Electronic Journal of Differential Equations, Vol. 2007(2007), No. 81, pp. 1-3. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

REMARK ON DUFFING EQUATION WITH DIRICHLET BOUNDARY CONDITION

PETR TOMICZEK

$$
\begin{aligned}
& \text { Abstract. In this note, we prove the existence of a solution to the semilinear } \\
& \text { second order ordinary differential equation } \\
& \qquad u^{\prime \prime}(x)+r(x) u^{\prime}+g(x, u)=f(x) \\
& \qquad x(0)=x(\pi)=0
\end{aligned}
$$

using a variational method and critical point theory.

1. Introduction

We denote H the Sobolev space of absolutely continuous functions $u:(0, \pi) \rightarrow \mathbb{R}$ such that $u^{\prime} \in L^{2}(0, \pi)$ and $u(0)=u(\pi)=0$. Let us consider the nonlinear problem

$$
\begin{gather*}
u^{\prime \prime}(x)+r(x) u^{\prime}+g(x, u)=f(x), \quad x \in[0, \pi] \\
u(0)=u(\pi)=0 \tag{1.1}
\end{gather*}
$$

where $r \in H$, the nonlinearity $g:[0, \pi] \times \mathbb{R} \rightarrow \mathbb{R}$ is Caratheodory's function and $f \in L^{1}(0, \pi)$.

A physical example of this equation is the forced pendulum equation. In articles [1, 2] the authors assume that the friction coefficient r is nondecreasing and the nonlinearity g satisfies the condition

$$
\frac{g(x, u)-g(x, v)}{u-v} \leq k<1
$$

They prove the uniqueness of the solution. In this work, we prove the existence of a solution to the problem 1.1 under more general condition

$$
G(x, s) \leq \frac{1}{2}\left(1-\varepsilon+\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime}\right) s^{2}+c, \quad x \in[0, \pi], s \in \mathbb{R}
$$

where $G(x, s)=\int_{0}^{s} g(x, t) d t, c>0$, and $\varepsilon \in(0,1)$.

[^0]
2. Preliminaries

Notation: We shall use the classical space $C^{k}(0, \pi)$ of functions whose k-th derivative is continuous and the space $L^{p}(0, \pi)$ of measurable real-valued functions whose p-th power of the absolute value is Lebesgue integrable. We use the symbols $\|\cdot\|$, and $\|\cdot\|_{p}$ to denote the norm in H and in $L^{p}(0, \pi)$, respectively.

By a solution to (1.1) we mean a function $u \in C^{1}(0, \pi)$ such that u^{\prime} is absolutely continuous, u satisfies the boundary conditions and the equation (1.1) is satisfied a.e. in $(0, \pi)$.

For simplicity's sake we denote $R(x)=e^{\int_{0}^{x} \frac{1}{2} r(\xi) d \xi}$ and multiply 1.1) by the function $R(x)$. We put $w(x)=R(x) u(x)$ and obtain for w an equivalent Dirichlet problem

$$
\begin{gather*}
w^{\prime \prime}(x)-\left(\frac{1}{4} r^{2}(x)+\frac{1}{2} r^{\prime}(x)\right) w(x)+R(x) g\left(x, \frac{w}{R(x)}\right)=R(x) f(x) \tag{2.1}\\
w(0)=w(\pi)=0
\end{gather*}
$$

We study (2.1) by using variational methods. More precisely, we investigate the functional $J: H \rightarrow \mathbb{R}$, which is defined by

$$
\begin{equation*}
J(w)=\frac{1}{2} \int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}+\left(\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime}\right) w^{2}\right] d x-\int_{0}^{\pi}\left[R^{2} G\left(x, \frac{w}{R}\right)-R f w\right] d x \tag{2.2}
\end{equation*}
$$

where

$$
G(x, s)=\int_{0}^{s} g(x, t) d t
$$

We say that w is a critical point of J, if

$$
\left\langle J^{\prime}(w), v\right\rangle=0 \quad \text { for all } v \in H
$$

We see that every critical point $w \in H$ of the functional J satisfies

$$
\int_{0}^{\pi}\left[w^{\prime} v^{\prime}+\left(\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime}\right) w v\right] d x-\int_{0}^{\pi}\left[R g\left(x, \frac{w}{R}\right) v-R f v\right] d x=0
$$

for all $v \in H$, and w is a weak solution to 2.1), and vice versa. The usual regularity argument for ODE proves immediately (see Fučík [3]) that any weak solution to (2.1) is also a solution in the sense mentioned above.

We suppose that there are $c>0$ and $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
G(x, s) \leq \frac{1}{2}\left(1-\varepsilon+\frac{1}{4} r^{2}(x)+\frac{1}{2} r^{\prime}(x)\right) s^{2}+c \quad x \in[0, \pi], s \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

Remark 2.1. The condition 2.3 is satisfied for example if $g(x, s)=(1-\varepsilon) s$ and $\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime} \geq 0$. It is easy to find a function r which is not nondecreasing on $[0, \pi]$ and which satisfies $\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime} \geq 0$. For example $r(x)=-x+\pi+\sqrt{2}$.

3. Main Result

Theorem 3.1. Under the assumption 2.3, Problem 2.1) has at least one solution in H.

Proof. First we prove that J is a weakly coercive functional; i. e.,

$$
\lim _{\|w\| \rightarrow \infty} J(w)=\infty \quad \text { for all } w \in H
$$

Because of the compact imbedding of H into $C(0, \pi),\left(\|w\|_{C(0, \pi)} \leq c_{1}\|w\|\right)$, and the assumption 2.3 we obtain

$$
\begin{align*}
J(w) & =\frac{1}{2} \int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}+\left(\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime}\right) w^{2}\right] d x-\int_{0}^{\pi}\left[R^{2} G\left(x, \frac{w}{R}\right)-R f w\right] d x \tag{3.1}\\
& \geq \frac{1}{2}\|w\|^{2}-\frac{1}{2}(1-\varepsilon)\|w\|_{2}^{2}-\left\|R^{2}\right\|_{1} c-\|R f\|_{1} c_{1}\|w\|
\end{align*}
$$

Because of Poincare's inequality $\|w\|_{2} \leq\|w\|$ and (3.1) we have

$$
\begin{equation*}
J(w) \geq \frac{\varepsilon}{2}\|w\|^{2}-c\left\|R^{2}\right\|_{1}-c_{1}\|R f\|_{1} \tag{3.2}
\end{equation*}
$$

Then (3.2) implies $\lim _{\|w\| \rightarrow \infty} J(w)=\infty$.
Next we prove that J is a weakly sequentially lower semi-continuous functional on H. Consider an arbitrary $w_{0} \in H$ and a sequence $\left\{w_{n}\right\} \subset H$ such that $w_{n} \rightharpoonup w_{0}$ in H. Due to compact imbedding H into $C(0, \pi)$ we have $w_{n} \rightarrow w_{0}$ in $C(0, \pi)$. This and the continuity $g(x, t)$ in the variable t imply

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{\pi}\left(\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime}\right) w_{n}^{2} d x-\int_{0}^{\pi}\left[R^{2} G\left(x, \frac{w_{n}}{R}\right)-R f w_{n}\right] d x \rightarrow \\
& \frac{1}{2} \int_{0}^{\pi}\left(\frac{1}{4} r^{2}+\frac{1}{2} r^{\prime}\right) w_{0}^{2} d x-\int_{0}^{\pi}\left[R^{2} G\left(x, \frac{w_{0}(x)}{R}\right)-R f w_{0}\right] d x \tag{3.3}
\end{align*}
$$

Due to the weak sequential lower semi-continuity of the Hilbert norm $\|\cdot\|$ (i.e. $\left.\liminf _{n \rightarrow \infty}\left\|w_{n}\right\| \geq\left\|w_{0}\right\|\right)$ and (3.3), we have

$$
\liminf _{n \rightarrow \infty} J\left(w_{n}\right) \geq J\left(w_{0}\right) .
$$

The weak sequential lower semi-continuity and the weak coercivity of the functional J imply (see Struwe [4]) the existence of a critical point of the functional J; i.e., a weak solution to the equation (2.1) and, consequently, to equation 1.1).

References

[1] P. Amster: Nonlinearities in a second order ODE, Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 13-21.
[2] P. Amster, M. C. Mariani: A second order ODE with a nonlinear final condition, Electron. J. Diff. Eqns., Vol. 2001 (2001), No. 75, pp. 1-9.
[3] S. Fučík: Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publ. Company, Holland 1980.
[4] M. Struwe: Variational Methods, Springer, Berlin, (1996).
Petr Tomiczek
Department of Mathematics, University of West Bohemia, Univerzitní 22, 30614 Plzeñ, Czech Republic

E-mail address: tomiczek@kma.zcu.cz

[^0]: 2000 Mathematics Subject Classification. 34G20, 35A15, 34K10.
 Key words and phrases. Second order ODE; Dirichlet problem; variational method; critical point.
 © 2007 Texas State University - San Marcos.
 Submitted April 24, 2007. Published May 29, 2007.
 Supported by Research Plan MSM 4977751301.

