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ENERGY ESTIMATE FOR WAVE EQUATIONS WITH
COEFFICIENTS IN SOME BESOV TYPE CLASS

SHIGEO TARAMA

Abstract. In this paper, we obtain an energy estimate for wave equations

with coefficients satisfying Besov type conditions. We give an example of a
wave equation with continuous and nowhere differentiable coefficients for which

the L2 estimate holds.

1. Introduction

Consider a wave equation on [0, T ]× R:

Lu = ∂2
t u− a(t)∂2

xu (1.1)

with a positive coefficient a(t) ≥ δ0 with δ0 > 0. It is well known that, if a(t) is
Lipschitz continuous, then we have the energy estimate∑

0≤j+k≤1

‖∂j
t ∂

k
xu(t, ·)‖ ≤ C

( ∑
0≤j+k≤1

‖∂j
t ∂

k
xu(0, ·)‖+

∫ t

0

‖Lu(s, ·)‖ ds
)

(1.2)

(see for example [5, Ch. IX]). Here ‖ · ‖ denotes L2 norm.
Colombini, De Giorgi and Spagnolo [2] (see also [4]) have shown that the estimate

(1.2) is still valid if the coefficient a(t) has a bounded variation, that is, in the
integral form, there exists a constant C ≥ 0 such that we have∫ T−ε

0

|a(t+ ε)− a(t)| dt ≤ Cε (0 < ε ≤ T/2). (1.3)

Furthermore, in the same paper, they have shown that if a(t) satisfies∫ T−ε

0

|a(t+ ε)− a(t)| dt ≤ Cε(| log ε|+ 1) (0 < ε ≤ T/2) (1.4)

with a constant C ≥ 0, then the Cauchy problem for L is C∞ well posed.
According to Yamazaki [9], we have the estimate (1.2) when a(t) ∈ C2((0, T ])

satisfies |a(t)|+ |ta′(t)|+ |t2a′′(t)| ≤ C on (0, T ] (see also [7]). Then we see that the
estimate (1.2) is valid for L with some coefficient a(t) whose total variation is not
finite, for example a(t) = 2 + sin(log t).

In this paper we introduce an integral version of the condition |a(t)|+ |ta′(t)|+
|t2a′′(t)| ≤ C so that the estimate (1.2) holds still for L with the coefficient a(t)
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satisfying such a condition. Namely we show the following. When the coefficient
a(t) is a bounded measurable function on [0, T ] and satisfies: there exists a constant
C ≥ 0 such that we have∫ T−ε

ε

|a(t+ ε) + a(t− ε)− 2a(t)| dt ≤ Cε (0 < ε ≤ T/2), (1.5)

then the estimate (1.2) holds. Using the same method, we show also the following.
The Cauchy problem for L is C∞ well posed if the coefficient a(t) is a bounded
measurable function on [0, T ] and satisfies the following: There exists a constant
C ≥ 0 such that∫ T−ε

ε

|a(t+ ε) + a(t− ε)− 2a(t)| dt ≤ Cε(| log ε|+ 1) (0 < ε ≤ T/2). (1.6)

Note that the boundedness of a(t) and the estimate (1.5) imply∫ T−ε

0

|a(t+ ε)− a(t)|2 dt ≤ Cε (0 < ε ≤ T/2)

with some constant C. While from the boundedness of a(t) and (1.6) we obtain∫ T−ε

0

|a(t+ ε)− a(t)|2 dt ≤ Cε(| log ε|+ 1) (0 < ε ≤ T/2)

with some constant C (see the next section).
We remark that Colombini, Del Santo and Reissig [1] (see also [6] and [7]) have

shown that the Cauchy problem for L is C∞ well posed when a(t) satisfies |a(t)|+
|(t log t)a′(t)|+|(t log t)2a′′(t)| ≤ C on (0, T ]. For example the Cauchy problem for L
with a(t) = 2+sin(| log t|2) is C∞ well posed but this function a(t) does not satisfy
the condition (1.6). Nonetheless we can find some positive function a(t) which
satisfies the estimate (1.6) with the right hand side replaced with Cε(| log ε|+1)1+δ

(δ > 0), so that the Cauchy problem for L is not C∞ well posed. Indeed Colombini
and Lerner [3] have given an example of a positive function a(t) such that a(t)
satisfies supε∈(0,1],t∈[0,1] |a(t+ ε)−a(t)|/(ε(| log ε|+1)1+δ) <∞ (for any δ > 0) but
the Cauchy problem on [0, 1]× R for ∂2

t − a(t)∂2
x is not C∞ well posed.

In the next section, in order to study properties of bounded functions that satis-
fying (1.5) or (1.6), we define the function spaces Zγ(I) and show some properties
of functions in such spaces. Some properties of examples are discussed in the ap-
pendix. In the third section, we state and prove the main theorems.

We use the following notation. Let L2(Rd) or L2 denote the space of all square
integrable functions on Rd with the norm ‖ · ‖ given by ‖f(·)‖2 =

∫
|f(x)|2 dx.

For s ∈ R let Hs denote the space that consists of functions f(x) on Rd satisfying∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ < ∞ where f̂(ξ) is the Fourier transform of f(x) and ‖ · ‖s

be its norm, that is, ‖f(·)‖2
s =

∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ. We set H∞ =

⋂
s∈R H

s. For
X = Hs, H∞ or C∞(Rd), the space of indefinitely differentiable functions on Rd,
and T > 0, we denote by L1([0, T ], X) the space of X-valued integrable functions
on [0, T ] and by Cj([0, T ], X) with an integer j the space of X-valued j-times
continuously differentiable functions on [0, T ]. We use also the standard notation
of multi-index. We use C or C with some suffix in order to denote a non-negative
constant that may be different line by line.
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2. Space Zγ(I)

Let I = (t0, t1) ⊂ R with t0 < t1 and γ ≥ 0. We say f(t) ∈ Zγ(I) if f(t) is a
bounded measurable function on the interval I and satisfies, with a constant C ≥ 0,∫ t1−ε

t0+ε

|f(t+ ε) + f(t− ε)− 2f(t)| dt ≤ Cε(log(ε−1 + 1) + 1 + γ)γ (2.1)

for any ε ∈ (0, (t1 − t0)/2).
Here we remark that, when γ = 0, (2.1) corresponds to the Besov B1

1,∞ estimate.
We remark also that s(log(s−1 + 1) + 1 + γ)γ is increasing on (0,∞) when γ ≥ 0.
We set

‖f‖Zγ(I) = ‖f‖L∞(I) + sup
0<ε<d/2

1
ε(log(ε−1 + 1) + 1 + γ)γ

×
∫ t1−ε

t0+ε

|f(t+ ε) + f(t− ε)− 2f(t)| dt

where I = (t0, t1) and d = t1 − t0.
In the following we assume that functions in Zγ(I) are real valued. But we see

that the properties discussed below are valid also for complex valued functions by
considering the real part and the imaginary part separately.

From the boundedness of f(t), we see that f(t) ∈ Zγ(I) satisfies∫ t1−ε

t0+ε

(|f(t+ ε)− f(t)|2 + |f(t− ε)− f(t)|2) dt

≤ Cε(log(ε−1 + 1) + 1 + γ)γ (0 < ε ≤ (t1 − t0)/2).
(2.2)

with the constant C depending only on ‖f(·)‖Zγ(I). Indeed, since

|f(t+ ε)− f(t)|2 = (f(t+ ε)− f(t))f(t+ ε)− (f(t+ ε)− f(t))f(t),

we see that

J =
∫ t1−ε

t0+ε

|f(t+ ε)− f(t)|2 dt

=
∫ t1

t0+2ε

(f(t)− f(t− ε))f(t) dt−
∫ t1−ε

t0+ε

(f(t+ ε)− f(t))f(t) dt.

Then we see that

J = −
∫ t1−ε

t0+2ε

(f(t+ ε)− 2f(t) + f(t− ε))f(t) dt+R,

where

R =
∫ t1

t1−ε

(f(t)− f(t− ε))f(t) dt−
∫ t0+2ε

t0+ε

(f(t+ ε)− f(t))f(t) dt,

from which, taking account of (2.1) and the boundedness of f(t), we obtain |J | ≤
Cε(log(ε−1 + 1) + 1 + γ)γ . Similarly we obtain the estimate for the integral of
second term. Hence we have (2.2). Since

f(t+ ε)g(t+ ε)− 2f(t)g(t) + f(t− ε)g(t− ε)

= (f(t+ ε)− 2f(t) + f(t− ε))g(t) + f(t)(g(t+ ε)− 2g(t) + g(t− ε))

+ (f(t+ ε)− f(t))(g(t+ ε)− g(t)) + (f(t− ε)− f(t))(g(t− ε)− g(t)),
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we see from (2.2) and Schwarz’s inequality that f(t), g(t) ∈ Zγ(I) implies that
f(t)g(t) ∈ Zγ(I).

For f(t) ∈ Zγ(I), we consider an extension of f(t) on R as a bounded measurable
function so that its L∞-norm is equal to ‖f‖L∞(I). We still denote by f(t) such an
extension. Let I = (t0, t1). Then for any ε > 0, we have∫ t1

t0

|f(t+ ε)− 2f(t) + f(t− ε)| dt ≤ Cε(log(ε−1 + 1) + 1 + γ)γ (2.3)∫ t1

t0

(|f(t+ ε)− f(t)|2 + |f(t)− f(t− ε)|2) dt ≤ Cε(log(ε−1 + 1) + 1 + γ)γ . (2.4)

where the constant C depends only on ‖f‖Zγ(I). Indeed if ε ≥ (t1 − t0)/2, we see
that the right hand side of (2.3) is not larger than 8ε‖f‖L∞(I). While, in the case
of ε < (t1 − t0)/2, we see that, on the right hand side of (2.3), the integral on the
interval [t0 + ε, t1 − ε] is not larger than ε(log(ε−1 + 1) + 1 + γ)γ‖f‖Zγ(I) and the
integral on the remainder part is not larger than 8ε‖f‖L∞(I). Hence we have (2.3).
Similarly we obtain (2.4).

Now we consider the regularization of a function f(t) in Zγ(I). We take the
above mentioned extension f(t). Let φ(s) be a smooth function on R satisfying
φ(−s) = φ(s), φ(s) ≥ 0, φ(s) = 0 for |s| ≥ 1 and

∫
R φ(s) ds = 1. We denote by

fε(t) with ε > 0 the regularization of f(t) given by

fε(t) =
1
ε

∫
R
φ(
t− s

ε
)f(s) ds.

Then we have the following result.

Lemma 2.1. ∫
I

|fε(t)− f(t)| dt ≤ C1ε(log(ε−1 + 1) + 1 + γ)γ (2.5)∫
I

(|f ′′ε (t)|+ |f ′ε(t)|2) dt ≤ C2(log(ε−1 + 1) + 1 + γ)γ/ε (2.6)

where the constants C1 and C2 depend on ‖f‖Zγ(I) and φ(s) but not on the length of
the interval I. Furthermore, for any function F ∈ C2(R), setting h(t) = F (fε(t)),
we have ∫

I

(|h′′(t)|+ |h′(t)|2) dt ≤ C(log(ε−1 + 1) + 1 + γ)γ/ε. (2.7)

Here the constant C is also independent of the length of the interval I.

Proof. Since fε(t)− f(t) =
∫

R φ(s)(f(t− εs)− f(t)) ds and φ(−s) = φ(s), we have

|fε(t)− f(t)| = |
∫

R

φ(s) + φ(−s)
2

(f(t− εs)− f(t)) ds|

=
1
2
|
∫

R
φ(s)(f(t+ εs) + f(t− εs)− 2f(t)) ds|,

from which and from (2.3), we obtain∫
I

|fε(t)− f(t)| dt ≤ C

∫
R
φ(s)|s|ε(log((|s|ε)−1 + 1) + 1 + γ)γ ds.
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Since s(log(s−1+1)+1+γ)γ is increasing, the right hand side of the estimate above
is not larger than Cε(log(ε−1 + 1) + 1 + γ)γ . Similarly, f ′′ε (t) = ε−2

∫
R φ

′′(s)(f(t−
εs)− f(t)) ds and φ′′(−s) = φ′′(s) imply∫

I

|f ′′ε (t)| dt ≤ C(log(ε−1 + 1) + 1 + γ)γ/ε.

While it follows from f ′ε(t) = ε−1
∫

R φ
′(s)(f(t− εs)− f(t)) ds, (2.3) and Schwarz’s

inequality that

|f ′ε(t)|2 ≤ ε−2‖φ′(·)‖L1

∫
I

|φ′(s)||f(t− εs)− f(t)|2 ds,

from which and from (2.4) we obtain the desired estimate of
∫

I
|f ′ε(t)|2 dt. Hence

we have (2.6). We obtain (2.7) from (2.5) and (2.6). �

Example 2.2. If f(t) ∈ C2((0, 1/2]) satisfies |f(t)|+ |f ′′(t)|t2/| log t|γ ≤ C on I =
(0, 1/2), then f(t) belongs to Zγ(I). Indeed, if ε < t < 1−ε, f(t+ε)+f(t−ε)−2f(t)
is equal to ε2(f ′′(t+ θε) + f ′′(t− θε))/2 with some θ ∈ (0, 1). Then we have

|f(t+ ε) + f(t− ε)− 2f(t)| ≤ Cε2| log(t− ε)|γ/(t− ε)2 (2ε ≤ t < 1/2− ε),

from which we have∫ 1/2−ε

2ε

|f(t+ ε) + f(t− ε)− 2f(t)| dt ≤ Cε| log ε|γ .

Then noting |f(t)| ≤ C, we see f(t) ∈ Zγ(I).
For example, let hγ(t) = sin(| log t|γ+1) with γ ≥ 0. Then hγ(t) belongs to

Z2γ((0, 1/2)). Indeed we have h′′γ(t) = −(γ + 1)2 sin(| log t|γ+1)| log t|2γ/t2 + r(t)
where |r(t)| ≤ C| log t|γ/t2. We see also that hγ(t) /∈ Zσ((0, 1/2)) when 0 ≤ σ < 2γ.
Furthermore we see that

lim sup
ε→0

1
ε| log ε|1+γ

∫ 1/2−ε

0

|hγ(t+ ε)− hγ(t)| dt > 0 (2.8)

(see the appendix for detail). Thus we see that h1/2(t) belongs to Z1((0, 1/2)) but
does not satisfy (1.4) with T = 1/2.

Example 2.3. Here we show that the Weierstrass function

wγ(t) =
∞∑

n=1

2−nnγ cos 2nt

with γ ≥ 0, that is continuous and nowhere differentiable (see for example [8] ),
belongs to Zγ((0, 2π)). Indeed, for any ε ∈ (0, 1/2) we have wγ(t) = wγ,1,ε(t) +
wγ,2,ε(t) where

wγ,1,ε(t) =
∑

1≤n≤ | log ε|
log 2

2−nnγ cos 2nt and wγ,2,ε(t) =
∑

n>
| log ε|
log 2

2−nnγ cos 2nt.

Since |w′′γ,1,ε(t)| ≤ Cε−1| log ε|γ and |wγ,2,ε(t)| ≤ Cε| log ε|γ , then we see |wγ(t +
ε) + wγ(t− ε)− 2wγ(t)| ≤ C| log ε|γε. Hence wγ(t) ∈ Zγ((0, 2π)).

We remark that w0(t) satisfies (1.4). Indeed, in the expression above w0(t) =
w0,1,ε(t)+w0,2,ε(t) we have |w′0,1,ε(t)| ≤ C| log ε| and |w0,2,ε(t)| ≤ Cε. Then we see
|w0(t+ ε)− w0(t)| ≤ C| log ε|ε.
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3. Main results

Let ajk(t) (j, k = 1, . . . , d) be a real-valued bounded measurable function on
(0, T ) with T > 0 satisfying akj(t) = ajk(t) and

d∑
j,k=1

ajk(t)ξjξk ≥ C0|ξ|2 for ξ ∈ Rd and t ∈ (0, T ) (3.1)

with some positive constant C0 > 0. Set

P2(t, ∂t, ξ) = ∂2
t +

d∑
j,k=1

ajk(t)ξjξk (3.2)

where ξ ∈ Rd. Then we have the following result.

Theorem 3.1. Assume that ajk(t) ∈ Zγ((0, T )) (j, k = 1, . . . , d) with γ ≥ 0. Let
ξ ∈ Rd. If u(t) ∈ C1([0, T ]) satisfies P2(t, ∂t, ξ)u = f(t) on (0, T ) with f(t) ∈
L1([0, T ]), then we have

(|∂tu(t2)|2 + |ξ|2|u(t2)|2)1/2

≤ C1e
C2(log(|ξ|+1)+1+γ)γ (

(|∂tu(t1)|2 + |ξ|2|u(t1)|2)1/2 +
∫ t2

t1

|f(t)| dt
) (3.3)

for any 0 ≤ t1 ≤ t2 ≤ T . Here constants C1 and C2 depend on C0 of (3.1) and
Zγ-norm of coefficients ajk(t) but not on the length of the interval [0, T ].

Before presenting the proof of Theorem above, we remark the following well
known result. Let L = ∂2

t + a2(t)ρ2 where a(t) is smooth and positive and ρ > 0.
Noting that (∂t − ia(t)ρ− a′(t)

2a(t) )(∂t + ia(t)ρ+ a′(t)
2a(t) ) and (∂t + ia(t)ρ− a′(t)

2a(t) )(∂t −
ia(t)ρ+ a′(t)

2a(t) ) are equal to

L− (
a′(t)
2a(t)

)2 + (
a′(t)
2a(t)

)′,

we consider the energy

E(u) =
1
a(t)

|∂tu+
a′(t)
2a(t)

u|2 + a(t)ρ2|u|2.

Then we have

d

dt
E(u) =

2
a(t)

Re
(

(∂tu+
a′(t)
2a(t)

u) (Lu−Ru)
)

(3.4)

where R = ( a′(t)
2a(t) )

2 − ( a′(t)
2a(t) )

′.

Proof of Theorem 3.1. If ξ = 0, P2u = f(t) is equal to ∂2
t u = f(t). Then we

have immediately (3.3). In the following, we assume ξ 6= 0. First we extend the
coefficients ajk(t) on R so that ‖ajk(t)‖L∞(R) = ‖ajk(t)‖L∞((0,T )) and the estimate
(3.1) still holds for t ∈ R. Then we consider the regularization ajk,ε(t) of ajk(t)
given by

∫
R φ((t−s)/ε)ajk(s) ds/ε with ε > 0 using a non-negative, even and smooth
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function φ(s) as described in the section 2. Then we see that (3.1) with ajk,ε(t) in
the place of ajk(t) holds. Then we define a(t, ξ, ε) by

a(t, ξ, ε) = |ξ|−1
( d∑
j,k=1

ajk,ε(t)ξjξk
)1/2 for ξ ∈ Rd \ {0}.

We have
C1 ≥ a(t, ξ, ε) ≥

√
C0 (3.5)

with constants C0 appearing in (3.1) and C1 depending only on ‖ajk(·)‖L∞((0,T )).
We see from (2.7), that∫ T

0

(|∂ta(t, ξ, ε)|2 + |∂2
t a(t, ξ, ε)|) dt ≤ C1ε

−1(| log(ε−1 + 1)|+ 1 + γ)γ (3.6)

for any ε > 0. Furthermore Lemma 2.1 implies that∫ T

0

|a(t, ξ, ε)2|ξ|2 −
d∑

j,k=1

ajk(t)ξjξk| dt ≤ C2ε(| log(ε−1 + 1)|+ 1 + γ)γ |ξ|2. (3.7)

Here the constants above C1 and C2 may depend on Zγ-norm of ajk(t) and the
constant C0 of (3.1) but not on the length of interval [0, T ].

Assume that u(t) ∈ C1([0, T ]) satisfies ∂2
t u+

∑d
j,k=1 ajk(t)ξjξku = f(t) on (0, T )

with ξ ∈ Rd \ {0} and f(t) ∈ L1([0, T ]). Let

Eε(t) =
1

a(t, ξ, ε)
|∂tu+

∂ta(t, ξ, ε)
2a(t, ξ, ε)

u|2 + a(t, ξ, ε)|ξ|2|u|2. (3.8)

Then it follows from (3.4) that

d

dt
Eε(t) =

2
a(t, ξ, ε)

Re
(

(∂tu+
∂ta(t, ξ, ε)
2a(t, ξ, ε)

u) (Lεu−Rεu)
)

(3.9)

where Lεu = ∂2
t − a(t, ξ, ε)2|ξ|2u and Rε = (∂ta(t,ξ,ε)

2a(t,ξ,ε) )2 − ∂t(
∂ta(t,ξ,ε)
2a(t,ξ,ε) ). Note that

|Lεu| ≤ |a(t, ξ, ε)2|ξ|2 −
d∑

j,k=1

ajk(t)ξjξk||u|+ |f(t)|

and
|Rεu| ≤ C(|∂ta(t, ξ, ε)|2 + |∂2

t a(t, ξ, ε)|).
Since

|(∂tu+
∂ta(t, ξ, ε)
2a(t, ξ, ε)

u)||u| ≤ 1
2|ξ|

Eε(t),

we see that ∣∣∣∣ ddtEε(t)
∣∣∣∣ ≤ 2C(t, ξ, ε)Eε(t) + Eε(t)1/22C−1/4

0 |f(t)| (3.10)

where

C(t, ξ, ε) =
1
2
C
−1/2
0

(
|
(
a(t, ξ, ε)2|ξ|2 −

d∑
j,k=1

ajk(t)ξjξk
)
|

+ C|∂ta(t, ξ, ε)|2 + |∂2
t a(t, ξ, ε)|

)
|ξ|−1.
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Hence for any positive constant δ > 0, we have∣∣ d
dt

(
Eε(t) + δ

)∣∣ ≤ 2C(t, ξ, ε)
(
Eε(t) + δ

)
+

(
Eε(t) + δ

)1/22C−1/4
0 |f(t)|,

from which we obtain∣∣ d
dt

(
Eε(t) + δ

)1/2∣∣ ≤ C(t, ξ, ε)
(
Eε(t) + δ

)1/2 + C
−1/4
0 |f(t)|.

Then we see that, for 0 ≤ t1 ≤ t2 ≤ T ,

(Eε(t2) + δ
)1/2 ≤ e

R t2
t1

C(t,ξ,ε) dt(Eε(t1) + δ
)1/2 +

∫ t2

t1

e
R t2

t C(s,ξ,ε) dsC
−1/4
0 |f(t)| dt.

It follows from (3.6) and (3.7) that∫ T

0

C(t, ξ, ε) dt ≤ C(ε|ξ|+ 1
ε|ξ|

)(log(ε−1 + 1) + 1 + γ)γ .

Now picking ε = 1/|ξ|, we obtain(
E1/|ξ|(t2) + δ

)1/2 ≤ eC(log(|ξ|+1)+1+γ)γ
(
(
(
E1/|ξ|(t1) + δ

)1/2 +
∫ t2

t1

C
−1/4
0 |f(t)| dt

)
.

(3.11)
By taking δ → 0, we obtain(

E1/|ξ|(t2)
)1/2 ≤ eC(log(|ξ|+1)+1+γ)γ

(
(
(
E1/|ξ|(t2))1/2 +

∫ t2

t1

C
−1/4
0 |f(t)| dt

)
.

Since |∂tajk,ε(t)| ≤ Cε−1‖ajk(·)‖L∞((0,T )) and ε = 1/|ξ|, we see from (3.5) that
there exists a constant C > 0 such that

C(|∂tu(t)|2 + |ξ|2|u(t)|2) ≤ E1/|ξ|(t) ≤ C−1(|∂tu(t)|2 + |ξ|2|u(t)|2)

for any t ∈ [0, T ] and any ξ ∈ Rd \ {0}. Then we obtain the desired estimate
(3.3). �

Since u(t2) = u(t1) + i
∫ t2

t1
∂tu(t) dt, from (3.3) we obtain

(|∂tu(t2)|2 + (|ξ|2 + 1)|u(t2)|2)1/2

≤ CT e
C2(log(|ξ|+1)+1+γ)γ (

(|∂tu(t1)|2 + (|ξ|2 + 1)|u(t1)|2)1/2 +
∫ t2

t1

|f(t)| dt
)

(3.12)
where the constant CT may depend on the length of the interval [0, T ].

Now consider u(t, x) ∈ C2([0, T ],H∞). Let

f(t, x) = ∂2
t u(t, x)−

d∑
j,k=1

ajk(t)∂xj
∂xk

u(t, x).

Then we have P2û(t, ξ) = f̂(t, ξ) where û(t, ξ) and f̂(t, ξ) are the Fourier transform
of u(t, x) and f(t, x) in variables x respectively. Then from (3.12), we obtain

(|∂tû(t2, ξ)|2 + (|ξ|2 + 1)|û(t2, ξ)|2)1/2

≤ CT e
C2(log(|ξ|+1)+1+γ)γ (

(|∂tû(t1, ξ)|2 + (|ξ|2 + 1)|û(t1, ξ)|2)1/2

+
∫ t2

t1

|f̂(t, ξ)| dt
)

for 0 ≤ t1 < t2 ≤ T .

(3.13)
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Hence from the estimate ‖
∫ t2

t1
g(t, ξ) dt‖L2(Rd

ξ) ≤
∫ t2

t1
‖g(t, ξ)‖L2(Rd

ξ) dt, which follows
from the convexity of norm, and the Plancherel Theorem, we obtain

‖∂tu(t2, ·)‖+
∑
|α|≤1

‖∂α
x u(t2, ·)‖

≤ C
(
‖Aγ∂tu(t1, ·)‖+

∑
|α|≤1

‖Aγ∂
α
x u(t1, ·)‖+

∫ t2

t1

‖Aγf(t, ·)‖ dt
) (3.14)

where Aγ is a Fourier multiplier given by

Aγv(x) =
∫
ei(x−y)ξe

1
2 C2(log(|ξ|+1)+1+γ)γ

v(y) dξdy/(2π)d.

Similarly multiplying (3.13) by (|ξ|2 + 1)s/2 with s ∈ R, we obtain

‖∂tu(t2, ·)‖s + ‖u(t2, ·)‖s+1

≤ C
(
‖Aγ∂tu(t1, ·)‖s + ‖Aγu(t1, ·)‖s+1 +

∫ t2

t1

‖Aγf(t, ·)‖s dt
)
.

(3.15)

If γ = 0, then A0v(x) = Cv(x) with C = eC2/2. Hence

‖A0v(·)‖ ≤ C‖v(·)‖ (3.16)

for any v ∈ L2, while eC2(log(|ξ|+1)+2))/2 = C(|ξ|+ 1)m with m = C2/2 implies that

‖A1v(·)‖s ≤ C‖v(·)‖s+m (3.17)
with some m ≥ 0 for any s ∈ R and any v ∈ Hs+m. Then we have the following
theorem.

Theorem 3.2. Let ajk(t) (j, k = 1, . . . , d) be a real-valued bounded measurable
function on (0, T ) with T > 0 satisfying akj(t) = ajk(t) and (3.1). Let L be a
second order hyperbolic operator given by

L = ∂2
t −

d∑
j,k=1

ajk(t)∂xj∂xk
.

If ajk(t) ∈ Z0((0, T )) (j, k = 1, . . . , d), then we have the estimate∑
l+|α|≤1

‖∂l
t∂

α
x u(t2, ·)‖ ≤ C(

∑
l+|α|≤1

‖∂l
t∂

α
x u(t1·)‖+

∫ t2

t1

‖Lu(s, ·)‖ ds) (3.18)

for any 0 ≤ t1 ≤ t2 ≤ T . Here u(t, x) ∈
⋂1

j=0 C
j([0, T ],H1−j) satisfying Lu ∈

L1([0, T ], L2).
If ajk(t) ∈ Z1((0, T )) (1 ≤ j, k ≤ d), then the Cauchy problem for L is C∞ well

posed. Namely, for any u0(x), u1(x) ∈ C∞(Rd) and f(t, x) ∈ L1([0, T ], C∞(Rd)),
we have a unique solution u(t, x) ∈ C1([0, T ], C∞(Rd)) to the equation Lu = f(t, x)
on (0, T )× Rd with the initial conditions u(0, x) = u0(x) and ∂tu(0, x) = u1(x).

Proof. Assume that ajk(t) ∈ Z0((0, T )) (j, k = 1, . . . , d). If u(t, x) belongs to⋂2
j=0 C([0, T ],H2−j), the estimate (3.18) follows from (3.14) with γ = 0 and (3.16).

In the case where u(t, x) ∈
⋂1

j=0 C
j([0, T ],H1−j) and f(t, x) = Lu ∈ L1([0, T ], L2),

we regularize u(t, x) with respect to x-variables by setting uδ(t, x) =
∫
ei(x−y)ξ(1 +

δ|ξ|2)−1u(t, y) dξdy/(2π)d with δ > 0. We denote this by (1−δ∆)−1u(t, x). Then we
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regularize uδ with respect to t-variable by setting uε
δ(t, x) =

∫
R ψε(t− s)uδ(s, x) ds

with ε > 0 where ψε(s) is given by ψε(s) = ψ(s/ε)/ε with a smooth function ψ(s)
on R satisfying ∫

R
ψ(s) ds = 1 and ψ(s) = 0 for s ≥ 0 or s ≤ −1.

We denote this convolution by ψε ∗ uδ(t, x). Then we see that Luε
δ(t, x) = F ε

δ (t, x)
for t ∈ [0, T −ε] where F ε

δ (t, x) = fε
δ (t, x)+Rε

δ with fε
δ (t, x) = ψε∗(1−δ∆)−1f(t, x)

and

Rε
δ =

d∑
j,k=1

[ψε∗, ajk(t)]∂xj
∂xk

uδ(t, x).

Here [·, ·] denotes the commutator. Since uε
δ(t, x) ∈

⋂2
j=0 C

j([0, T − ε],H2−j), the
estimate (3.18) is valid for uε

δ(t, x) when 0 ≤ t1 ≤ t2 ≤ T − ε. Since f(t, x) ∈
L1([0, T ], L2), we see that, for 0 ≤ t1 ≤ t2 < T ,

∫ t2
t1
‖fε

δ (t, ·)‖ dt converges to∫ t2
t1
‖fδ(t, ·)‖ dt as ε tends to zero. While u(t, x) ∈ C0([0, T ],H1) implies uδ(t, x) ∈

C0([0, T ],H2). Then we have ∂xj
∂xk

uδ(t, x) ∈ C0([0, T ], L2), which implies that
ψε ∗∂xj

∂xk
uδ and ψε ∗ (ajk(t)∂xj

∂xk
uδ) converge to ∂xj

∂xk
uδ and ajk(t)∂xj

∂xk
uδ in

L1([0, T ], L2) respectively as ε tends to zero. Hence we see that
∫ t2

t1
‖Rε

δ‖ dt→ 0 as
ε tends to zero when 0 ≤ t1 ≤ t2 < T , Then the estimate (3.18) is valid for uδ(t, x)
when 0 ≤ t1 ≤ t2 < T . Finally we obtain the desired estimate for u(t, x) by taking
δ → 0.

Now consider the case where ajk(t) ∈ Z1((0, T )) (j, k = 1, . . . , d). The estimates
(3.15) with γ = 1 and (3.17) imply that for any u0(x) ∈ Hs+1, u1(x) ∈ Hs and
f(t, x) ∈ L1([0, T ],Hs) with arbitrarily chosen s ∈ R, there exist a solution u(t, x) ∈⋂

j=0,1 C
j([0, T ],Hs+1−j−m) with some positive m independent of s to the equation

Lu = f satisfying the initial condition u(0, x) = u0(x) and ∂tu(0, x) = u1(x).
The uniqueness of solutions follows from the existence of solutions to the adjoint
Cauchy problem. Then the Cauchy problem is H∞ well posed. Since in the article
[2] one has shown the existence of the finite propagation speed for L with the
coefficients in more general function classes, we see that the Cauchy problem is C∞

well posed. We see also the existence of finite propagation speed for L by considering
the wave operator Lε = ∂2

t −
∑d

j,k=1 ajk,ε(t)∂xj
∂xk

where the coefficients ajk,ε(t)
(j, k = 1 . . . , d) are defined at the beginning of the proof of Theorem 3.1 as the
regularization of ajk(t) (j, k = 1 . . . , d). First remark that we see from (3.5) that
the propagation speed for Lε is not larger than C1. For any smooth and compactly
supported initial data u0, u1 and f(t), solutions uε (0 < ε < 1) to the equation
Lεuε = f with the initial condition uε(0, x) = u0(x) and ∂tuε(0, x) = u1(x) have
the uniform estimate (3.15) with γ = 1 and (3.17). Hence we see that the solution
u to the equation Lu = f with the same initial condition u(0, x) = u0(x) and
∂tu(0, x) = u1(x) can be obtained as a limit of a suitable subsequence {uεn

(t, x)}
with εn → 0. Then we see the existence of finite propagation speed for L. �

Example 3.3. From example 2.3 of the previous section and Theorem 3.2, we
see that the L2 estimate (1.2) for L = ∂2

t − (2 + w0(t))∂2
x holds where w0(t) is a

continuous and nowhere differentiable function given by w0(t) =
∑

n≥1 2−n cos 2nt.

Remark 3.4. We assume the boundedness of the coefficients in the theorems above.
While Colombini, De Giorgi and Spagnolo [2] have shown that the condition (1.4)
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without the assumption of boundedness is sufficient for C∞ well posed. But we see
from the example 2.2 of the previous section that, even for bounded functions, the
condition (2.1) with γ = 1 is still less restrictive than that of (1.4). For the related
problem for wave equations with unbounded coefficients having some special type
of singularity see, for example, [6] or [9].

Remark 3.5. As mentioned in Theorem 3.1, the constants C1 and C2 in (3.3) are
independent of the length of interval. Then we obtain the following from (3.3) with
γ = 0 . If ajk(t) (j, k = 1, . . . , d) belongs to Z0((0,∞)), that is, ajk(t) is bounded
measurable on (0,∞) and satisfies∫ ∞

ε

|ajk(t+ ε) + ajk(t− ε)− 2ajk(t)| dt ≤ Cε for any ε > 0,

then under the condition (3.1) with T = ∞ we have the following estimate for the
homogeneous energy E0(u)(t) = ‖∂tu(t, ·)‖2 +

∑d
j=1 ‖∂xj

u(t, ·)‖2:

E0(u)(t1) ≤ CE0(u)(t0)
(
t0, t1 ∈ [0,∞)

)
for any u(t, x) ∈

⋂
j=0,1 C

j([0,∞),H1−j) satisfying Lu = 0 on (0,∞)× Rd.

4. Appendix

In this section we show (2.8). Let hγ(t) = sin(| log t|1+γ) with γ > 0. For any
positive integer n, let tn, tn−, tn+ ∈ (0, 1) be given by

tn = e−(2πn)1/(1+γ)
, tn− = e−(2πn−π/4)1/(1+γ)

, tn+ = e−(2πn+π/4)1/(1+γ)
.

We note tn+ < tn < tn− and

| log tn|1+γ = 2πn, | log tn−|1+γ = 2πn− π/4, | log tn+|1+γ = 2πn+ π/4.

We obtain tn− − tn > tn − tn+ from d
dse

−s1/(1+γ)
< 0 and d2

ds2 e
−s1/(1+γ)

> 0.
Since h′γ(t) = −(1 + γ) cos(| log t|1+γ)| log t|γ/t on (0, 1), we see that

|h′γ(t)| ≥ C| log t|γ/t for tn+ ≤ t ≤ tn−.

Since Cn−γ/(1+γ) ≤ |(2n± 1/4)1/(1+γ) − (2n)1/(1+γ)| ≤ C−1n−γ/(1+γ), we see that

tn − tn+ ≥ Ce−(2πn)1/(1+γ)
n−γ/(1+γ)

and 1 ≤ tn−/tn+ ≤ C. Then when 0 < ε ≤ tn − tn+, we have

|hγ(t+ ε)− hγ(t)| ≥ Cε(| log t|γ/t) for tn+ ≤ t ≤ tn,

from which we have

In =
∫ tn

tn+

|hγ(t+ ε)− hγ(t)| dt ≥ Cε(| log tn+|1+γ − | log tn|1+γ .)

Then we have In ≥ Cε with some constant C > 0 for any positive integer n and
ε ∈ [0, tn − tn+]. We pick a large positive integer n0 so that we have tn− ≤ 1/2 for
n ≥ n0. For any large positive integer N > n0, pick ε = tN − tN+. Then we see
that ∫ 1/2−ε

0

|hγ(t+ ε)− hγ(t)| dt ≥
N∑

n=n0

In ≥ C(N − n0 + 1)ε.
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Since tN − tN+ ≥ Ce−(2πN)1/(1+γ)
N−γ/(1+γ), we see that N ≥ C| log ε|1+γ for large

N . Then we see that

lim sup
ε→0

1
ε| log ε|1+γ

∫ 1/2−ε

0

|hγ(t+ ε)− hγ(t)| dt > 0.

By a similar argument, we see that hγ(t) /∈ Zσ((0, 1/2)) when 0 ≤ σ < 2γ.
Indeed noting that h′′γ(t) = −(γ+1)2 sin(| log t|γ+1)| log t|2γ/t2 +r(t) where |r(t)| ≤
C| log t|γ/t2, we choose sn and sn± in (0, 1) so that | log sn|γ+1 = 2πn + π/2 and
| log sn±|γ+1 = 2πn+π(1/2±1/4). Then if an integer n is large and ε ≤ (sn−sn+)/2,
we have∫ sn−−ε

sn++ε

|hγ(t+ ε) + hγ(t− ε)− 2hγ(t)| dt ≥ Cε2(sn − sn+)| log sn−|2γ/s2n−,

from which and from the arguments similar to the above we see that

lim sup
ε→0

1
ε(log(ε−1 + 1) + 1 + γ)γ

∫ 1/2−ε

ε

|hγ(t+ ε) + hγ(t− ε)− 2hγ(t)| dt > 0.
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