (2.18)
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By this and Taylor expansion, for 1− ε ≤ s ≤ 1 and λ � 1, we obtain

A(s) = A(1) + A′(1)(s− 1) +
1
2
A′′(s1)(s− 1)2

=
1
2
A′′(s1)(s− 1)2,

where 1 − ε ≤ s < s1 < 1. This along with (2.18) implies (2.13). Next, we have
B(1) = 0. Furthermore,

B′
λ(s) = −2s + 2sp ‖uλ‖p−1

∞
λ

− 2
λ‖uλ‖2∞

‖uλ‖p+1
∞ sp

1 + ‖uλ‖q
∞sq

.

Then by (2.4),

B′
λ(1) = −2 + 2

‖uλ‖p−1
∞

λ
− 2

λ‖uλ‖2∞
‖uλ‖p+1

∞
1 + ‖uλ‖q

∞

= −2
(
1− ‖uλ‖p+q−1

∞
λ(1 + ‖uλ‖q

∞)

)
= −2λ1

λ
.

Furthermore,

B′′
λ(s) =

2(p‖uλ‖p−1
∞ sp−1 − λ)

λ
− 2(p− q)sp+q−1‖uλ‖p+q−1

∞ + psp−1‖uλ‖p−1
∞

λ(1 + ‖uλ‖q
∞sq)2

.

Therefore, by (2.4), 2(p−1)(1− δ) ≤ B′′
λ(s) ≤ 2(p−1) for 1− ε ≤ s ≤ 1 and λ � 1.

By this and Taylor expansion, we obtain

Bλ(s) = Bλ(1) + B′
λ(s)(s− 1) +

1
2
B′′

λ(s2)(s− 1)2

= K1(λ)(1− s) + K2(λ, s)(1− s)2,

where 1− ε < s < s2 < 1. Thus the proof is complete. �

Lemma 2.2. For λ � 1,

Mλ = C2(q)‖uλ‖−q
∞ (1 + o(1)). (2.19)

Here

C2(q) =
∫ 1

0

(1− s2){(1− sp+1)/(p + 1)− (1− sp−q+1)/(p− q + 1)}
A(s)3/2

ds.

Proof. It is easy to see that

Mλ =
∫ 1

0

(1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)(

√
A(s) +

√
Bλ(s))

ds.
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Then by (2.4), (2.9) and (2.10), for 0 < s ≤ 1 and λ � 1,

A(s)−Bλ(s)

=
2

p + 1
(‖uλ‖p−1

∞
λ

− 1
)
(1− sp+1)− 2

λ‖uλ‖2∞

∫ ‖uλ‖∞

‖uλ‖∞s

ξp

1 + ξq
dξ

=
2

p + 1
(1 + o(1))‖uλ‖−q

∞ (1− sp+1)− 2
p− q + 1

(1 + o(1))
‖uλ‖p−q−1

∞
λ

(1− sp−q+1)

= 2‖uλ‖−q
∞ (1 + o(1))

{ 1
p + 1

(1− sp+1)− 1
p− q + 1

(1− sp−q+1)
}
.

(2.20)
Furthermore, since q < p + 1, as λ →∞,

|A(0)−Bλ(0)| ≤
∣∣ 2
p + 1

(‖uλ‖p−1
∞

λ
− 1

)
− 2

λ‖uλ‖2∞

∫ ‖uλ‖∞

0

ξp

1 + ξq
dξ

∣∣ ≤ C‖uλ‖−q
∞ .

(2.21)
By this and (2.20), for 0 ≤ s ≤ 1, as λ →∞, Bλ(s) → A(s). We apply Lebesgue’s
convergence theorem to our situation. Let an arbitrary 0 < ε � 1 be fixed. Then

Mλ =
∫ 1−ε

0

(1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)(

√
A(s) +

√
Bλ(s))

ds

+
∫ 1

1−ε

(1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)(

√
A(s) +

√
Bλ(s))

ds

:= M1,λ + M2,λ.

(2.22)

We know that A(s) and Bλ(s) is strictly decreasing for 0 ≤ s ≤ 1 and Bλ(1) = 0
(cf. Appendix). So we see from (2.14) that for 0 ≤ s ≤ 1− ε and λ � 1,

A(s) ≥ A(1− ε) ≥ (p− 1)(1− δ)ε2,

Bλ(s) ≥ Bλ(1− ε) ≥ (p− 1)(1− δ)ε2 > 0.

By this, there exists a constant Cε > 0 such that for 0 ≤ s ≤ 1− ε and λ � 1,

∣∣ (1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)

(√
A(s) +

√
Bλ(s)

) ∣∣ ≤ Cε.

Therefore, by (2.4), (2.20), (2.21), (2.22) and Lebesgue’s convergence theorem, we
obtain

M1,λ =
∫ 1−ε

0

(1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)(

√
A(s) +

√
Bλ(s))

ds

→
∫ 1−ε

0

(1− s2){(1− sp+1)/(p + 1)− (1− sp−q+1)/(p− q + 1)}
A(s)3/2

ds.

(2.23)
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By Lemma 2.1, for 1− ε ≤ s ≤ 1 and λ � 1,∣∣ (1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)(

√
A(s) +

√
Bλ(s))

∣∣
≤ (1− s2){K1(λ)(1− s) + |K0(s)−K2(λ, s)|(1− s)2}

(K1(λ)(1− s) + K2(λ, s)(1− s)2)
√

K0(s)(1− s)2

≤ 2
(K1(λ)(1− s) + |K0(s)−K2(λ, s)|(1− s)2)
{K1(λ)(1− s) + K2(λ, s)(1− s)2}

√
K0(s)

≤ 2
K1(λ) + |K0(s)−K2(λ, s)|(1− s)
{K1(λ) + K2(λ, s)(1− s)}

√
K0(s)

≤ C.

By this, we apply Lebesgue’s convergence theorem to M2,λ to obtain

M2,λ =
∫ 1

1−ε

(1− s2)(A(s)−Bλ(s))√
A(s)

√
Bλ(s)(

√
A(s) +

√
Bλ(s))

ds

→
∫ 1

1−ε

(1− s2){(1− sp+1)/(p + 1)− (1− sp−q+1)/(p− q + 1)}
A(s)3/2

ds.

By this and (2.23), we obtain (2.19). Thus the proof is complete. �

Proof of Theorem 1.3. By (2.8) and Lemma 2.2, we obtain

‖uλ‖2∞ − α2 =
2‖uλ‖2∞√

λ
(C1 + C2‖uλ‖−q

∞ (1 + o(1))).

By this, (2.4) and the Taylor expansion, for λ � 1,

‖uλ‖2∞ − α2

= 2‖uλ‖2∞
(
‖uλ‖p−1

∞ − ‖uλ‖p−q−1
∞ (1 + o(1))

)−1/2(
C1 + C2‖uλ‖−q

∞ (1 + o(1))
)

= 2‖uλ‖(5−p)/2
∞ (C1 + (C1/2 + C2)‖uλ‖−q

∞ (1 + o(1))).
(2.24)

By (2.4) and direct calculation, we obtain

‖uλ‖∞ = λ1/(p−1)
(
1 +

1
p− 1

λ−q/(p−1) + o
(
λ−q/(p−1)

))
. (2.25)

By this, (2.24) and Taylor expansion,

α2 = ‖uλ‖2∞ − 2‖uλ‖(5−p)/2
∞ (C1 + (C1/2 + C2)‖uλ‖−q

∞ (1 + o(1)))

= λ2/(p−1) +
2

p− 1
λ(2−q)/(p−1) + o

(
λ(2−q)/(p−1)

)
− 2λ(5−p)/(2(p−1))

{
C1 +

( 5− p

2(p− 1)
C1 +

1
2
C1 + C2

)
λ−q/(p−1)(1 + o(1))

}
.

(2.26)
(i) Assume that q > (p− 1)/2. Then for λ � 1,

λ(5−p)/(2(p−1))−q/(p−1) � λ(2−q)/(p−1) � λ(5−p)/(2(p−1)).

By this and (2.26), we obtain

α2 = λ2/(p−1) − 2C1λ
(5−p)/(2(p−1)) +

2
p− 1

λ(2−q)/(p−1)(1 + o(1)).
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Now we put
λ = αp−1(1 + C3α

−η1(1 + o(1))).

Then by direct calculation, we obtain

C3 = (p− 1)C1, η1 =
p− 1

2
.

Since (p− 1)C1 = C0, this implies Theorem 1.3 (i).
(ii) Furthermore, assume that q > p− 1. We put

λ = αp−1(1 + (p− 1)C1α
−(p−1)/2 + C4α

−η2(1 + o(1))).

Then by a straightforward calculation, we obtain

C4 = (p− 1)C2
1 , η2 = p− 1.

This implies that for λ � 1

λ = αp−1 + (p− 1)C1α
(p−1)/2 + (p− 1)C2

1 + o(1).

Since (p− 1)C1 = C0, we obtain Theorem 1.3 (ii). Thus the proof is complete. �

3. Appendix

We first prove (2.5). We consider (1.1)–(1.3) with f(u) = up+q/(1+uq) for p > 1
and q > 0. We put F (u) :=

∫ u

0
f(s)ds. Furthermore, let

Qλ(θ) = λ(‖uλ‖2∞ − θ2)− 2(F (‖uλ‖∞)− F (θ)). (3.1)

For 0 ≤ t ≤ 1, (3.1) is equivalent to (2.7). Then for 0 ≤ t ≤ 1/2, we obtain

u′λ(t) =
√

Q(uλ(t)). (3.2)

By this, we obtain

1
2

=
∫ 1/2

0

u′λ(t)√
Q(uλ(t)

dt =
∫ ‖uλ‖∞

0

1√
Qλ(θ)

dθ =
1√
λ

∫ 1

0

1√
Rλ(s)

ds, (3.3)

where

Rλ(s) := 1− s2 − 2
λ‖uλ‖2∞

(F (‖uλ‖∞)− F (‖uλ‖∞s)) (3.4)

Let an arbitrary 0 < ε � 1 be fixed. Then for 1− ε ≤ s ≤ 1, by Taylor expansion,

F (‖uλ‖∞s) = F (‖uλ‖∞) + f(‖uλ‖∞)‖uλ‖∞(s− 1) +
1
2
f ′(‖uλ‖∞s1)‖uλ‖2∞(s− 1)2,

where s < s1 < 1 and s1 depends on s. Since f ′(u) = pup−1(1 + o(1)) for u � 1,
there exists a constant δ > 0 such that for 1− ε ≤ s ≤ 1

Rλ(s) = 2
(
1− f(‖uλ‖∞)

λ‖uλ‖∞
)
(1− s) +

(f ′(‖uλ‖∞s1)
λ

− 1
)
(1− s)2

≥ 2ξ(1− s) + δ(1− s)2,
(3.5)

where

ξ := 1− f(‖uλ‖∞)
λ‖uλ‖∞

> 0. (3.6)
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We know that ξ → 0 as λ →∞. By this, (3.3) and (3.5), we obtain
√

λ

2
≤

∫ 1−ε

0

1√
Rλ(s)

ds +
∫ 1

1−ε

1√
2ξ(1− s) + δ(1− s)2

ds

≤ C +
∫ ε

0

1√
2ξv + δv2

dv

= C + δ−1
[
log |2δv + 2ξ + 2

√
δ(δv2 + 2ξv)|

]ε

0

= δ−1(log C − log 2ξ).

By this, we obtain
2ξ ≤ Ce−δ

√
λ/2,

which along with (3.6) implies

λ ≤ f(‖uλ‖∞)
‖uλ‖∞

+
C

2
λe−δ

√
λ/2.

Thus the proof of (2.5) is complete. We next prove that Bλ(s) is decreasing for
0 ≤ s ≤ 1. Indeed, since Bλ(s) = Rλ(s) in (3.4), by (A2) and (2.4),

B′
λ(s) = −2s +

2s

λ

f(‖uλ‖∞s)
‖uλ‖∞s

≤ −2s +
2s

λ

f(‖uλ‖∞)
‖uλ‖∞

< 0.

Thus the proof is complete.
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