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DYNAMIC FRICTIONAL CONTACT FOR ELASTIC
VISCOPLASTIC MATERIAL

KENNETH L. KUTTLER

Abstract. Using a general theory for evolution inclusions, existence and

uniqueness theorems are obtained for weak solutions to a frictional dynamic
contact problem for elastic visco-plastic material. An existence theorem in the

case where the friction coefficient is discontinuous is also presented.

1. Introduction

The purpose of this paper is to consider a model involving frictional contact be-
tween an elastic visco-plastic material and a foundation. The balance of momentum
and initial conditions are of the form

ü = div(σ) + f for (t,x) ∈ (0, T )× Ω, (1.1)

u(0,x) = u0(x), (1.2)

u̇(0,x) = v0(x), (1.3)

where for convenience, in the top balance of momentum equation, the density has
been taken to equal 1.

The domain Ω is a bounded open subset of Rd for d = 2 or 3 having Lipschitz
boundary consisting of the union of three disjoint sets, ΓC ,Γ0, and ΓN , any of
which could be empty. Dirichlet conditions for u will be given on Γ0, and on ΓN ,
the traction density will be specified, while on ΓC are the complicated contact
conditions involving friction. The following will be needed to describe these.

Let n be the unit outward normal to ∂Ω. Then un,uT , σT , and σn are defined
by the following.

un = u · n,
uT = u−(u · n)n,
σn = σijnjni,

σTi = σijnj − σnni.

Then on ΓC the boundary conditions are of the form

σn = −p((un − g)+)Cn, (1.4)
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|σT | ≤ F ((un − g)+)µ(|u̇T − U̇T |), (1.5)

|σT | < F ((un − g)+)µ(|u̇T − U̇T |) implies u̇T − U̇T = 0, (1.6)

|σT | = F ((un − g)+)µ(|u̇T − U̇T |) implies u̇T − U̇T = −λσT . (1.7)

Here g is a non negative function in L∞(ΓC) which represents the gap between the
foundation and Ω, Cn is a positive function in L∞(ΓC), U̇T ∈ L∞(0, T ; (L2(ΓC))d),
λ is non negative, and µ is a bounded positive function which is Lipschitz contin-
uous. The dependence of µ on x is suppressed in the interest of simpler notation.
The following lemma gives a way to simplify the above boundary conditions.

Lemma 1.1. σT satisfies (1.5)–(1.7) if and only if

σT ∈ −F ((un − g)+)µ(|u̇T − U̇T |)∂η(u̇T − U̇T ) (1.8)

where η(x) ≡ |x|.

Proof. Suppose first (1.5)-(1.7) and u̇T − U̇T 6= 0. Then from (1.7) and (1.6),

|σT | = F ((un − g)+)µ(|u̇T − U̇T |)

and u̇T − U̇T = −λσT . Thus λ = |u̇T−U̇T |
F ((un−g)+)µ(|u̇T−U̇T |)

and so

σT =
−F

(
(un − g)+

)
µ(|u̇T − U̇T |)

|u̇T − U̇T |
(u̇T − U̇T ).

Now u̇T−U̇T

|u̇T−U̇T |
= ∂η(u̇T − U̇T ) where η(x) ≡ |x|. Therefore, (1.8) holds.

Next suppose u̇T − U̇T 6= 0 and (1.8) holds. Since u̇T − U̇T 6= 0,

∂η(u̇T − U̇T ) =
u̇T − U̇T

|u̇T − U̇T |
and so

σT = −F ((un − g)+)µ(|u̇T − U̇T |)
u̇T − U̇T

|u̇T − U̇T |
= −λ(u̇T − U̇T ).

Also since, in this case, |∂η(u̇T − U̇T )| = 1, it follows

|σT | = F
(
(un − g)+

)
µ(|u̇T − U̇T |).

Now suppose u̇T − U̇T = 0 and (1.8) holds. Then if z ∈ ∂η(u̇T − U̇T ) such that
equality holds, it follows |z| ≤ 1 and so |σT | ≤ F ((un − g)+)µ(|u̇T − U̇T |).

Finally suppose u̇T − U̇T = 0 and (1.5) - (1.7). If σT = 0, let z = 0 and then
0 ∈ ∂η(u̇T − U̇T ) and

σT = −F ((un − g)+)µ(|u̇T − U̇T |)0

If σT 6= 0, then let

z =
σT

−F ((un − g)+)µ(|u̇T − U̇T |)
∈ ∂η(0)

thanks to (1.5). Then

σT = −F ((un − g)+)µ(|u̇T − U̇T |)z

and so (1.8) holds. This proves the lemma. �
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On Γ0, the boundary condition is

u = 0 on Γ0 (1.9)

and on ΓN ,
σn = fn on ΓN . (1.10)

Systems like the above model dynamic friction contact problems [11], [9], [4] [3].
The condition (1.4) is the normal compliance contact condition. It says the normal
component of the traction force density is dependent on the normal penetration of
the body into the foundation surface. See [11] for a discussion of the physical sig-
nificance of this condition. Conditions (1.5) -(1.7) model friction. These conditions
indicate the tangential part of the traction force density is bounded by a function
determined by the normal force or penetration. No sliding takes place until |σT |
reaches this bound, F ((un − g)+)µ(0). When this occurs, the tangential force den-
sity has a direction opposite the relative tangential velocity (1.7). The dependence
of the friction coefficient on the magnitude of the slip velocity, |u̇T −U̇T | is interest-
ing and so it has been included. It is assumed µ is a Lipschitz continuous function
although the Lipschitz constant may be arbitrarily large. Of course in elementary
physics, one allows this function to have two values, one if sliding occurs and an-
other larger value if no sliding occurs. This will be considered later as a limit as the
Lipschitz constant converges to ∞. All the functions may be assumed to depend
on x but this dependence is often suppressed for the sake of simpler notation.

The material coming into contact with the foundation is an elastic-visco-plastic
material for the stress, σ satisfying the following constitutive relation which was
studied for a different kind of contact problem in [16].

σ(t) ≡ Aε(u̇(t)) + Eε(u(t)) +
∫ t

0

G(σ(s)−Aε(u̇(s)), ε(u(s)))ds (1.11)

The physical explanation of this constitutive relation is described in this reference.
This general form for the stress is the main new item in this paper. If G is equal
to 0, the stress is like the one considered in [11], [8], [2] or [7].

For the sake of simplicity, I will consider the more general equation,

σ(t) ≡ Aε(v(t)) + Eε(u(t)) +
∫ t

0

G(σ(s), ε(v(s)), ε(u(s)))ds. (1.12)

As in [16], the following is assumed on the functions, A, E , and G.

A : Ω×Sd → Sd. (1.13)

There exists LA > 0 such that

|A(x, ε1)−A(x, ε2)|Sd ≤ LA|ε1 − ε2|Sd (1.14)

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω. There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA|ε1 − ε2|2Sd (1.15)

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
For any ε ∈ Sd,x →A(x, ε) is measurable on Ω and the mapping x →A(x,0) is

in H.
E : Ω×Sd → Sd. (1.16)

For any ε ∈ Sd,x →A(x, ε) is measurable on Ω and the mapping x →A(x,0) is in
H.
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There exists LE > 0 such that

‖E(x, ε1)− E(x, ε2)‖ ≤ LE(‖ε1 − ε2‖) (1.17)

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
For any ε ∈ Sd,x →E(x, ε) is measurable on Ω and the mapping x →E(x,0) is

in H.
G : Ω×Sd ×Sd ×Sd → Sd. (1.18)

There exists LG > 0 such that

‖G(x, ε′1, ε1, σ1)−G(x, ε′2, ε2, σ2)‖ ≤ LG(‖ε′1 − ε′2‖+ ‖ε1 − ε2‖+ ‖σ1 − σ2‖) (1.19)

for all ε′1, ε
′
2, ε1, ε2, σ1, σ2 ∈ Sd, a.e. x ∈ Ω.

For any ε′, ε, σ ∈ Sd,x →G(x, ε′, ε, σ) is measurable on Ω and the mapping

x →G(x,0,0,0)

is in H. Also assume the following on p and F . The functions p and F are increasing
and

δ2r −K ≤ p(r) ≤ K(1 + r), r ≥ 0, (1.20)

p(r) = 0, r < 0,

F (r) ≤ K(1 + r) r ≥ 0, (1.21)

F (r) = 0 if r < 0,

|µ(r1)− µ(r2)| ≤ Lip(µ)|r1 − r2|, ‖µ‖∞ ≤ C, (1.22)

and for a = F, p, and r1, r2 ≥ 0,

|a(r1)− a(r2)| ≤ K|r1 − r2|. (1.23)

To allow for dependence on x of the functions, p and F ,

x → p(x, r) is measurable on ΓC

x → F (x, r) is measurable on ΓC . (1.24)

However, this dependence on x will be usually ignored for the sake of simpler
notation.

With the above conventions and definitions, the following existence theorem will
be obtained.

Theorem 1.2. Let Ω be a bounded open set in Rd having Lipschitz boundary. Then
there exists a weak solution to the partial differential equation given by (1.1) - (1.3),
the boundary conditions given by (1.4) - (1.10) with the constitutive equation for σ
given in (1.11) under the conditions given in (1.13) - (1.24).

The plan is to show the conditions of a fundamental existence theorem, presented
in the next section are satisfied. First here are some function spaces and definitions
of the same sort used in [16].

Sd denotes the space of second order symmetric tensors on Rd with the usual
Frobenius inner product,

A ·B ≡ AijBij = trace(ABT ).

In which the repeated index summation convention is used as will be the case
whenever convenient. It is always assumed Ω is a bounded open set having Lipschitz
boundary. Define the following spaces.

H ≡{σ = (σij) : σij = σji ∈ L2(Ω)},
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with the norm and inner product given by

‖σ‖2
H ≡

∫
Ω

σijσijdx, (σ, τ)H ≡
∫

Ω

σijτijdx.

Also define
H1 ≡ {u = (ui) : ε(u) ∈ H},

with an inner product given by

(u,v)H1 ≡ (u,v)L2(Ω)d + (ε(u), ε(v))H

2. A fundamental existence theorem

The monograph, [12] describes the theory and application of set valued pseu-
domonotone maps. The definition given there is as follows.

Definition 2.1. A : V → P(V ′), for V a reflexive real Banach space and V ′ the
space of linear functionals, is pseudomonotone if the following conditions hold.

(1) The set Au is non empty, bounded, closed, and convex for all u ∈ V .
(2) If F is a finite dimensional subspace of V , u ∈ F , and if U is a weakly

open set in V ′ such that U ⊇ Au, then there exists δ > 0 such that if
v ∈ B(u, δ) ∩ F , then Av ⊆ U .

(3) If ui ⇀ u in V and if u∗i ∈ Aui is such that

lim sup
i→∞

〈u∗i , ui − u〉V ≤ 0, (2.1)

then for each v ∈ V there exists u∗(v) ∈ Au such that

lim inf
i→∞

〈u∗i , ui − v〉V ≥ 〈u∗(v), u− v〉V . (2.2)

As a special case, the above is implied if the following simpler conditions hold.

Definition 2.2. A : V → P(V ′), for V a reflexive real Banach space and V ′ the
space of bounded linear functionals, is pseudomonotone if the following conditions
hold.

(1) The set Au is non empty, bounded, closed, and convex for all u ∈ V and
the set,

{u∗ : u∗ ∈ Au for u ∈ B}
for B a bounded set is bounded. Simply stated, A is bounded.

(2) If ui ⇀ u in V and if u∗i ∈ Aui is such that

lim sup
i→∞

〈u∗i , ui − u〉V ≤ 0, (2.3)

then for each v ∈ V there exists u∗(v) ∈ Au such that

lim inf
i→∞

〈u∗i , ui − v〉V ≥ 〈u∗(v), u− v〉V . (2.4)

The existence theorems in this paper are obtained from reducing to a situation
in which the following theorem can be applied. [7]

Theorem 2.3. Let V be a real Banach space and let H be a real Hilbert space
containing V such that V is dense in H. Identify H and H ′. Suppose p ≥ 2, and
define the space of solutions as follows:

X ≡
{
u ∈ Lp(0, T ;V ) : u′ ∈ Lp′(0, T ;V ′)

}
‖u‖X ≡ ‖u‖Lp(0,T ;V ) + ‖u′‖Lp′ (0,T ;V ′)
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where the derivative is taken in the sense of V ′ valued distributions,

u′(φ) ≡ −
∫ T

0

φ′(t)u(t)dt

for all φ ∈ C∞c (0, T ), the space of test functions having compact support in (0, T ).
Then suppose

A : X → P(X ′)

is pseudomonotone and for V ≡ Lp(0, T ;V ),

A : V → P(V ′)

is bounded and coercive in the sense that

lim
‖u‖V→∞,u∈X

inf{〈u∗, u〉 : u∗ ∈ Au}
‖u‖V

= ∞

Also let f ∈ V ′. Then there exists a solution to the initial value problem,

u′ +Au 3 f, u(0) = u0 ∈ H.

In the problem considered in this paper, Vt will equal L2(0, t;V ) where V is a
closed subspace of H1 described above which also contains the functions, C∞c (Ω)d.
Specifically,

V ≡ {u ∈ H1 : u = 0 on Γ0}.
If no subscript is placed on V it will mean t = T . The Hilbert space mentioned in
the above will be L2(Ω)d

3. The abstract formulation

In the formula for σ(t) given in (1.11) , denote by v the function, u̇. Then in
terms of these functions,

σ(t) ≡ Aε(v(t)) + Eε(u(t)) +
∫ t

0

G(σ(s), ε(v(s)), ε(u(s)))ds

where

u(t) = u0 +
∫ t

0

v(s)ds (3.1)

and it will always be assumed that u0 ∈ V .
I will also denote by K a constant which is larger than all the Lipschitz constants

which could occur. Thus, for each v ∈ V, σ is a fixed point of the operator,

Ψ(v)σ(t) ≡ Aε(v(t)) + Eε(u(t)) +
∫ t

0

G(σ(s), ε(v(s)), ε(u(s)))ds (3.2)

Lemma 3.1. For each v ∈ V, there exists a unique fixed point σ(t) ∈ L2(0, T ;H)
for Ψ(v). Also, letting σi be the fixed point corresponding to vi,

|σ1(t)− σ2(t)|H ≤ K|ε(v1)(t)− ε(v2(t))|H +K

∫ t

0

|ε(v1(s))− ε(v2(s))|Hds (3.3)

It also follows there exist constants δ, C and K such that

(σ, ε(v))H ≥ δ2|ε(v(t))|2H − C −K

∫ t

0

|ε(v(s))|2Hds. (3.4)
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Letting σi be the fixed point corresponding to vi, there exist constants, δ,K such
that

(σ1(t)− σ2(t), ε(v1(t))− ε(v2(t)))H

≥ δ2|ε(v1(t))− ε(v2(t))|2H −K

∫ t

0

|ε(v1(s))− ε(v2(s))|2Hds.
(3.5)

Proof. Consider the equivalent norm on L2(0, T ;H),

‖σ‖2
λ ≡

∫ T

0

e−λt‖σ(t)‖2dt

I will show if λ is large enough, Ψ(v) is a contraction map. Let σi ∈ L2(0, T ;H),
i = 1, 2.

‖Ψ(v)σ1 −Ψ(v)σ2‖2
λ

≡
∫ T

0

e−λt
∥∥∥∫ t

0

G(σ1(s), ε(v(s)), ε(u(s)))− G(σ2(s), ε(v(s)), ε(u(s)))ds
∥∥∥2

dt

≤ K

∫ T

0

e−λtt

∫ t

0

‖σ1(s)− σ2(s)‖2dsdt

= K

∫ T

0

‖σ1(s)− σ2(s)‖2

∫ T

s

te−λtdtds

=
∫ T

0

‖σ1(s)− σ2(s)‖2e−λs

∫ T

s

teλ(s−t)dtds

≤ T (
K

λ
)
∫ T

0

‖σ1(s)− σ2(s)||2e−λsds

=
TK

λ
‖σ1(s)− σ2(s)‖2

λ

Thus there exists a unique fixed point for Ψ(v) as claimed.
Now consider (3.3). From the description of σ in (1.12), it follows there is a

suitable constant, K such that

|σ1(t)− σ2(t)|H ≤ K(|ε(v1(t))− ε(v2(t))|H +
∫ t

0

|ε(v1(s))− ε(v2(s))|Hds)

+K

∫ t

0

|σ1(s)− σ2(s)|Hds

and now the desired result follows from Gronwall’s inequality and adjusting con-
stants.

Consider (3.4). First, it follows from the description of σ in (1.12) and the as-
sumption that x →G(x,0,0,0) is in H that for some constants, C and K depending
on the Lipschitz constants for G and the initial data,

|σ(t)|2H ≤ K
(
|ε(v(t))|2H + C +

∫ t

0

|ε(v(s))|2Hds
)

+ C +K
( ∫ t

0

|σ(s)|2H + |ε(v(s))|2Hds
)

and after adjusting the constants and using Gronwall’s inequality,

|σ(t)|2H ≤ C +K|ε(v(t))|2H +K

∫ t

0

|ε(v(s))|2Hds. (3.6)
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Now from (1.12) and the assumptions on A, E , G, there exist constants δ, C,K such
that

(σ, ε(v))H ≥ δ2|ε(v(t))|2H −K|ε(u(t))|2H −K

∫ t

0

|σ(s)|2Hds

−K

∫ t

0

|ε(v(s))|2Hds−K

∫ t

0

|ε(u(s))|2Hds− C

and so, adjusting these constants, yields

(σ, ε(v))H ≥ δ2|ε(v(t))|2H −K

∫ t

0

|ε(v(s))|2Hds−K

∫ t

0

|σ(s)|2Hds− C.

Now from (3.6), a further adjusting of constants yields

(σ(t), ε(v(t)))H ≥ δ2|ε(v(t))|2H −K

∫ t

0

|ε(v(s))|2Hds− C

Finally, let σi correspond to vi. Then from the properties of A, E ,G, it follows there
exists a constant, K such that

|σ1(t)− σ2(t)|H ≤ K
(
|ε(v1(t))− ε(v2(t))|H +

∫ t

0

|ε(v1(s))− ε(v2(s))|Hds
)

+K

∫ t

0

|σ1(s)− σ2(s)|Hds

and so by Gronwall’s inequality, it follows that after adjusting the constant,

|σ1(t)− σ2(t)|H ≤ K
(
|ε(v1(t))− ε(v2(t))|H +

∫ t

0

|ε(v1(s))− ε(v2(s))|Hds
)

which implies that on adjusting the constant again,

|σ1(t)− σ2(t)|2H ≤ K
(
|ε(v1(t))− ε(v2(t))|2H +

∫ t

0

|ε(v1(s))− ε(v2(s))|2Hds
)
. (3.7)

Now

(σ1(t)− σ2(t), ε(v1(t))− ε(v2(t)))H

≥ δ2|ε(v1(t))− ε(v2(t))|2H −K

∫ t

0

|ε(v1(s))− ε(v2(s))|2Hds

−K

∫ t

0

|σ1(s)− σ2(s)|2Hds

which, from (3.7), is greater than or equal to

δ2|ε(v1(t))− ε(v2(t))|2H −K

∫ t

0

|ε(v1(s))− ε(v2(s))|2Hds

−K

∫ t

0

∫ s

0

|ε(v1(r))− ε(v2(r))|2Hdrds

and adjusting the constants, is greater than or equal to

δ2|ε(v1(t))− ε(v2(t))|2H −K

∫ t

0

|ε(v1(s))− ε(v2(s))|2Hds.

This proves the lemma. �
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For the rest of this article, σ will be this unique fixed point satisfying

σ(t) ≡ Aε(v(t)) + Eε(u(t)) +
∫ t

0

G(σ(s), ε(v(s)), ε(u(s)))ds. (3.8)

Recall
V ≡ {u ∈ H1 : u = 0 on Γ0}

and f ∈ V ′ is defined by

〈f ,w〉 ≡
∫ T

0

(fb,w)L2(Ω)dt+
∫ T

0

(fn,w)L2(ΓN )dt (3.9)

where fb ∈ L2(0, T ;L2(Ω)d) and fn ∈ L2(0, T ;L2(Ω)d). Also, I will continue to use
the convention that v = u̇ as described above.

Now let w ∈ V and consider the term, div(σ). Then from the boundary condi-
tions, ∫

Ω

div(σ) ·wdx = −
∫

Ω

σ · ε(w)dx+
∫

ΓN

fn ·wdα+
∫

ΓC

σn ·wdα

= −
∫

Ω

σ · ε(w)dx+
∫

ΓN

fn ·wdα+
∫

ΓC

σnn ·wdα

+
∫

ΓC

σT ·wdα

= −
∫

Ω

σ · ε(w)dx+
∫

ΓN

fn ·wdα

−
∫

ΓC

p((un − g)+)Cnn ·wdα+
∫

ΓC

σT ·wT dα

Let γT denote the operator

γT w ≡ (γw)T = γw − γ(w · n)n

where γ is the trace map on the boundary. Thus γT gives the tangential value of
w on ∂Ω. Then from Lemma (1.1), the boundary condition for the friction on ΓC

is of the form

σT ∈ −γ∗TF ((un − g)+)µ(|vT − U̇T |)∂η(vT − U̇T )

where η(x) ≡ |x| for x ∈ Rd. Now define an operator, Σ : V → V ′ as

〈Σv,w〉V ≡
∫ T

0

∫
Ω

σ · ε(w)dxdt

where σ satisfies (3.8). Thus from Lemma (3.1)

〈Σv,v〉V ≥
∫ T

0

(δ2|ε(v(t))|2H − C −K

∫ t

0

|ε(v(s))|2H)ds

= δ2
∫ T

0

|ε(v(t))|2Hdt−K

∫ T

0

∫ t

0

|ε(v(s))|2Hds dt− C

(3.10)

after adjusting the constants.
Also let Q : V → P(V) be defined by saying that v∗ ∈ Qv means there exists

z ∈ L∞(0, T ;L∞(ΓC)d) such that for all w ∈ V,∫ T

0

∫
ΓC

z ·wT dα dt ≤
∫ T

0

∫
ΓC

|vT − U̇T + wT | − |vT − U̇T |dα dt. (3.11)



10 K. L. KUTTLER EJDE-2007/75

and

〈v∗,w〉 =
∫ T

0

∫
ΓC

F ((un − g)+)µ(|vT − U̇T |)z ·wT dα dt (3.12)

The following lemma will be useful later.

Lemma 3.2. In case the function F is bounded, there exists a constant, K such
that if v∗i ∈ Qvi for i = 1, 2,

〈v∗1 − v∗2,v1 − v2〉Vt ≥ −K
∫ t

0

||v1(s)− v2(s)||2Uds

where U is a Sobolev space with the property that V embeds compactly into U and
the trace map from U to L2(ΓC)d is continuous.

Proof. Let (vi, zi) for i = 1, 2 be such that v∗i ∈ Qvi is given by (3.12). Then

〈v∗1 − v∗2,v1 − v2〉Vt

=
∫ t

0

∫
ΓC

[
F ((u1n − g)+)µ(|v1T − U̇T |)z1

− F ((u2n − g)+)µ(|v2T − U̇T |)z2

]
· (v1 − v2)T dα ds

=
∫ t

0

∫
ΓC

F ((u1n − g)+)µ(|v1T − U̇T |)(z1 − z2) · (v1 − v2)T dα ds

+
∫ t

0

∫
ΓC

(
F ((u1n − g)+)µ(|v1T − U̇T |)

− F ((u2n − g)+)µ(|v2T − U̇T |)
)
z2 · (v1 − v2)T dα ds

(3.13)

Now the expression in the first term of the right hand side is nonnegative because
of (3.11). Therefore, 〈v∗1 − v∗2,v1 − v2〉V is bounded below by the expression in
(3.13). The absolute value of this is bounded above by an expression of the form

K

∫ t

0

‖u1(s)− u2(s)‖U‖v1(s)− v2(s)‖Uds+

K

∫ t

0

‖v1(s)− v2(s)‖2
Uds.

Now adjusting the constants, this is dominated by an expression of the form

K

∫ t

0

‖v1(s)− v2(s)‖2
Uds

which proves the lemma. �

Finally, define P : Vt→ V ′t by

〈Pu,w〉V ≡
∫ t

0

∫
ΓC

p((un − g)+)Cnn ·wdα.

Thus, letting J ′(r) ≡ Cnp(r+),

〈Pu,v〉V =
∫ t

0

∫
ΓC

p((un − g)+)Cnvndα

=
∫

ΓC

(J(un(t)− g)− J(u0n − g))dα ≥ C
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where C depends on u0n. Also from the assumptions on p, for each ε > 0 there
exists a constant, Kε such that

|〈Pu1−Pu2,v1−v2〉Vt
| ≤ ε

∫ t

0

‖v1−v2‖2
V ds+Kε

∫ t

0

∫ s

0

‖v1−v2‖2
V drds (3.14)

4. Existence and uniqueness for an abstract formulation

It follows an abstract formulation of the above initial boundary value problem,
(1.1) - (1.10) where the stress is given by (3.8) is

v′ + Σv +Qv + Pu 3 f in V ′, v(0) = v0 ∈ L2(Ω)d. (4.1)

Solutions to this abstract inclusion are the weak solutions of Theorem 1.2. From
now on a prime will denote the weak time derivative in the sense of V ′ valued
distributions.

Theorem 4.1. Let u0 ∈ V and let v0 ∈ L2(Ω)d. Then there exists a solution to
(4.1). This solution satisfies

v ∈ V, v ∈ C(0, T ;L2(Ω)d).

Proof. I will not consider (4.1) directly. Instead, it will be reformulated in terms of
a new dependent variable, vλ defined by

eλtvλ(t) ≡ v(t)

because the problem in terms of this new dependent variable will satisfy the hy-
potheses of the Theorem 2.3 stated above.

Then with this definition, v is a solution of (4.1) if and only if vλ is a solution
of

v′λ + λvλ + e−λ(·)Σ(eλ(·)vλ) + e−λ(·)Q(eλ(·)vλ) + e−λ(·)P (u) 3 e−λ(·)f in V ′,
vλ(0) = v0.

(4.2)
From (3.4) and the definition of Σ,

〈e−λ(·)Σ(eλ(·)vλ),vλ〉V
= 〈e−2λ(·)Σ(eλ(·)vλ), eλ(·)vλ〉V

≥
∫ T

0

e−2λt
(
e2λtδ2|ε(vλ(t))|2H − C −K

∫ t

0

e2λs|ε(vλ(s))|2Hds
)
dt

≥ δ2‖ε(vλ)‖2
L2(0,T ;H) − C −K

∫ T

0

∫ t

0

e−2λ(t−s)|ε(vλ(s))|2Hdsdt

≥ δ2‖ε(vλ)‖2
L2(0,T ;H) − C −K

∫ T

0

∫ T

s

e−2λ(t−s)|ε(vλ(s))|2Hdtds

≥ δ2‖ε(vλ)‖2
L2(0,T ;H) − C −K

1
2λ

∫ T

0

|ε(vλ(s))|2Hds

≥ δ2‖vλ‖2
V − δ2|vλ|2L2(0,T ;L2(Ω)d) − C −K

1
2λ
‖vλ‖2

V

Thus, if λ is large enough, the above expression is greater than or equal to

(δ2/2)‖vλ||2V − C − δ2|vλ|2L2(0,T ;L2(Ω)d).
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From the assumptions on F, µ,

|〈e−λ(·)Q(eλ(·)vλ),vλ〉V |

≤ C

∫ T

0

e−λt‖u(t)‖V ‖vλ(t)‖V dt

≤ C +
∫ T

0

e−λt

∫ t

0

‖vλ(s)‖ds‖vλ(t)‖V dt

≤ C + (δ2/16)‖vλ‖2
V + Cδ

∫ T

0

(
e−λt

∫ t

0

‖vλ(s)‖ds
)2

dt

≤ C + (δ2/16)‖vλ‖2
V + Cδ

∫ T

0

e−λtt

∫ t

0

‖vλ(s)||2dsdt

= C + (δ2/16)‖vλ||2V + Cδ

∫ T

0

∫ T

s

e−λttdt‖vλ(s)‖2ds

≤ C + (δ2/16)‖vλ‖2
V + CδT (

1
λ

)
∫ T

0

‖vλ(s)‖2ds

≤ C + (δ2/8)‖vλ‖2
V

provided λ is large enough. Next using the growth condition for p and adjusting
the constants as the computation proceeds,

|〈e−λ(·)P (u),vλ〉V | = |
∫ T

0

e−λt

∫
ΓC

p((un − g)+)Cnvλndα dt|

≤ CnK

∫ T

0

e−λt

∫
ΓC

(1 + |un(t)|)|vλn(t)|dα dt

≤ (δ2/16)‖vλ‖2
V + Cδ

∫ T

0

(e−λt

∫
ΓC

(1 + |un(t)|)dα)2dt

≤ (δ2/16)‖vλ‖2
V + Cδ

∫ T

0

e−2λt

∫
ΓC

(1 + |un(t)|2)dα dt

≤ (δ2/16)‖vλ‖2
V + Cδ

∫ T

0

e−2λt(1 + ‖u(t)‖2
V )dt

≤ (δ2/16)‖vλ‖2
V + Cδ

∫ T

0

e−2λt

∫ t

0

‖v(s)‖2dsdt+ Cδ/λ

≤ (δ2/16)‖vλ‖2
V + Cδ/λ

∫ T

0

||v(s)‖2ds+ Cδ/λ

≤ (δ2/8)‖vλ‖2
V + 1

whenever λ is large enough. Letting

Avλ ≡ λvλ + e−λ(·)Σ(eλ(·)vλ) + e−λ(·)Q(eλ(·)vλ) + e−λ(·)P (u)

It follows (4.2) is of the form

v′λ +Avλ 3 e−λ(·)f (4.3)

and A : V → P(V) is coercive as described in Theorem 2.3 whenever λ is sufficiently
large.
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It is clear from the definition that A is bounded. I need to verify A is pseu-
domonotone and then the existence of a solution will follow from Theorem 2.3.
Letting ui correspond to vi as described above and then vλi also be given as
above, it follows from (3.5)〈
e−λ(·)Σ(eλ(·)vλ1) + e−λ(·)P (u1)− (e−λ(·)Σ(eλ(·)vλ1) + e−λ(·)P (u1)),vλ1 − vλ2

〉
V

≥
∫ T

0

δ2|ε(vλ1(t))− ε(vλ2(t))|2H −Ke−2λt

∫ t

0

e2λs|ε(vλ1(s))− ε(vλ2(s))|2Hds dt

−K

∫ T

0

e−λt

∫
ΓC

|u1n − u2n||vλ1n − vλ2n|dα dt

Using the continuity of the trace maps, this dominates∫ T

0

δ2|ε(vλ1(t))− ε(vλ2(t))|2H −Ke−2λt

∫ t

0

e2λs|ε(vλ1(s))− ε(vλ2(s))|2Hds dt

− Cδ

∫ T

0

e−2λt‖u1 − u2‖2
V dt− (δ2/2)

∫ T

0

‖vλ1−vλ2‖2
V dt

≥ δ2/2
∫ T

0

‖vλ1−vλ2‖2
V −Ke−2λt

∫ t

0

e2λs|ε(vλ1(s))− ε(vλ2(s))|2Hdsdt

− δ2/2
∫ T

0

|vλ1−vλ2|2L2(Ω)ddt− Cδ

∫ T

0

e−2λt

∫ t

0

e2λs‖vλ1−vλ2‖2dsdt

≥ δ2/2
∫ T

0

‖vλ1−vλ2‖2
V dt−

K + Cδ

λ

∫ T

0

‖vλ1−vλ2‖2dt

− δ2

2

∫ T

0

|vλ1−vλ2|2L2(Ω)ddt

It follows that for all λ large enough, Bvλ given by

Bvλ ≡ λvλ + e−λ(·)Σ(eλ(·)vλ) + e−λ(·)P (u) (4.4)

is monotone and bounded as a map from V to V ′. It is also clearly hemicon-
tinuous, meaning it is continuous on line segments. Therefore, this operator is
pseudomonotone. Since A = B + e−λ(·)Q, it only remains to verify e−λ(·)Q is also
pseudomonotone.

This operator is clearly bounded. It only remains to verify the pseudomonotone
condition as a map from the space of solutions, X described above to P(X). To do
this, it is helpful to use the following two interesting Theorems found in Lions [10]
and Seidman [14].

Theorem 4.2. If p ≥ 1, q > 1, and W ⊆ U ⊆ Y where the inclusion map of W
into U is compact and the inclusion map of U into Y is continuous, let

S = {u ∈ Lp(0, T ;W ) : u′ ∈ Lq(0, T ;Y ) and ‖u‖Lp(0,T ;W ) + ‖u′‖Lq(0,T ;Y ) < R}

Then S is pre compact in Lp(0, T ;U).

Theorem 4.3. Let W,U , and Y be as in Theorem 4.2 and let

S = {u : ‖u(t)‖W + ‖u′‖Lq(0,T ;Y ) ≤ R for t ∈ [0, T ]}

for q > 1. Then S is pre compact in C(0, T ;U).
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It suffices to verify that if vk converges to v weakly in X and if v∗k ∈ Qvk then
for any w ∈ X, there exists v∗(w) ∈ Qv such that

lim inf
k→∞

〈v∗k,vk −w〉 ≥ 〈v∗(w),v −w〉.

This will imply the same is true of e−λ(·)Qeλ(·) which will show e−λ(·)Qeλ(·) is
pseudomonotone on X. Suppose then that vk converges weakly to v in X and that
v∗k ∈ Qvk and let zk be the element of ∂η(vT − U̇T ) for η(x) ≡ |x| which satisfies

〈v∗k,w〉 =
∫ T

0

∫
ΓC

F ((ukn − g)+)µ(|vkT − U̇T |)zk ·wT dα dt.

I need to verify that for all w ∈ X there exists v∗(w) ∈ Qv, such that

lim inf
k→∞

〈v∗k,vk −w〉 ≥ 〈v∗(w),v −w〉

Suppose this does not happen. Then there exists a sequence as described above
and w ∈ X such that for every v∗ ∈ Qv,

lim inf
k→∞

〈v∗k,vk −w〉 < 〈v∗,v −w〉 (4.5)

Since {zk} is bounded in L∞(0, T ;L∞(ΓC)d) it has a subsequence which con-
verges weak ∗ to z ∈ L∞(0, T ;L∞(ΓC)d). Let U be a Sobolev space such that
V embeds compactly into U and the trace map from U to L2(ΓC)d is continuous.
By Theorem 4.3 there is a further subsequence such that uk converges strongly
to u in C(0, T ;U) and by Theorem 4.2 there is a further subsequence such that
vk converges strongly to v in L2(0, T ;U). Also v∗k is bounded in V ′ so a further
subsequence converges weak ∗ to v∗. Now using this final subsequence,∫ T

0

∫
ΓC

zk ·wT dα dt ≤
∫ T

0

∫
ΓC

|vkT − U̇T + wT | − |vkT − U̇T |dα dt.

and so, passing to the limit yields∫ T

0

∫
ΓC

z ·wT dα dt ≤
∫ T

0

∫
ΓC

|vT − U̇T + wT | − |vT − U̇T |dα dt.

and

〈v∗k,vk −w〉 =
∫ T

0

∫
ΓC

F ((ukn − g)+)µ(|vkT − U̇T |)zk · (vk −w)T dα dt

so passing to a limit in this expression yields

〈v∗,v −w〉 =
∫ T

0

∫
ΓC

F ((un − g)+)µ(|vT − U̇T |)z·(v −w)T dα dt

showing that
lim

k→∞
〈v∗k,vk −w〉 = 〈v∗,v −w〉

and that v∗ ∈ Qv contradicting (4.5). This shows A satisfies all the conditions of
Theorem 2.3 and this proves Theorem 4.1. �

Next consider the question of uniqueness.

Theorem 4.4. In the case that the function F is bounded, the solution to Theorem
4.1 is unique.
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Proof. Recall the abstract equation of Theorem 4.1 is

v′ + Σv +Qv + Pu 3 f in V ′, v(0) = v0 ∈ L2(Ω)d

where the operators are defined above. Suppose vi each are solutions for i = 1, 2
and denote by v∗i ∈ Qvi that which makes the above inclusion an equality. Then
it follows from Lemma (3.2) there exists a constant, K such that

〈v∗1 − v∗2,v1 − v2〉Vt ≥ −K
∫ t

0

||v1(s)− v2(s)||2Uds

where U is a Sobolev space such that the embedding of V into U is compact. From
(3.14),

〈Pu1 − Pu2,v1 − v2〉Vt
≥ −ε

∫ t

0

||v1 − v2‖2
V ds−Kε

∫ t

0

∫ s

0

‖v1 − v2‖2
V dr ds

Also from (3.5) it follows

〈Σv1 − Σv2,v1 − v2〉Vt
≥ δ2

∫ t

0

‖v1(t)− v2(t)‖2
V ds−K

∫ t

0

∫ s

0

‖v1 − v2‖2
V drds.

Letting ε < δ2/2 and adjusting the constants, it follows

1
2
|v1(t)− v2(t)|2L2(Ω)d +

δ2

2

∫ t

0

‖v1(t)− v2(t)‖2
V ds

≤ Kε

∫ t

0

∫ s

0

‖v1 − v2‖2
V drds+K

∫ t

0

‖v1(s)− v2(s)‖2
Uds

(4.6)

Now the compactness of the embedding of V into U implies for every ε > 0 there
exists a constant Cε such that

‖w‖2
U ≤ ε||w‖2

V + Cε|w|2L2(Ω)d .

Choosing ε small enough, (4.6) implies

1
2
|v1(t)− v2(t)|2L2(Ω)d +

δ2

4

∫ t

0

‖v1(t)− v2(t)‖2
V ds

≤ Kε

∫ t

0

∫ s

0

‖v1 − v2‖2
V drds+Kε

∫ t

0

|v1(s)− v2(s)|2L2(Ω)dds

and now the conclusion that v1 = v2 follows from Gronwall’s inequality. This
proves the theorem. �

5. The case of discontinuous µ

Assuming F is bounded, it is possible, as in [7, 9] to extend the existence part
of the above results to the case where the coefficient of friction, µ is discontinuous.
This is the situation discussed in every elementary physics book where static friction
is greater than sliding friction. Specifically, assume the function µ, has a jump
discontinuity at 0, becoming smaller when the sliding speed is positive. Because
of the discontinuity of µ the definition of the friction operator, Q will be modified
slightly as follows: v∗ ∈ Qv will mean

〈v∗,w〉V ≤
∫ T

0

∫
ΓC

F ((un − g)+)ψ ·
[
|vT − U̇T + wT | − |vT − U̇T |

]
dα dt
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where ψ is in the graph of µ a.e. (t,x) where µ is the coefficient of friction, assumed
to be decreasing and with a jump at 0. The question of uniqueness is open but the
existence theorem is the following.

Theorem 5.1. Let u0 ∈ V , v0 ∈ L2(Ω)d. Also let µ(0+) < µ(0) and µ is de-
creasing and Lipschitz continuous on (0,∞). Then there exists a solution, v, to the
following problem.

v ∈ V, v′ ∈ V ′, (un − g)+ ∈ L∞(0, T ;L2(ΓC)),

v′ + Σv + P (u) +Q(v) 3 f in V ′,

v(0) = v0, u(t) = u0 +
∫ t

0

v(s)ds,

where v∗ ∈ Q(v) means

〈v∗,w〉V ≤
∫ T

0

∫
ΓC

F ((un − g)+)ψ
[
|vT − U̇T + wT | − |vT − U̇T |

]
dα dt

where for a.e. (t,x),
ψ(t,x) ∈ [µ(0+), µ(0)]

whenever (vT − U̇T )(t,x) = 0 and if (vT − U̇T )(t,x) 6= 0, then for a.e. (t,x),

ψ(t,x) = µ(|vT − U̇T |(t,x)).

This solution is the weak limit in X of solutions to the friction contact problem in
which the coefficient of friction is Lipschitz continuous.

Proof. In the following argument, it is assumed that whenever necessary, the func-
tions involved are product measurable representatives.

Let µε(r) = µ(r) for all r > ε, µε a decreasing function, and µε is Lipschitz
continuous. Thus for r > 0,

lim
ε→0

µε(r) = µ(r).

See the following picture which describes the situation.

d
µ(0)s

µ(r)

L
L
LL

ε

Then let Qε be defined as before but with µε in place of µ. Thus by Theorems
4.1 and 4.4, there exists a unique solution, vε to the abstract problem

v′ε + Σvε +Qεvε + Puε3 f in V ′, vε(0) = v0 ∈ L2(Ω)d.

As before, it is convenient to consider an equivalent problem in which the dependent
variable, vελ is defined by

vελ(t)eλt = vε(t).
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for λ large and positive. As before, this yields

v′ελ + λvελ + e−λ(·)Σ(eλ(·)vελ) + e−λ(·)Qε(eλ(·)vελ) + e−λ(·)P (uε) 3 e−λ(·)f in V ′,
vελ(0) = v0

(5.1)
and the operator B : V → V ′ given in (4.4) is pseudomonotone, in fact monotone
bounded and hemicontinuous while the operator Aε of (4.3) defined by

〈Aεv,v〉V = 〈λv + e−λ(·)Σ(eλ(·)v) + e−λ(·)Qε(eλ(·)v) + e−λ(·)P (u),v〉V
is coercive. Furthermore, the coercivity is independent of ε in the sense that

lim
‖v‖V→∞

〈Aεv,v〉V
‖v‖V

= ∞

independent of ε > 0.
Therefore, there exists a constant C independent of ε such that for vελ the

solution to (5.1),
‖vελ‖V ≤ C.

Since the various operators in (5.1) are bounded, it follows {vελ} is also bounded
in X, the space of solutions defined above. It follows there exists a subsequence,
ε → 0, still denoted by {vελ} converging weakly to vλ ∈ X. Thus (5.1) is of the
form

v′ελ +Bvελ + e−λ(·)Qε(eλ(·)vελ) 3 e−λ(·)f in V ′, vελ(0) = v0 (5.2)
where B is pseudomonotone on V. Let v∗ελ ∈ e−λ(·)Qε(eλ(·)vελ) be such that
equality holds in the above inclusion. Letting vε ≡ eλ(·)vελ and v∗ε ≡ eλ(·)v∗ελ, it
follows

v∗ε ∈ Qε(vε).
Then taking a further subsequence, it can be assumed v∗ε → v∗ ∈ X ′. Let zε be
the element of L∞(0, T ;L∞(Ω)d) such that

〈v∗ε ,w〉V =
∫ T

0

∫
ΓC

F ((uεn − g)+)µε(|vεT − U̇T |)zε ·wT dα dt (5.3)

and for all w ∈ V,∫ T

0

∫
ΓC

zε ·wT dα dt ≤
∫ T

0

∫
ΓC

|vεT − U̇T + wT | − |vεT − U̇T |dα dt. (5.4)

By Theorems 4.2 and 4.3, a subsequence satisfies

uεn(t) → un(t)

uniformly in L2(ΓC) and so

F ((uεn − g)+) → F ((un − g)+) in L2(ΓC)

uniformly which implies a subsequence converges pointwise a.e. Taking a further
subsequence,

µε(|vεT − U̇T |) → ψ weak ∗ in L∞([0, T ]× Ω).

Also, vε → v in L2(0, T ;L2(ΓC)d) and so a subsequence has the property that
the convergence is also pointwise a.e. If (vT − U̇T )(t,x) > 0, then for all ε small
enough, (vεT − U̇T )(t,x) is bounded away from 0 also and so for such (t,x),

lim
ε→0

µε(|vεT − U̇T |) = µ(|vT − U̇T |).
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On the other hand, if (vT − U̇T )(t,x) = 0 then for η any small positive number it
follows that for all ε small enough,

µε(|vεT − U̇T |(t,x)) ∈ [µ(0+)− η, µ(0)]

Thus if E = (vT − U̇T )−1(0),

(α×m)(E)(µ(0+)− η) ≤
∫ T

0

∫
ΓC

XEψdα dt ≤ (α×m)(E)µ(0)

which requires ψ(t,x) ∈ [(µ(0+)− η), µ(0)] a.e. Since η is arbitrary, it follows that
for these values of (t,x), ψ(t,x) ∈ [µ(0+), µ(0)] a.e. Thus for a.e. (t,x), ψ(t,x) is
in the graph of (t,x) → µ(|vT − U̇T |).

Now consider (5.3). It follows

〈v∗ε ,w〉V =
∫ T

0

∫
ΓC

F ((uεn − g)+)µε(|vεT − U̇T |)zε ·wT dα dt

≤
∫ T

0

∫
ΓC

F ((uεn − g)+)µε(|vεT − U̇T |)

·
[
|vεT − U̇T + wT | − |vεT − U̇T |

]
dα dt

(5.5)

Therefore, passing to the limit as ε→ 0 in the above, it follows

〈v∗,w〉V ≤
∫ T

0

∫
ΓC

F ((un − g)+)ψ(|vT − U̇T + wT | − |vT − U̇T |)dα dt (5.6)

Note the strong convergence properties of {vεT } also imply

lim sup
ε→0

〈v∗ε ,vε − v〉V ≤ 0.

To see this consider (5.5) with w replaced with vε − v. However, you can also
replace w with v − vε and conclude

0 ≥ lim sup
ε→0

〈v∗ε ,v − vε〉V = − lim inf
ε→0

〈v∗ε ,vε − v〉V

so that
0 ≤ lim inf

ε→0
〈v∗ε ,vε − v〉V ≤ lim sup

ε→0
〈v∗ε ,vε − v〉V ≤ 0. (5.7)

Now recall
v′ελ +Bvελ + v∗ελ = e−λ(·)f in V ′, vελ(0) = v0 (5.8)

where
v∗ελ ∈ e−λ(·)Qε(eλ(·)vελ)

Hence letting v∗λ ≡ e−λ(·)v∗ where v∗ is from (5.6) and e−λ(·)v ≡ vλ, it follows
v∗λ ∈ e−λ(·)Q(eλ(·)vλ), where the following limits hold.

v∗ελ → v∗λ weak ∗ in V ′

vελ → vλ weakly in V
v′ελ → v′λ weak ∗ in V ′

Taking another subsequence if necessary, it can also be assumed

Bvελ → g weak ∗ in V ′.
Passing to a limit in (5.8),

v′λ + g + v∗λ = e−λ(·)f in V ′, vλ(0) = v0
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and it only remains to identify g with Bvλ. From (5.8),(
〈v′ελ − v′λ,vελ − vλ〉+ 〈v′λ,vελ − vλ〉+ 〈Bvελ,vελ − vλ〉+ 〈v∗ελ,vελ − vλ〉

)
= 〈e−λ(·)f ,vελ − vλ〉

and so

〈v′λ,vελ − vλ〉+ 〈Bvελ,vελ − vλ〉+ 〈v∗ελ,vελ − vλ〉 ≤ 〈e−λ(·)f ,vελ − vλ〉.
Hence from (5.7),

lim sup
ε→0

(〈v′λ,vελ − vλ〉+ 〈Bvελ,vελ − vλ〉+ 〈v∗ελ,vελ − vλ〉)

= lim sup
ε→0

〈Bvελ,vελ − vλ〉 ≤ 0.

which implies

lim inf
ε→0

〈Bvελ,vελ − vλ〉 ≥ 〈Bvλ,vλ − vλ〉 = 0

and so limε→0〈Bvελ,vελ−vλ〉 = 0. Since B is pseudomonotone, it follows that for
all w ∈ V,

lim inf
ε→0

〈Bvελ,vελ −w〉 = lim inf
ε→0

(〈Bvελ,vελ − vλ〉+ 〈Bvελ,vλ −w〉)

= lim inf
ε→0

〈Bvελ,vλ −w〉 = 〈g,vλ −w〉

≥ 〈Bvλ,vλ −w〉
and so

〈g,vλ −w〉 ≥ 〈Bvλ,vλ −w〉
and since w was arbitrary, this shows g = Bvλ. It follows there exists a solution
to

v′λ +Bvλ + e−λ(·)Qeλ(·)vλ = e−λ(·)f in V ′, vλ(0) = v0

which implies there exists a solution to

v′ + Σv + P (u) +Q(v) 3 f , v(0) = v0.

This proves the theorem. �
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