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BLOWUP AND ASYMPTOTIC STABILITY OF WEAK
SOLUTIONS TO WAVE EQUATIONS WITH NONLINEAR

DEGENERATE DAMPING AND SOURCE TERMS

QINGYING HU, HONGWEI ZHANG

Abstract. This article concerns the blow-up and asymptotic stability of weak

solutions to the wave equation

utt −∆u + |u|kj′(ut) = |u|p−1u in Ω× (0, T ),

where p > 1 and j′ denotes the derivative of a C1 convex and real value

function j. We prove that every weak solution is asymptotically stability, for

every m such that 0 < m < 1, p < k + m and the the initial energy is small;
the solutions blows up in finite time, whenever p > k + m and the initial data

is positive, but appropriately bounded.

1. Introduction

In this article we study the initial boundary value problem

utt −∆u + |u|kj′(ut) = |u|p−1u, in Ω× (0, T ), (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (1.2)

u(x, t) = 0, on Γ× (0, T ), (1.3)

where Ω is a bounded domain in Rn with smooth boundary Γ and j(s) is a C1 convex
real function defined on R, and j′ denotes the derivative of j [1]. Furthermore, the
following assumptions on the convex function j and the parameters k,m, p are
imposed throughout the paper.

Assumptions.

(A1) k, m, p > 0, and k < n
n−2 , p + 1 < 2n

n−2 if n ≥ 3;
(A2) There exist positive constants C,C0, C1 such that for all s, v ∈ R, j(s) ≥

C|s|m+1, |j′(s)| ≤ C0|s|m, (j′(s)− j′(v))(s− v) ≥ C1|s− v|m+1.
The partial differential equation (1.1) is a special case of the prototype evolution

equation
utt −∆u + Q(x, t, u, ut) = f(x, u), (1.4)
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where the nonlinearities satisfy the structural conditions vQ(x, t, u, v) ≥ 0,

Q(x, t, u, 0) = f(x, 0) = 0

and f(x, u) ∼ |u|p−1u for large |u|. Various special cases of (1.4) arise in many
contexts, for instance, in classical mechanics, fluid dynamics, quantum field theory,
see [6] and [18].

A special case of (1.1), is the following well known polynomially damped wave
equation studied extensively in the literature(see for instance [11, 17]),

utt −∆u + |u|k|ut|m−1ut = |u|p−1u. (1.5)

Indeed, by taking j(s) = 1
m+1 |s|

m+1 we easily verify that Assumption (A1) and
(A2) is satisfied. It is easy to see in this case that equation (1.1) is equivalent to
(1.5). It is worth noting that there has been an extensive body of work on the global
existence and nonexistence for the equation (1.1) with k = 0, see, for example [4]-
[9], [12]-[16],[18, 2] and the references therein. One of the pioneering papers in this
area was by Lions and Strauss [10]. We also note here the work of Georgiev and
Todorova [5] and Levine and Serrin [7].

The situation, however, is different when the damping is degenerate. From the
applications point of view degenerate problem of this type arise quite often in spe-
cific physical contexts: for example when the friction is modulated by the strain.
However, from the mathematical point of view this leads to that some standard
arguments to establish the existence of solutions to problem (1.1)-(1.3) is not ap-
plicable. These difficulties makes the problem interesting and the analysis more
subtle. The problem with degenerate damping has been first addressed in Levine
and Serrin [7], where the global nonexistence of solutions was shown for the case
k+m < p under several other restrictions imposed on the parameters n, k,m, p and
the negative initial energy. However Levine and Serrin [7] provide only negative
results (blow up of solutions in finite time if initial energy is negative) without any
assurance that a relevant local solutions does indeed exist. Pitts and Rammaha
[11] established local and global (when m + k ≥ p) existence and uniqueness for
the case of sub-linear damping, i.e., m < 1. In addition, the blow up of solutions
(when m + k < p and the negative initial energy) is also proved in [11] for the
relevant class of solutions. Barbu, Lasiecka and Rammaha [1, 2] introduced the
suitable concept of solution, provided results on the existence and uniqueness of
various types of solutions such as generalized solutions, weak solutions, and strong
solutions to (1.1)-(1.3). In [2, 3, 11, 17] blow up of the weak or generalized solution
was shown if p > m + k and the initial energy is negative. The negativity of the
initial energy was used to prove blow up in the above paper [2, 3, 11, 17]. However,
the blow up of the solutions for (1.1)-(1.3) in case of positive initial energy has
not been discussed, and the asymptotic behavior of the solutions for (1.1)-(1.3) is
much less understood. In this paper, following the ideas of “potential well” theory
introduced by Payne and Sattinger [12], we extend the results about asymptotic
stability and blowup of the solution to (1.1)-(1.3) with k = 0 (see, for example,
[4, 13, 20, 21, 22] to the problem (1.1)-(1.3) with k > 0.

It is worth mentioning here that Levine, Park and Serrin [9] studied the existence
and nonexistence of the solution to the quasilinear evolution equation of formally
parabolic type, namely

Q(t, u, ut) + A(t, u) = f(t, u). (1.6)
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The purpose of the paper is, first, to show that the weak solution of the problem
(1.1)-(1.3) blow up in the case of positive initial energy E(0) > 0 and p > k + m,
which we do in section 3. The another purpose of this paper is to give an asymptotic
stability results of the problem (1.1)-(1.3) with 0 < m < 1, p < k + m, which do in
section 4.

The following notation will be used in the sequel:

|u|s,Ω ≡ ‖u‖Hs(Ω), ‖u‖p ≡ ‖u‖Lp(Ω),

‖u‖ ≡ ‖u‖L2(Ω), (u, v) =
∫

Ω

u(x)v(x)dx, p∗ =
2n

n− 2
,

where Hs(Ω) and Lp(Ω) stands for the classical Sobolev spaces and the Lebesgue
spaces, respectively.

2. Preliminaries

In this section we introduce some notations, definitions and some known results
which are necessary for the remaining sections of the paper.

Definition 2.1 ([1, 2, 3]). We say that u is a weak solution to the problem (1.1)-
(1.3) on [0, T ] if u ∈ Cw([0, T ];H1

0 (Ω)) ∩ C1
w([0, T ], L2(Ω)),∆u − utt ∈ L2(Ω ×

(0, T )), |u|kj(ut) ∈ L2(Ω× (0, T )) which satisfies u(0) = u0, ut(0) = u1 and for all
0 < t ≤ T the following variational equality holds∫ t

0

∫
Ω

(−ut(s)vt(s) +∇u∇v) dx ds−
∫

Ω

u1v(0)dx

+
∫ t

0

∫
Ω

|u(s)|kj′(ut)(s)v(s) dx ds

=
∫ t

0

∫
Ω

|u(s)|p−1u(s)v(s) dx ds

for all test functions v satisfying v ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), v(T ) = 0.

Theorem 2.2 ([2]). In addition to Assumption (A1) and (A2) and p ≤ max{p∗

2 , p∗m+k
m+1 };

m < 1 if n = 1, 2; k
p∗ + m

2 ≤ 1
2 if n ≥ 3. Let u0 ∈ H1

0 (Ω), u1 ∈ L2(Ω), then there
exists a constant T > 0 such that the initial boundary problem (1.1)-(1.3) has a
unique weak solution on [0, T ] if p ≤ k + m.

Now, we define the energy associated with problem (1.1)-(1.3) by

E(t) =
1
2
‖ut(t)‖2 +

1
2
‖∇u(t)‖2 − 1

p + 1
‖u(t)‖p+1

p+1.

We see that the energy has the so-called energy identity

E(t) +
∫ t

0

∫
Ω

|u(s)|kj(ut)(s)ds = E(0),

where

E(0) =
1
2
‖u1‖2 +

1
2
‖∇u0‖2 −

1
p + 1

‖u0‖p+1
p+1.

It is clear that

E′(t) = −
∫

Ω

|u(s)|kj(ut)(s)ds ≤ 0 (2.1)
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and E(t) is a non-increasing function in time, then

E(t) ≥ E(0). (2.2)

Finally, we set

λ1 = B
− 2

p−1
1 , E1 = (

1
2
− 1

p + 1
)λp+1

1 ,

λ2 = (
1

(p + 1)B2
1

)
1

p−1 , E2 =
p + 1

2
(
1
2
− 1

p + 1
)λp+1

2 ,∑
1

= {(λ, E) ∈ R2, λ > λ1, 0 < E < E1},∑
2

= {(λ, E) ∈ R2, 0 ≤ λ < λ2, 0 < E < E2},

where B1 is the embedding constant (where H1
0 (Ω) is embedded into Lp+1(Ω)). We

call
∑

1 the unstable set,
∑

2 the stable set.

3. Blow-up of the solutions

In this section, we assume that p > k+m and u be a weak solution to (1.1)-(1.3)
on the interval [0, T ] in the sense of Definition 2.1.

Lemma 3.1. Let (‖u0‖p+1, E(0)) ∈
∑

1, then E(t) ≤ E0 for all t ∈ [0, T ], and
there exist λ0 > λ1 such that ‖u(t)‖p+1 ≥ λ0 > λ1 for all t ∈ [0, T ].

The proof is similar to that of [20, Lemma 1], so we omit it.

Theorem 3.2. Let (‖u0‖p+1, E(0)) ∈
∑

1, p > k + m, and u be a weak solution to
(1.1)-(1.3) on the interval [0, T ] in the sense of Definition 2.1, then T is necessarily
finite, i.e. u can not be continued for all t > 0.

Proof. We argue by contradiction. Let F (t) = ‖u(t)‖2, H(t) = E1 − E(t). From
(2.1), we have

H ′(t) = −E′(t) =
∫

Ω

|u(t)|kj(ut)(t)dx ≥ 0. (3.1)

Therefore, H(t) is an increasing function, then

H(t) ≥ H(0) = E1 − E(0) > 0, t ≥ 0. (3.2)

Next, by the definition of E(t) and Lemma 3.1,

H(t) ≤ E1 −
1
2
‖∇u(t)‖2 +

1
p + 1

‖u(t)‖p+1
p+1

≤ E1 −
1
2
B−2

1 λ2
1 +

1
p + 1

‖u(t)‖p+1
p+1, t ≥ 0.

(3.3)

Hence, since E1 − 1
2B−2

1 λ2
1 = − 1

p+1λp+1
1 < 0, we have

0 < H(0) ≤ H(t) ≤ 1
p + 1

‖u(t)‖p+1
p+1, t ≥ 0. (3.4)

For simplicity, we denote

I(t) =
∫

Ω

|u(t)|ku(t)j′(ut)(t)dx.
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By the definition of the solution and the definition of H(t),

1
2
F ′′(t) =

d

dt

∫
Ω

u(t)ut(t)dx = ‖ut(t)‖2 − ‖∇u(t)‖2 + ‖u(t)‖p+1
p+1 − I(t)

= 2‖ut(t)‖2 + (1− 2
p + 1

)‖u(t)‖p+1
p+1 − 2E(t)− I(t)

= 2‖ut(t)‖2 + (1− 2
p + 1

)‖u(t)‖p+1
p+1 + 2H(t)− 2E1 − I(t).

By Lemma 3.1 again (i.e ‖u(t)‖p+1
p+1λ

−(p+1)
0 > 1, or E1‖u(t)‖p+1

p+1λ
−(p+1)
0 > E1),

1
2
F ′′(t) ≥ 2‖ut(t)‖2 + (1− 2

p + 1
− 2E1λ

−(p+1)
0 )‖u(t)‖p+1

p+1 + 2H(t)− I(t)

= 2‖ut(t)‖2 + C2‖u(t)‖p+1
p+1 + 2H(t)− I(t),

(3.5)

where C2 = 1− 2
p+1 − 2E1λ

−(p+1)
0 > 0, because λ0 > λ1 by Lemma 3.1.

Now, to estimate the last term I(t) in (3.5), since p > k+m and Assumption (A1)
and (A2) and by applying Holder’s inequality and Young’s inequality, we obtain

|I(t)| ≤ C0

∫
Ω

|u(t)|k+1− k+m+1
m+1 |u(t)|

k+m+1
m+1 |ut(t)|mdx

≤ C0(
∫

Ω

|u(t)|k|ut(t)|m+1dx)
m

m+1 (
∫

Ω

|u(t)|k+m+1dx)
1

m+1

≤ C0B0(H ′(t))
m

m+1 ‖u(t)‖
k+m+1

m+1
p+1

≤ C0B0(
1
δ
H ′(t) + δm‖u(t)‖k+m+1

p+1 ),

(3.6)

where δ is a constant to be chosen later, B0 is the embedding constants from
Lk+m+1(Ω) to Lp+1(Ω)(since k + m < p).

Now, we introduce the auxiliary function

y(t) = H1−α(t) + εF ′(t),

where ε is a small positive constant to be fixed later, and α = min{p−(k+m)
m(p+1) , p−1

2(p+1)}.
Clearly, 0 < α < 1

2 . Therefore, (3.5), (3.6) yield

y′(t) = (1− α)H−α(t)H ′(t) + εF ′′(t)

≥ (1− α)H−α(t)H ′(t) + 4ε‖ut(t)‖2 + 4εH(t) + 2εC2‖u(t)‖p+1
p+1 − 2εI(t)

≥ [(1− α)H−α(t)− 2εC0B0

δ
]H ′(t) + 4ε‖ut(t)‖2 + 4εH(t)

+ 2εC2‖u(t)‖p+1
p+1 − 2C0B0εδ

m‖u(t)‖k+m+1
p+1 .

Choosing δ = ( C2
2C0B0

‖u(t)‖p−k−m
p+1 )

1
m , then

C2ε‖u(t)‖p+1
p+1 − 2C0B0εδ

m‖u(t)‖k+m+1
p+1 = 0.

Therefore,

y′(t) ≥ [(1−α)H−α(t)− 2εC0B0

δ
]H ′(t)+4ε‖ut(t)‖2+4εH(t)+εC2‖u(t)‖p+1

p+1. (3.7)
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By (3.4) and the choice δ, then

(1− α)H−α(t)− 2εC0B0

δ
= H−α(t)[1− α− 2εC0B0

δ
Hα(t)]

≥ H−α(t)[1− α− 21+ 1
m ε(C0B0)1+

1
m C

− 1
m

2 (
1

p + 1
)α‖u(t)‖

k+m−p+αm(p+1)
m

p+1 ].
(3.8)

Furthermore, since ‖u(t)‖p+1 ≥ [(p+1)H(0)]
1

p+1 by (3.4) and α was chosen so that
k + m− p + αm(p + 1) ≤ 0, it follows from (3.8) that

(1− α)H−α(t)− 2εC0B0

δ

≥H−α(t)[1− α− 21+ 1
m ε(C0B0)1+

1
m C

− 1
m

2 (
1

p + 1
)

p−k+m
m(p+1) (H(0))α+ k+m−p

m(p+1) ].
(3.9)

We choose ε sufficiently small such that

1− α− 21+ 1
m ε(C0B0)1+

1
m C

− 1
m

2 (
1

p + 1
)

p−k+m
m(p+1) (H(0))α+ k+m−p

m(p+1 ≥ 0. (3.10)

Therefore, (3.8)-(3.10) yield

(1− α)H−α(t)− 2εC0B0

δ
≥ 0. (3.11)

Thus, by (3.11) and (3.7), we obtain

y′(t) ≥ εC3[H(t) + ‖ut(t)‖2 + ‖u(t)‖p+1
p+1], (3.12)

where C3 > 0 is a constant which does not depended on ε. In particular, (3.12)
shows that y(t) is increasing on (0, T ), with

y(t) = H1−α(t) + εF ′(t) ≥ H1−α(0) + εF ′(0).

We further choose ε sufficiently small such that y(0) > 0, so y(t) ≥ y(0) > 0 for
t ≥ 0.

Now, let r = 1
1−α . Since 0 < α < 1

2 , it is evident that r > 1. Using Young’s
inequality again

yr(t) ≤ 2r−1(H(t) + ε‖u(t)‖r‖ut(t)‖r)

≤ C4(H(t) + ‖ut(t)‖2 + ‖u(t)‖
1

1
2−α ).

(3.13)

By the choice of α, we have 1
2 − α > 1

p+1 . Now apply the inequality

xσ ≤ (1 +
1
a
)(a + x), x ≥ 0, 0 ≤ σ ≤ 1, a > 0,

and take x = ‖u(t)‖p+1, σ = 1
( 1
2−α)(p+1)

< 1, a = H(0), and d = 1+ 1
H(0) , we obtain

‖u(t)‖
1

1
2−α ≤ d(H(0) + ‖u(t)‖p+1) ≤ C5(H(t) + ‖u(t)‖p+1

p+1). (3.14)
Hence, from (3.13) and (3.14) there results

yr(t) ≤ C(H(t) + ‖ut(t)‖2 + ‖u(t)‖p+1
p+1). (3.15)

Thus, (3.12) and (3.15) show that

y′(t) ≥ C6y
r(t), t ∈ [0, T ].

Finally, from this inequality and r = 1
1−α > 1, we see that y(t) = H1−α(t) + εF ′(t)

blow up in finite time. This completes the proof. �
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4. Asymptotic stability of the solutions

To obtain the asymptotic stability of the solution, we start with a series of
lemmas. The assumption of Theorem 2.2 will be valid throughout this section.

Lemma 4.1. If (‖u0‖p+1, E(0)) ∈
∑

2, then

(‖u(t)‖p+1, E(t)) ∈
∑

2
, t ≥ 0. (4.1)

Moreover

E(t) ≥ 1
2
‖ut(t)‖2 +

1
4
‖∇u(t)‖2, t ≥ 0. (4.2)

Proof. By (2.2) and the embedding theorem, for all t ≥ 0, there holds

E2 > E(0) ≥ E(t) ≥ 1
2
‖ut(t)‖2 +

1
4
‖∇u(t)‖2 +

1
4
B−2

1 ‖u(t)‖2p+1 −
1
2
‖u(t)‖p+1

p+1

≥ 1
2
‖ut(t)‖2 +

1
4
‖∇u(t)‖2 + g(‖u(t)‖p+1),

(4.3)
where g(λ) = 1

4B−2
1 λ2 − 1

2λp+1, for λ ≥ 0. It is easy to see that g(λ) attains its
maximum E2 for λ = λ2, g(λ) is strictly decreasing for λ ≥ λ2 and g(λ) → −∞
as λ → ∞. By the continuity of ‖u(t)‖p+1 and λ(0) = ‖u0‖p+1 < λ2, so that
λ(t) < λ2 for all t ≥ 0. Also, of course, E(t) < E2 by (4.3). Then, (4.1) holds. To
obtain (4.2), it remains to note that g(λ) ≥ 0 whenever 0 ≤ λ < λ2. Then (4.2)
follows at once. �

Lemma 4.2. If (‖u0‖p+1, E(0)) ∈
∑

2, then ‖∇u(t)‖2 ≥ 2‖u(t)‖p+1
p+1, or

‖∇u(t)‖2 − ‖u(t)‖p+1
p+1 ≥

1
2
‖∇u(t)‖2. (4.4)

Proof. By the embedding theorem

1
2
‖∇u(t)‖2 − 1

2
‖u(t)‖p+1

p+1 ≥
1
4
‖∇u(t)‖2 +

1
4
B−2

1 ‖u(t)‖2p+1 −
1
2
‖u(t)‖p+1

p+1

=
1
4
‖∇u(t)‖2 + g(‖u(t)‖p+1).

Hence (4.4) is true, since g(λ) ≥ 0, if 0 ≤ λ < λ2 and 0 ≤ ‖u(t)‖p+1 < λ2 by
Lemma 4.1. �

Lemma 4.3. If (‖u0‖p+1, E(0)) ∈
∑

2, then

(1) ‖ut(t)‖ ∈ L2(0,∞),H ′(t) ∈ L1(0,∞)
(2) ‖∇u(t)‖, ‖u(t)‖p+1, ‖ut(t)‖ ≤ C.

Proof. The first result in (1) follows the definition of weak solution. The second
result in (1) follows by H ′(t) = −E′(t), since E(t) ≥ 0 for t ≥ 0 and H(t) ∈
AC(0,∞), while (2) follows (4.2) (or(4.3)) and (4.4). �

Lemma 4.4. Let (‖u0‖p+1, E(0)) ∈
∑

2 and E(t) ≥ β, where β > 0 is a constant,
then there exists α = α(β) > 0 such that

‖ut(t)‖2 + ‖∇u(t)‖2 − ‖u(t)‖p+1
p+1 ≥ α, t ≥ 0. (4.5)
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Proof. By the definition of E(t) and E(t) ≥ β, we have

‖ut(t)‖2 + ‖∇u(t)‖2 ≥ 2β, t ≥ 0. (4.6)

Now suppose that (4.5) does not hold. From (4.4), there is a sequences tn ⊂ R+

such that

‖ut(tn)‖2 + ‖∇u(tn)‖2 − ‖u(tn)‖p+1
p+1 ≥ ‖ut(tn)‖2 +

1
2
‖∇u(tn)‖2 → 0, (n →∞).

Then, we get
‖ut(tn)‖2 → 0, ‖∇u(tn)‖2 → 0, as n →∞.

This is contradiction with (4.6). The lemma is proved. �

Theorem 4.5. Assume the conditions of Theorem 2.2, that (‖u0‖p+1, E(0)) ∈
∑

2,
and that u is a weak solution to (1.1)-(1.3). Then

lim
t→∞

E(t) = 0, lim
t→∞

‖∇u(t)‖ = 0. (4.7)

Proof. Suppose that (4.7) fails, then there exists β > 0 such that E(t) ≥ β for all
t ≥ 0 since (2.2) and E(t) ≥ 0. Multiplying both sides of (1.1) by u, integrating
over [T, t] × Ω (0 < T ≤ t < ∞) and integrating by parts with respect to t, we
obtain

(ut(s), u(s))|ts=T =
∫ t

T

[2‖ut(s)‖2 − (‖ut(s)‖2 + ‖∇u(s)‖2 − ‖u(s)‖p+1
p+1)

−
∫

Ω

|u(s)|ku(s)j′(ut)(s)dx]ds

=
∫ t

T

(I1 + I2 + I3)ds.

(4.8)

By (4.2), (2.2) and Lemma 4.3 (1), we have∫ t

T

I1ds =
∫ t

T

2‖ut(s)‖2ds ≤ 4E
1
2 (0)(

∫ t

T

‖ut(s)‖2ds)
1
2 (

∫ t

T

ds)
1
2 ≤ C7(

∫ t

T

ds)
1
2 .

(4.9)
Here and in the following, Ci denotes a positive constant which do not depend on
t and T . By Lemma 4.4∫ t

T

I2ds = −
∫ t

T

(‖ut(s)‖2 + ‖∇u(s)‖2 − ‖u(s)‖p+1
p+1)ds ≤ −α

∫ t

T

ds. (4.10)

By Holder inequality, Lemma 4.3 (1), Lemma 4.3 (2) and embedding theorem, we
have∫ t

T

I3dt = −
∫ t

T

∫
Ω

|u(s)|ku(s)j′(ut)(s) dx ds

≤
∫ t

T

∫
Ω

|u(s)|k+1− k+m+1
m+1 |u(s)|

k+m+1
m+1 |ut(s)|m dx ds

≤ (
∫ t

T

∫
Ω

|u(s)|kj(ut)(s) dx ds)
m

m+1 (
∫ t

T

∫
Ω

|u(s)|k+m+1 dx ds)
1

m+1

≤ C8(
∫ t

T

H ′(s)ds)
m

m+1 (
∫ t

T

‖u(s)‖k+m+1
k+m+1ds)

1
m+1

≤ C9(
∫ t

T

‖∇u(s)‖k+m+1ds)
1

m+1 ≤ C10(
∫ t

T

ds)
1

m+1 ,

(4.11)
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here we have used the embedding theorem from H1
0 (Ω) to Lk+m(Ω) since k+m+1 <

1−m
2 p∗ + m + 1 < p∗. Then from (4)-(4.11), since 1

m+1 > 1
2 , we know

(ut(s), u(s))|ts=T ≤ C11(
∫ t

T

ds)
1

m+1 − α

∫ t

T

ds. (4.12)

On the other hand, from Holder inequality and Lemma 4.3 (2),

|(ut(t), u(t))| ≤ C12(‖ut(t)‖2 + ‖∇u(t)‖2) < ∞.

In turn, we reach a contradiction with (4.12) for fixing T when t →∞. Hence, we
derive limt→∞E(t) = 0 and limt→∞ ‖∇u(t)‖2 = 0 by (4.2). This completes the
proof. �

Remark 4.6. The set
∑

2 is called stable set. It is smaller than the potential well
introduced by Payne and Sattinger[12]. Moreover the value λ2 in this paper can be
chosen larger than now but λ2 < λ1.

Remark 4.7. The method seems general enough to apply to the generate equation
(1.4) with f(x, u) being source term and also let Q and F depending on time but
this will be discuss in a future paper.
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Editors note: September 10, 2007

A reader informed us that that parts of the introduction were copied from refer-
ence [2], without giving the proper credit. Also that the first statement in Lemma
4.3 maybe false; so that Theorem 4.5 has not been proved. The authors agreed to
post a new proof, if they succeed in proving the lemma.

Errata: Assumption (A1) should include p > 1. Inequality (2.2) should read
E(t) ≤ E(0).
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