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ON SINGULAR SOLUTIONS OF A MAGNETOHYDRODYNAMIC
NONLINEAR BOUNDARY LAYER EQUATION

MOHAMMED BENLAHSEN, ABDELILAH GMIRA, MOHAMMED GUEDDA

Abstract. This paper concerns the singular solutions of the equation

f ′′′ + κff ′′ − βf ′2 = 0,

where β < 0 and κ = 0 or 1. This equation arises when modelling heat
transfer past a vertical flat plate embedded in a saturated porous medium

with an applied magnetic field. After suitable normalization, f ′ represents the

velocity parallel to the surface or the non–dimensional fluid temperature. Our
interest is in solutions which develop a singularity at some point (the blow-up

point). In particular, we shall examine in detail the behavior of f near the
blow-up point.

1. Introduction

We investigate a one layer model of magnetohydrodynamic (MHD) flow and
heat transfer problems, which are of considerable practical interest. Such a sys-
tem is important in understanding a variety of geophysical, astrophysical, chemical
engineering and metallurgical processes (cooling of continuous strips or filaments,
purification of molten metals, etc.).

Much progress has been made during the previous years in the development of
MHD nonlinear boundary layer equations. Pavlov [22] was the first who examined
the MHD flow over a stretching wall in an electrically conducting fluid, with an
uniform magnetic field. Further studies are those of Chakrabarti and Gupta [9],
Vajravelu [30], Takhar et al. [28, 27], Kumari et al. [19], Andersson et al. [1],
Watanabe and Pop [31] and Sobha and Ramakrishna [26]. In particular, paper [26]
focused mainly on the effect of magnetic field on temperature distribution.

Following the work by Sobha and Ramakrishna, the study of similarity solutions
of Prandtl’s equation for the steady two-dimensional heat transfer past a vertical
plate embedded in a porous medium with an applied magnetic field leads to the
differential equation (see Appendix)

f ′′′ +
1 +m

2
ff ′′ −mf ′

2 = 0, (1.1)
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subject to the boundary wall conditions

f(0) = 0, f ′(0) = ω, (1.2)

and the boundary (free) condition

lim
η→∞

f ′(η) = f ′(∞) = 0. (1.3)

The parameter m is related to the temperature distribution prescribed on the plate
and ω is a magnetic parameter. For a physical consideration m and ω satisfy
− 1

3 ≤ m ≤ 1 and 0 < ω < 1. In the absence of the magnetic field the parameter ω
is equal to 1 (see for example [6], [11]). However, for the mathematical analysis we
will be concerned with −1 ≤ m < 0 and with every value of ω.

Problem (1.1)-(1.3) also arises in physically different contexts in fluid mechanics,
as boundary layer flow on permeable surface with mass transfer parameter a 6= 0
[10], [20]. In this case initial conditions (1.2) take the form

f(0) = a, f ′(0) = 1. (1.4)

The real number a is also referred to as the suction/injection parameter. The case
a > 0 corresponds to suction and a < 0 to injection of the fluid. With m = 0
equation (1.1) is called the Blasius equation [7].

Problem (1.1), (1.3), (1.4) has been the subject of intensive study. Results
concerning problem (1.1)–(1.3) can be found in [11] by Cheng and Minkowycz, for
a different physical problem, in which the numerical solution has been performed
in the case where − 1

3 < m < 0. For m > − 1
2 numerical investigations are given

in the works [17] by Ingham and Brown and [2] by Banks. The mathematical
analysis is also considered in [17]. Some analytical results have been obtained by
Belhachmi et al. [6]. The authors showed non-existence of solutions to (1.1)–(1.3)
for m ≤ −1

2 . They also proved that this problem has an infinite number of solutions
when m = − 1

3 and uniqueness holds for 0 ≤ m ≤ 1
3 .

Recently, multiple solutions of (1.1), (1.3), (1.4) were obtained by Guedda [14],
for different values − 1

3 < m < 0. In particular, it is proved that for any τ > −m+1
2 a

the local solution to (1.1), (1.3) such that f ′′(0) = τ is global and satisfies

f ′(∞) = 0, f(η) ∼ Lη
1+m
1−m , (1.5)

as η → ∞, for some L > 0. The case − 1
2 < m < 0 is also studied provided that

a ≥
√

1
m+1 .

In a recent paper [8] Brighi and Sari have conducted a discussion of the exis-
tence and the non-existence of solutions to problem (1.1), (1.3), (1.4), where the
parameters a and m are taken on the whole range (−∞,∞). Using dynamical
system theories, the authors proved, among other results, that for 0 ≤ m ≤ 1 and
for any a ∈ R problem (1.1), (1.3), (1.4) has one and only one solution while for
m > 1 multiple solutions exist included one and only one concave solution. For
−1 < m < −1/2 the authors proved that there exists a+

? > 0 such that the problem
has no solution for any a < a+

? , while for m < −1 there exists a−? < 0 such that a
solution exists if and only if a < a−? .

Very recently, asymptotic properties of global unbounded solutions to a class of
degenerate nonlinear differential boundary layer equations are obtained by Guedda
and Kersner [15]. In particular, it is proved that any global solution to (1.1), where
−1 < m < 0, such that f(∞) = ∞, satisfies (1.5).



EJDE-2007/78 ON SINGULAR SOLUTIONS 3

Based on these previous results, we may conclude (see below) that for −1 < m <
−1/2 and a < a+

? any local solution to (1.1), (1.4) blows up at a finite point.
The problem of the blowing–up solutions to boundary layer equations was first

mentioned by Coppel [12]. The author classified all solutions of the Falkner-Scan
differential equation [13]

f ′′′ + ff ′′ + β(1− f ′
2) = 0, (1.6)

where 0 ≤ β < 2. In particular, it is shown that for 0 ≤ β < 1/2, any blowing-up
solution satisfies f ′(η) ∼ −(2 − β)f(η)2/6 as η → ηc, where 0 < ηc < ∞ is the
blow–up point of f .

The initial value problem, with m = 0 or β = 0,

f ′′′ +
1
2
ff ′′ = 0,

f(0) = a, f ′(0) = b, f ′′(0) = τ,
(1.7)

where a ∈ R, b > 0 and τ ≤ 0, has been considered by Belhachmi et al. [5]. Among
other results, it is shown that there exists τ? ≤ 0 such that the unique solution to
the Blasius problem (1.7) is not global, for any τ < τ?.
Recently, the absence of global solutions to

f ′′′ + ff ′′ = 0,

f(0) = 1, f ′(0) = 0, f ′′(0) = τ,
(1.8)

has been reconsidered in detail by Ishimura and Matsui [18]. By introducing the
function v such that v(−f) = f ′

2, the authors proved that for any τ < 0, the
solution f to (1.8) blows up at a some point ηc = ηc(τ), and that the blow-up
coordinate f ′/f2 tends to −1/3 as η → ηc. Then they deduced that

lim
η↑ηc

(ηc − η)f(η) = −3.

In this work we extend the results of [18] to equation (1.1). Since the case m = 0
were investigated, we will suppose −1 ≤ m < 0. Let us note that if m > −1 the
new function

η 7→
√
m+ 1

2
f
(√

2
m+ 1

η
)

satisfies
f ′′′ + ff ′′ − βf ′

2 = 0, (1.9)

where β = 2m
m+1 . If m = −1 or κ = 0 equation (1.1) reads

f ′′′ + f ′
2 = 0. (1.10)

So, we shall be concerned with the ordinary differential equation

f ′′′ + κff ′′ − βf ′
2 = 0, (1.11)

where β < 0 and κ = 1 or β = −1 and κ = 0 (m = −1). The initial conditions
which we wish to consider are

f(0) = a, f ′(0) = ω, f ′′(0) = τ, (1.12)

where a, ω are real numbers, τ < 0 and β < 0.
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2. Existence of singular solutions for β < 0

In this section we are interested in conditions for non-global existence of solutions
to (1.11), (1.12). First we note, according to a standard theory of ODE, that
problem (1.11), (1.12) has a unique local solution fτ defined on the maximal interval
[0, ηc), ηc ≤ ∞. This solution is of class C∞ on [0, ηc) and satisfies

f ′′τ (η) + κfτ (η)f ′τ (η) = τ + κaω + (κ+ β)
∫ η

0

f ′τ (s)
2ds, (2.1)

for all η < ηc. If, in addition, ηc is finite limη↑ηc |fτ (η)|+ |f ′τ (η)|+ |f ′′τ (η)| = ∞. In
fact, following the work [12], the existence time ηc is characterized by the following
result.

Proposition 2.1. Let fτ be the unique local solution to (1.11), (1.12), where κ ∈
{0, 1}, β < 0 and τ ∈ R. Assume ηc <∞. Then

lim
η↑ηc

fτ (η) = −∞.

Proof. First we show that sup[0,ηc) |fτ (η)| = ∞. We adapt an idea due to [12].
Suppose that this is not the case. Assume that κ 6= −β. From (2.1) we deduce

(κ+β)
[
f ′τ (η)+

κ

2
f2
τ (η)−(τ+κaω)η−ω− κ

2
a2

]
= (κ+β)2

∫ η

0

∫ t

0

f ′τ (s)
2 ds dt, (2.2)

for all η < ηc. Because the right–hand side of (2.2) is positive and monotonic the
left–hand side of (2.2), and (therefore) (κ+β)f ′τ (η) tends to∞ as η → ηc.Otherwise,
f ′τ is bounded and by (2.1) f ′′τ is also bounded, which is absurd. Consequently, the
function

v(η) =
∫ η

0

∫ t

0

f ′τ
2(s) ds dt

goes to ∞ as η → ηc and satisfies

lim
η→ηc

v′′(η) = ∞

and
v′′ ≤ 2(κ+ β)2v2

on (ηc−ε, ηc), ε > 0 small. The last differential inequality yields, for some constant
C1 > 0,

v(η) ≥ C1(ηc − η)−2

as η → ηc. Returning to (2.2) we deduce

(κ+ β)f ′τ (η) ≥ C2(ηc − η)−2, C2 = const. > 0,

and this implies, after integration, that (κ + β)fτ (η) is not bounded as η → ηc, a
contradiction. Next we use the equation of fτ to deduce

(f ′′τ e
κF )′ = βeκF f ′τ

2
, (2.3)

where F (η) =
∫ η
0
f(s)ds, and (then) f ′′τ has at most one zero. Therefore, fτ is

monotonic on (ηc − ε, ηc), ε > 0 small enough, and then |fτ (η)| → ∞ as η → ηc.
For κ = −β and then κ = 1, we infer

f ′′τ + fτf
′
τ = τ + aω,

f ′τ +
1
2
f2
τ = (τ + aω)η + ω +

1
2
a2.
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Hence, if fτ is bounded we deduce that f ′τ and f ′′τ are bounded, a contradiction.
It remains to prove that fτ (η) approaches −∞ as η approaches ηc. Because fτ is

monotonic on some (η0, ηc) we assume that f ′τ (η) is nonnegative for all η0 < η < ηc
and fτ (η) →∞ as η → ηc. Define the energy-type function

E =
1
2
f ′′τ

2 − β

3
f ′τ

3
, (2.4)

which satisfies
E′ = −κfτf ′′τ

2
.

Thus f ′τ is bounded and then fτ is also bounded on (η0, ηc), which is impossible.
Consequently, fτ (η) goes to −∞ as η → ηc. �

The following result indicates that fτ has a singularity for any τ < 0.

Theorem 2.2. Let ω ≤ 0, a ∈ R. Assume that κ ∈ {0, 1}, β < 0. For any τ < 0 ηc
is finite and the function fτ satisfies

lim
η↑ηc

fτ (η) = −∞.

Proof. First we assume that ω < 0. We suppose for the sake of contradiction that
fτ is global; that is ηc = ∞. Because f ′γ(η) < ω, for all η > 0, fτ (η) < a+ ωη and
tends to −∞ as η → ∞. Together with (1.11) the energy-type function E defined
by (2.4) is monotonic increasing on (η0,∞), where η0 = max{0,−a/ω} and this
infers

f ′′τ (t)2 ≥ 2β
3

(
f ′τ (η)

3 − f ′(η0)3
)

+ f ′′τ (η0)2,

for all η ≥ η0. One readily verifies that f ′γ(η) tends to −∞. Now, the function
g = −fτ is positive on (η0,∞), monotonic increasing, goes to ∞ with η and satisfies

g′′(η) ≥
√
|β|
3
g′(η)3/2,

for large η. A simple analysis of this inequality implies that g′ is not global. A
contradiction. Next assume that ω = 0. Because τ < 0 there exists a (small)
real number η0 > 0 such that f ′τ (η0) and f ′′τ (η0) are negative. The new function
f(η) = fτ (η + η0) is a solution to (1.11) which satisfies f

′
(0) < 0 and f

′′
(0) < 0.

Hence fτ is not global. �

The next result considers the case ω > 0 and β < −2 for κ = 1. The case
κ = 0 will be treated in detail in the next section. The condition β < − 1

2 is plainly
satisfied for −1 < m < − 1

2 . According to [8] there exists a+
? > 0 such that the

problem

f ′′′ + ff ′′ − βf ′
2 = 0,

f(0) = a, f ′(0) = 1, f ′(∞) = 0,
(2.5)

has no solution for any a < a+
? . On the other hand, it should be noticed that

if f is a solution to (1.11) then it is for the function η 7→ γf(γη), for any γ > 0.
Consequently, problem (2.5), with f ′(0) = ω instead of f ′(0) = 1 has no solution for
any a <

√
ωa+

? . Clearly, this deduction and the results of [15] lead to the following
result.
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Theorem 2.3. Let ω > 0. Assume that β < −2 and a <
√
ωa+

? . For any τ the
local solution fτ is not global (ηc <∞) and satisfies

lim
η↑ηc

fτ (η) = −∞.

Having proved that fτ blows up at a finite point (under favorable conditions),
we determine its precise asymptotic behavior, closely following the analysis of [18].

3. Asymptotic behavior of blowing-up solutions

The purpose of this section is to study the asymptotic behavior of any possible
blowing-up solution to (1.11), where κ ∈ {0, 1} and β < 0 are mainly assumed.

3.1. The limit case β = −∞ (κ = 0). In this short subsection we examine the
structure of solutions to problem (1.10), (1.12) for different τ and ω. Solving this
problem is equivalent to finding a solution g (= f ′τ ) to the following ODE

g′′ + g2 = 0, (3.1)

accompanied with the initial conditions

g(0) = ω, g′(0) = τ. (3.2)

In this subsection, we assume that the real numbers ω and τ take place on the
whole R. In the phase plane (g, g′) the curve of the above problem are given by

g′
2 +

2
3
g3 = γ(τ, ω), (3.3)

where γ(τ, ω) = τ2 + 2
3ω

3, or

g′ = ±
√
γ(τ, ω)− 2

3
g3, (3.4)

as soon as γ(τ, ω) ≥ 2
3g

3. If γ(τ, ω) = 0 the problem can be solved explicitly. In
this case ω ≤ 0. If ω = 0 we get g ≡ 0 and for ω < 0 we deduce from (3.4) that

g(η) = − 6
(ηc − η)2

, (3.5)

where
η2
c =

6
|ω|

.

Consequently, if ηc < 0 (τ > 0) the solution g is global and tends to 0 as η goes
to infinity and for ηc > 0 (τ < 0) the solution g is not global and tends to −∞
as η approaches ηc. For γ(τ, ω) 6= 0, we assume first that g is global and that g′

is positive for large η. Recall that g′ is monotonic decreasing (see (3.1)). Since g
is monotonic increasing we conclude that g and g′ are bounded, there exists a real
number g∞ such that g(η) tends to g∞ as η tends to infinity and g′(η) tends to zero
as η tends to infinity and then g∞ = 0 by using again equation (3.1). This leads
to γ(τ, ω) = 0, thanks to (3.3). A contradiction. Therefore, there exists η0 ≥ 0
such that g′(η) < 0 on (η0,∞). So, we may assume without lost of generality that
g′(η) < 0 for all η ≥ 0 (τ < 0), and consider equation (3.4) with minus instead of
±, which gives ∫ ω

g(η)

ds√
γ(τ, ω)− 2

3s
3

= η.
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A simple analysis of the above integral shows that g cannot be global. This means
that there exists a real number ηc = ηc(τ, ω), such that limη→ηc g(η) = −∞. More-
over, the blow-up point ηc is given by∫ ω

−∞

ds√
γ(τ, ω)− 2

3s
3

= ηc. (3.6)

Next, one sees from (3.3) that

lim
η→ηc

g′(η)2g−3(η) = −2
3
,

and then

lim
η→ηc

(ηc − η)2g(η) = −6.

Returning to the original function fτ we summarize the main result of the present
subsection in the following.

(1) If τ2 = − 2
3ω

3 and τ > 0 the solution fτ is global and given by

fτ (η) = 6
1

ηc + η
+ a− 6

ηc
,

where ηc =
√

6/|ω|.
(2) If τ2 = − 2

3ω
3 and τ < 0 the solution fτ is not global and given by

fτ (η) = −6
1

ηc − η
+ a+

6
ηc
, ηc =

√
6/|ω|. (3.7)

(3) If τ2 6= − 2
3ω

3 the solution fτ is not global and satisfies

lim
η→ηc

(ηc − η)fτ (t) = −6, (3.8)

where ηc > 0 is the blow-up point, which is given by (3.6), for τ < 0.
The above results show, in particular, that problem (1.1)-(1.3)) has no non trivial

(similarity) solution for any ω ≥ 0, if m = −1 even if f(0) 6= 0 [24, pp. 244–246],
[21].

3.2. The case κ = 1. We shall be concerned with problem (1.11), (1.12), where
κ = 1 and β < 0. Our interest is in solutions which develop a singularity. In fact,
the aim of the present subsection is to establish the asymptotic behavior of any
possible singular solution at its blow-up point. Let us note that if we look for a
singular solution to (1.11), where κ ∈ {0, 1} and β < 0, under the form

f?(η) = A(ηc − η)−γ ,

where A 6= 0, ηc > 0 and γ > 0, we find that γ = 1 and A = 6/(β − 2κ),
The main result is as follows.

Theorem 3.1. Let f be a solution to (1.11), where κ = 1 and β < 0. Assume that
there exists a real number ηc such that limη↑ηc

f(η) = −∞. Then

f(η) ∼ 6
β − 2

1
ηc − η

, as η ↑ ηc. (3.9)
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The case β = −1 is easy to analyze. Setting h = f ′ + 1
2f

2 one sees, from (1.11),
h′′ = (1 + β)f ′2. In such situation the solution f satisfies the Riccati equation

f ′(η) +
1
2
f(η)2 = λη + δ, (3.10)

where λ = f ′′(0)+ f(0)f ′(0) and δ = f ′(0)+ 1
2f

2(0). Since f is not global we infer

lim
η↑ηc

f ′(η)
f(η)2

= −1
2
. (3.11)

Finally, a simple integration of the above yields (3.9) with β = −1.
To prove Theorem 3.1 we use some modification and adaptation of an idea used

in [18] for the Blasius equation and introduced by Toland [29]. To obtain (3.9),
equation (1.11) will be reduced to a second order equation in which f is regarded
as an independent variable. Since f and f ′ are monotonic decreasing and tend
to −∞ as η approaches ηc, there exists a real number 0 ≤ η0 < ηc such that f
and f ′ are negative on (η0, ηc). Without loss of generality we may assume that
f(η0) = 0, f ′′(η0) < 0. Defining

x = −f, v(x) = f ′(η(x))2.

and using (1.11) we arrive at the second order differential equation

v′′(x) = −2β
√
v(x) + x

v′(x)√
v(x)

, x > 0. (3.12)

The initial condition is given by

v(0) = f ′(η0)2 > 0, v′(0) = −2f ′′(η0) > 0. (3.13)

Setting

w(s) =
v(x)
x4

, x = es, x ≥ x0,

for x0 large, equation (3.12) becomes

w′′ + 7w′ + 12w − 2(2− β)
√
w − w′w−1/2 = 0. (3.14)

Therefore, in the remainder of this section we study equations (3.12) and (3.14).
We shall see that the solution v to (3.12),(3.13) is global, equation (3.14) is satisfied
on some (s0,∞) and w(s) goes to (2−β)2

36 as s tends to infinity, which leads to

lim
η→ηc

f ′(η)
f(η)2

=
2− β

6
, (3.15)

and then (3.9) is satisfied. We start with simple results which are crucial for the
proof. We distinguish between the cases 1 + β ≥ 0 and 1 + β < 0.

Lemma 3.2. Let v be the solution to (3.12), (3.13) where −1 ≤ β < 0. Then v is
global, increasing and tends to infinity with x. Moreover, there exists x1 > 0 (large)
such that the following √

v(x) ≤ 3
2
x2, (3.16)

holds for all x in (x1,∞).
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Proof. Since v(0) and v′(0) are positive (see (3.13)), there exists an ε > 0 such that
v(x) > 0, v′(x) > 0 for all 0 ≤ x ≤ ε. Assume that there exists ε0 > ε such that
v′ > 0 on [0, ε0) and v′(ε0) = 0. Hence v is positive on [0, ε0] and, using (3.12),
v′′(x) > 0, for all x ∈ [0, ε0]. Therefore, v′ is monotonic increasing on [0, ε0] and
positive on [0, ε0), which contradicts the hypothesis v′(ε0) = 0. Hence,

v > 0, v′ > 0, v′′ > 0,

as long as v exists. Note that if v is global, necessarily v(x) tends to infinity with
x.

To show that v is global and satisfies (3.16) we put

H(x) = v′(x)− 2x
√
v(x), ∀ x ∈ [0, xc).

Hence
H ′(x) = −2(1 + β)

√
v(x) ≤ 0,

and then
v′(x) ≤ 2x

√
v(x) + v′(0),

(
√
v(x))′ ≤ x+

v′(0)
2
√
v(0)

,
(3.17)

since v(x) ≥ v(0). Integrating the last inequality over (0, x) leads to√
v(x) ≤ 1

2
x2 +

xv′(0)
2
√
v(0)

+
√
v(0).

Using this and (3.17) we deduce that v is global and estimate (3.16) is satisfied. �

The following result gives the lower bound of
√
v/x2 for x large.

Lemma 3.3. Let v be the solution to (3.12), (3.13) where −1 ≤ β < 0. Then there
exists x2 > 0, large, such that√

v(x) ≥ 1
12

(2− 3β)x2, (3.18)

holds for all x in (x2,∞).

Proof. Let G(x) = 5v(x) − 3xv′(x), for x ≥ x1, where x1 is given by Lemma 3.2.
We have

G′(x) = 2v′(x)
[
1− 3

2
x2√
v(x)

]
+ 6βx

√
v(x),

thanks to (3.12). It follows from Lemma 3.2 that G′(x) ≤ 0 for all x ≥ x1, and
then

5v(x)− 3xv′(x) ≤ 5v(x1)− 3x1v
′(x1), ∀x ≥ x1,

4v(x)− 3xv′(x) ≤ 5v(x1)− 3x1v
′(x1)− v(x), ∀x ≥ x1.

Since v(x) tends to infinity with x we deduce that there exists x3, large such that

4v(x) ≤ 3xv′(x), ∀x ≥ x3. (3.19)

On the other hand, the new function

V (x) = v′(x)− 2
5
(2− 3β)x

√
v(x)
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satisfies

V ′(x) = 2
1 + β

5
[3
2
x
v′(x)√
v(x)

− 2
√
v(x)

]
.

Due to (3.19) we have V ′(x) ≥ 0 for all x ≥ x3. Hence

v′(x)− 2
5
(2− 3β)x

√
v(x) ≥ v′(x3)−

2
5
(2− 3β)x2

√
v(x3),

which leads to (3.18). �

Next we consider the case 1 + β < 0.

Lemma 3.4. Let v be the solution to (3.12)), (3.13) where 1 + β < 0. Then v is
global, increasing and tends to infinity with x. Moreover, the following√

v(x) ≥ 1
2
x2, (3.20)

holds for all x ≥ 0.

Proof. Arguing as in the proof of Lemma 3.3 the function v is increasing and tends
to infinity with x if xc = ∞. To prove that v is global we show first that estimate
(3.20) holds on (0, xc). Using again the function H(x) = v′(x)− 2x

√
v(x) and the

ODE satisfied by v to deduce that H ′(x) > 0 for all 0 ≤ x < xc. Hence

v′(x)− 2x
√
v(x) ≥ v′(0) ≥ 0, (3.21)

and then (
√
v(x))′ ≥ x, which leads to (3.20). It remains to prove that v is global.

To this end we use the equation of v and estimates (3.20), (3.21) to get

v′′(x)
v′(x)

= −2β

√
v(x)
v′(x)

+
x√
v(x)

,

v′′(x)
v′(x)

≤ (|β|+ 2)
1
x
,

for all x ∈ (0, xc). Integrating the above inequality over (x0, x), x0 > 0, yields

v′(x) ≤ v′(x0)
(
x

x0

)|β|+2

.

Hence v is global. �

Remark 3.5. Lemmas 3.2 and 3.3 indicate, in particular, that if 1 + β ≥ 0 the
function s→ w(s) is uniformly bounded on (s1,∞) for some s1 large.

Corollary 3.6. Set Γ = inf{ 1
2 ,

2−3β
12 }. Let v be the global solution to (3.12), (3.13)

where β < 0. Then there exists x0 > 0 large such that√
v(x)
x2

≥ Γ, (3.22)

for all x ≥ x0.
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Remark 3.7. Estimate (3.22) can also be used for proving that the existence
interval (0, ηc) of (1.11) is bounded. In view of η′(x) = 1√

v(x)
we have

ηc = η(x0) +
∫ ∞

x0

dx√
v(x)

,

ηc ≤ η(x0) +
1
Γ

∫ ∞

x0

dx

x2
;

therefore, ηc is bounded.

Next, we examine the limit of w(s) as s→∞. We note first that

w(s) ≥ Γ2, s ≥ s0. (3.23)

The proof of Theorem 3.1 is an immediate consequence of the following lemma
which is our final result.

Lemma 3.8. Let v be the global solution to (3.12)), (3.13), where β < 0. Then

lim
x→∞

√
v(x)
x2

=
2− β

6
.

Proof. The proof of this lemma will amount to proving that

lim
s→∞

w(s) =
(2− β)2

36
. (3.24)

The proof of (3.24) is short and different from the one given in [18]. By (3.14) the
function

I(s) =
1
2
w′(s)2 + 6w(s)2 − 4(2− β)

3
w(s)3/2

satisfies

I ′(s) = −7w′(s)2w(s)−1/2
[√

w(s)− 1
7
]
.

Therefore, I ′(s) ≤ 0, for all s ≥ s0, thanks to (3.23) and the definition of Γ. It
follows from this that w and then w′ are bounded. Because

0 ≤Mw′(s)2 ≤ −I ′(s),

where M = 7[1 − 1
Γ

1
7 ] > 0, we deduce that w′ is square integrable. Using again

equation (3.14) one sees that w′′ is also bounded. Now, we use the identity

w′(s)3 = w′(s0)3 + 3
∫ s

s0

w′(τ)2w′′(τ)dτ,

to show that w′(s) has a finite limit as s → ∞ and this limit is zero, since w′ is
square integrable. Next we get, by differentiating (3.14),

w′′′ + 7w′′ + 12w′ − (2− β)w′w−1/2 − w′′w−1/2 +
1
2
w′

2
w−3/2 = 0.

Hence w′′′ is bounded and we have∫ s

s0

w′′′(r)w′(r)dr = −7
2

(
w′(s)2 − w′(s0)2

)
−

∫ s

s0

w′(r)2
(
12− (2− β)w(r)−1/2

)
dr

+
∫ s

s0

w′′(r)w′(r)w(r)−1/2dr − 1
2

∫ s

s0

w′(r)3w(r)−3/2dr.
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Therefore, the integral
∫∞
s0
w′′′(r)w′(r)dr is finite, and then an integration by parts

shows that w′′ is square integrable. As a consequence, the previous equality implies
that w′′ tend to 0 at infinity. Finally, we deduce from (3.14) and (3.23),

|1− 6
2− β

√
w| ≤ 1

2(2− β)
|w′|
Γ2

+
1

2Γ(2− β)
|w′′ + 7w′|,

and get (3.24). The proof is completed. �

4. Appendix: Mathematical modelling

The materials presented here are based on many references. For example the
works [4] by Bejan and Nield, [33] by Wooding and [26] by Sobha and Ramakrishna.
The starting point is the boundary layer system

∂u

∂x
+
∂v

∂y
= 0, u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (4.1)

∂p

∂x
+ gρ+ µk−1u+ σB2

0u = 0,
∂p

∂y
+ µk−1v + σB2

0v = 0, (4.2)

where u, v are the velocity components, describes the 2D stationary heat convection
and T is the temperature of the fluid. The constants µ, k, α, g, σ and B0 are,
respectively, viscosity, permeability, thermal diffusivity, gravitational acceleration,
the electric conductivity and applied magnetic field. The unknown functions p and
ρ are, respectively, is the pressure and ρ is the T−dependent density, defined from
the Boussinesq approximation [33]

ρ = ρ0(1− β1(T − T0)), (4.3)

where ρ0 is the density at a reference temperature T0, and β1 is a constant. Usually,
the reference temperature is T∞; the temperature far from the plate and then
ρ0 = ρ∞ is the value of ρ far from the plate, the reference density [25].

The wall temperature distribution is assumed to be a power function of the
distance from the origin;

Tw(x) = T0 +Axm,

where A > 0 is a constant and m is a real number. The boundary conditions are

v(x, 0) = 0, u(x, 0) = uwx
m, T (x, 0) = Tw(x), (4.4)

and
T (x,∞) = T∞, u(x,∞) = 0. (4.5)

The above model can be expressed in a simpler form by introducing the stream
function ψ(u = ∂ψ

∂y , v = −∂ψ
∂x ) and applying boundary approximations. PDEs

(4.1), (4.2) are reduced to

(
µ

k
+ σB2

0)
∂2ψ

∂y2
= ρ0gβ1

∂T

∂y
, (4.6)

α
∂2T

∂y2
=
∂T

∂x

∂ψ

∂y
− ∂T

∂y

∂ψ

∂x
. (4.7)

We then perform the similarity transformations in the usual way,

η =
√
Rax

y

x
, (4.8)

ψ(x, y) = α
√
Rax

f(η), T (x, y) = T0 + (Tw − T0)θ(η), (4.9)
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where

Rax =
β1gρ0k(Tw − T0)x

αµ
, (4.10)

is the modified local Rayleigh number in a porous medium. Equations (4.6) and
(4.7) now reduce to

f ′′ = ωθ′, ω =
M2

M2 +N2
, (4.11)

θ′′ +
1 +m

2
fθ′ −mf ′θ = 0, (4.12)

where M2 = 1
k and N2 = σB2

0
µ is the magnetic parameter.

The boundary conditions read

f(0) = 0, f ′(0) = ω, θ(0) = 1,

θ(η) → 0, f ′(η) → 0,

as η →∞. Therefore we get

f ′ = ωθ, (4.13)

f ′′′ +
1 +m

2
ff ′′ −mf ′

2 = 0,

f(0) = 0, f ′(0) = ω,
(4.14)

f ′(η) → 0, as η →∞. (4.15)

Note that equation (4.13) can also be obtained from the wall condition

uw = ωβ1gρ0kA,

and condition (4.15) can be replaced by f ′′(0) = τ , where the real number τ has a
physical meaning, since the local Nusselt number, Nux, is given by (in the usual
dimensionless form)

Nux = −
√
Raxθ

′(0) = −
√
Rax

τ

ω
.
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E-mail address: gmira@fst.ac.ma or gmira.i@menara.ma

Mohammed Guedda
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