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BERNSTEIN APPROXIMATIONS OF DIRICHLET PROBLEMS
FOR ELLIPTIC OPERATORS ON THE PLANE

JACEK GULGOWSKI

Abstract. We study the finitely dimensional approximations of the elliptic

problem

(Lu)(x, y) + ϕ(λ, (x, y), u(x, y)) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω,

defined for a smooth bounded domain Ω on a plane. The approximations are

derived from Bernstein polynomials on a triangle or on a rectangle containing
Ω. We deal with approximations of global bifurcation branches of nontrivial

solutions as well as certain existence facts.

1. Preliminaries

We consider the elliptic problem

(Lu)(x, y) + ϕ(λ, (x, y), u(x, y)) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω,
(1.1)

where Ω ⊂ R2 is a smooth, bounded domain and the uniformly elliptic operator L
is

Lu = a(x, y)uxx + b(x, y)uxy + c(x, y)uyy,

where a, b, c : Ω → R are continuous. We assume as well, that the map ϕ :
A× Ω× R → R is continuous, and A ⊂ R is an open interval.

We are going to define two finitely dimensional approximations of the problem
(1.1). These approximations will be based on the Bernstein polynomials on the
triangle (see [1], [5], [9], [15] ) and on the rectangle (see [3], [9]).

So, let us start with some basic information about Bernstein polynomials on a
triangle and on a rectangle. Let T ⊂ R2 be a closed triangle with the vertices
P,Q,R ∈ R2. Let (p(x, y), q(x, y), r(x, y)) ∈ [0, 1]3 denote the barycentric coordi-
nates of the point (x, y) ∈ T with respect to the triangle T (when it is not confusing
we will write p, q, r instead of p(x, y), q(x, y), r(x, y)). So each point (x, y) ∈ T is
uniquely expressed by coordinates (p, q, r) such that p, q, r ≥ 0 and p + q + r = 1.
The relation between the coordinates is given by

(x, y) = pP + qQ+ rR.
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Let now n ∈ N be fixed and i, j, k be nonnegative integers such that i+j+k = n.
We call the set of functions Tn

i,j,k : T → R, given by

Tn
i,j,k(x, y) =

n!
i!j!k!

piqjrk,

the Bernstein basis polynomials on the triangle.
For the continuous function f : T → R we call the function

(B1
nf)(x, y) =

∑
i,j,k≥0;i+j+k=n

f(
i

n
,
j

n
,
k

n
)Tn

i,j,k(x, y) (1.2)

the Bernstein polynomial of degree n of the function f . In the above formula the
triple ( i

n ,
j
n ,

k
n ) expresses the barycentric coordinates of the point in the triangle T.

On the other hand, let S = [α1, α2] × [β1, β2] ⊂ R2 be the rectangle. Let now
n ∈ N be fixed and let i, j ∈ {0, 1, . . . , n}. We call the set of functions Sn

i,j : S → R
given by

Sn
i,j(x, y) =

(
n

i

)(
n

j

)( x− α1

α2 − α1

)i( α2 − x

α2 − α1

)n−i( y − β1

β2 − β1

)j( β2 − y

β2 − β1

)n−j

the Bernstein basis polynomials on the rectangle. Similarly as above, for the con-
tinuous function f : S → R we call the function

(B2
nf)(x, y) =

∑
0≤i,j≤n

f(α1 +
i

n
(α2 − α1), β1 +

j

n
(β2 − β1))Sn

i,j(x, y) (1.3)

the Bernstein polynomial of degree n of the function f .
The most important properties of Bernstein polynomials on a triangle and a

rectangle will be given in the lemmas below. Here ωu denotes the modulus of
continuity of the function u, i.e.

ωu(δ) = max{|u(x1, y1)− u(x2, y2)| : |x1 − x2|+ |y1 − y2| ≤ δ}.

The first lemma (see [15]) refers to Bernstein polynomials on a triangle.

Lemma 1.1. If u : T → R is continuous, then B1
nu converges uniformly to u.

Moreover, the estimation holds

‖u−B1
nu‖0 ≤ 2ωu(

1√
n

).

The second lemma refers to Bernstein polynomials on a rectangle and will be
proved below.

Lemma 1.2. If u : S → R is continuous, then B2
nu converges uniformly to u.

Moreover, the estimation holds

‖u−B2
nu‖0 ≤

5
2
ωu(

γ√
n

),

where γ = max{α2 − α1, β2 − β1}.

Proof. As we can see in [9] the Bernstein approximation of the continuous function
v0 : [0, 1] → R may be estimated by |(Bnv0)(t) − v0(t)| ≤ 5

4ωv0(
1√
n
). The similar
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estimation may be obtained for a continuous function v : [a, b] → R, for any interval
[a, b] ⊂ R. Let us define v0(t) = v(tb+ (1− t)a) = v(x).

(Bnv)(x) =
n∑

k=0

(
n

k

)
v(a+

k

n
(b− a))

(x− a

b− a

)k(b− x

b− a

)n−k

=
n∑

k=0

(
n

k

)
v0(

k

n
)tk(1− t)n−k = (Bnv0)(t).

So, we have

|(Bnv)(x)− v(x)| = |(Bnv0)(t)− v0(t)| ≤ ωv0(
1√
n

) = ωv(
b− a√
n

). (1.4)

To prove the estimation for the interval in R2 we will repeat the reasoning given
in [10]. Let vy(x) = u(x, y) for the fixed y ∈ [β1, β2], and wx(y) = u(x, y) for fixed
x ∈ [α1, α2]. Let ωv and ωw denote the moduli of continuity of v and w respectively.
Then ωv(δ) ≤ ωu(δ) and ωw(δ) ≤ ωu(δ).

The functions

Bv
n(x, y) =

n∑
i=0

(
n

i

)
u(α1 +

i

n
(α2 − α1), y)

( x− α1

α2 − α1

)i( α2 − x

α2 − α1

)n−i

,

Bw
n (x, y) =

n∑
j=0

(
n

j

)
u(x, β1 +

j

n
(β2 − β1))

( y − β1

β2 − β1

)j( β2 − y

β2 − β1

)n−j

are Bernstein polynomials of vy and wx respectively.
So from estimation (1.4) we have

|Bv
n(x, y)− u(x, y)| ≤ 5

4
ωv(

α2 − α1√
n

) ≤ 5
4
ωu(

γ√
n

),

|Bw
n (x, y)− u(x, y)| ≤ 5

4
ωw(

β2 − β1√
n

) ≤ 5
4
ωu(

γ√
n

).

We can see that

(Bnu)(x, y) =
∑
i=0

nBw
n (

i

n
, y)

( x− α1

α2 − α1

)i( α2 − x

α2 − α1

)n−i

So,

|(Bnu)(x, y)− u(x, y)| ≤ |(Bnu)(x, y)−Bv
n(x, y)|+ |Bv

n(x, y)− u(x, y)|

≤
∑
i=0

n|Bw
n (

i

n
, y)− u(

i

n
, y)|

( x− α1

α2 − α1

)i( α2 − x

α2 − α1

)n−i

+
5
4
ωu(

γ√
n

)

≤ 5
4
ωu(

γ√
n

) +
5
4
ωu(

γ√
n

).

This completes the proof. �

Now we return to problem (1.1). First let us consider the linear spectral problem

(Lu)(x, y) + λu(x, y) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω
(1.5)

It is well known (see [6]) that there exists the minimal eigenvalue µ0 of the problem
(1.5). This eigenvalue is positive, simple and the associated eigenvector has constant
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sign. Moreover, µ0 is the only eigenvalue with the corresponding eigenvector having
constant sign.

Let m > 0 be fixed and A ⊂ (0,+∞) be an open interval such that µ0
m ∈ A. Let

ϕ : A× Ω× R → R be a continuous function such that

∀ε>0∃δ>0∀(x,y)∈Ω,λ∈B,s∈R0 ≤ s ≤ δ ⇒ |ϕ(λ, (x, y), s)− λms| ≤ ε|s|, (1.6)

for any bounded B ⊂ A;

∀(x,y)∈Ω,λ∈A,s<0ϕ(λ, (x, y), s) > 0. (1.7)

Note that from (1.6) the following conclusion may be drawn

ϕ(λ, (x, y), 0) = 0, for (x, y) ∈ Ω, λ ∈ A. (1.8)

Let us now fix the closed triangle T ⊂ R2, such that Ω ⊂ T. Assume, that con-
tinuous u : Ω → R satisfies boundary conditions, i.e. u(x, y) = 0 for (x, y) ∈ ∂Ω.
Because of (1.8) we may continuously extend the superposition ϕ(λ, ·, u(·)) to the
triangle T, in such a way that this extension achieves 0 on T \ Ω. Let ϕ̃(λ, ·, u(·))
denote this extension. So we may consider the boundary-value problem

(Lu)(x, y) + (B1
nϕ̃(λ, ·, u(·)))(x, y) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(1.9)

Let us now fix the closed rectangle S ⊂ R2, such that Ω ⊂ S. As above, we may
continuously extend the function ϕ(λ, ·, u(·)) to the rectangle S, in such a way that
this extension achieves 0 on S \ Ω. Let ϕ̂(λ, ·, u(·)) denote such extension on the
rectangle S. So let us consider the problem

(Lu)(x, y) + (B2
nϕ̂(λ, ·, u(·)))(x, y) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(1.10)

For the above boundary-value problems (1.1), (1.9), (1.10), we are looking for the
weak solutions (λ, u) ∈ A ×W 2,2(Ω). From Sobolev embedding theorem we have
W 2,2(Ω) ⊂ C(Ω) (see [6]), so B1

nϕ̃(λ, ·, u(·)) and B2
nϕ̂(λ, ·, u(·)) are well defined.

Because of (1.8) each pair (λ, 0) ∈ A×W 2,2(Ω) is the solution of problems (1.1),
(1.9) and (1.10). We call such pairs trivial solutions.

Let R denote the closure (in A× C(Ω)) of the set of nontrivial solutions of the
problem (1.1).

Let Ri
n (i = 1, 2) denote the closure (in A × C(Ω)) of the set of nontrivial

solutions of the problems (1.9) and (1.10) respectively.
The classical global bifurcation theorem given by Rabinowitz (see [12] and also

[2, 11]) may be applied to elliptic boundary-value problems. Such applications were
considered by many authors (see e.g. [12, 13, 14, 7]). Below we prove a similar result

Theorem 1.3. There exists the noncompact component C of R such that (µ0
m , 0) ∈

C.

We are also going to show that the similar thesis may be proved for approximat-
ing problems (1.9) and (1.10). We are going to prove that the connected component
C of R is, in a sense explained below, approximated by the branches of sets Ri

n

(i = 1, 2). Let us further assume that i ∈ {1, 2} is fixed.

Theorem 1.4. Let ε > 0, µ0
m ∈ (a, b) ⊂ [a, b] ⊂ A and R > 0. Then, for almost all

n ∈ N, there exists a component Ci
n of the set Ri

n, such that
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(i) Ci
n ∩

(
(µ0

m − ε, µ0
m + ε)× {0}

)
6= ∅;

(ii) Ci
n ∩ ∂([a, b]×B(0, R)) 6= ∅.

The relation between components Ci
n and C will be established in Theorem 1.5

given below. But first we need to define some notation. For a set U ⊂ A × C(Ω)
let us denote

Oε(U) = {(λ, u) ∈ A× C(Ω) : ∃(µ,v)∈U |λ− µ|+ ‖u− v‖0 < ε}.

where ‖ · ‖0 denotes the norm in C(Ω).

Theorem 1.5. Let ε > 0, µ0
m ∈ (a, b) ⊂ [a, b] ⊂ A and R > 0 be fixed. Assume that

(i) C ⊂ R is a noncompact component, such that (µ0
m , 0) ∈ C;

(ii) Ci
n ⊂ Ri

n is a component, such that Cn
i ∩

(
(µ0

m − ε, µ0
m + ε)× {0}

)
6= ∅ and

Ci
n ∩ ∂([a, b]×B(0, R)) 6= ∅;

(iii) S is a component of C ∩
(
[a, b]×B(0, R)

)
, such that (µ0

m , 0) ∈ S;

(iv) Si
n is a component of Ci

n ∩
(
[a, b]×B(0, R)

)
, such that Si

n ∩
(
(µ0

m − ε, µ0
m +

ε)× {0}
)
6= ∅.

Then, for almost all n ∈ N, the relation Si
n ⊂ Oε(S) holds.

Remark 1.6. From Theorem 1.5 we may conclude that

Li
n→+∞

Si
n ⊂ Ls

n→+∞
Si

n ⊂ S,

where Li and Ls denote Kuratowski lower and upper limit respectively (see [8]).

2. Approximation of global bifurcation branches

We are now going to introduce the necessary notation. First of all, let C(Ω)
denote the space of all continuous functions u : Ω → R, with the norm ‖u‖0 =
sup(x,y)∈Ω |u(x, y)|. Let C0(Ω) denote the subspace of C(Ω) consisting of all func-
tions u : Ω → R satisfying boundary conditions u(x, y) = 0 for (x, y) ∈ ∂Ω.

Let the maps Bi
n : C0(Ω) → C(Ω) (i = 1, 2) be given by (1.2) and (1.3) re-

spectively (here we assume that the appropriate formulas are applied to extensions
f̃ : T → R and f̂ : S → R, of the function f ∈ C0(Ω)). It is easy to observe that
both maps are bounded linear maps and ‖Bi

n‖ ≤ 1, for n ∈ N and i = 1, 2.
It is also well known (see [6]), that there exists a continuous map T̂ : W 0,2(Ω) →

W 2,2
0 (Ω), such that

T̂ h = u⇔

{
(Lu)(x, y) + h(x, y) = 0 for (x, y) ∈ Ω
u(x, y) = 0 for (x, y) ∈ ∂Ω.

Let Φ : A × C(Ω) → C(Ω) be given by Φ(λ, u)(x, y) = ϕ(λ, (x, y), u(x, y)).
From (1.8) we may conclude that Φ(A × C0(Ω)) ⊂ C0(Ω). Additionally, let j :
W 2,2

0 (Ω) → C0(Ω) be the inclusion. From the Sobolev embedding theorem (see [6])
we have the compactness of j. Let us denote T = j ◦ T̂ . Hence the superposition
T ◦Φ : A×C0(Ω) → C0(Ω) is completely continuous. The same conclusion may be
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drawn for maps T ◦ Bi
n ◦ Φ : A × C0(Ω) → C0(Ω) where n ∈ N and i = 1, 2. The

situation is described by the following diagrams

A× C0(Ω)yΦ

C(Ω) i0−−−−→ W 0,2(Ω) T̂−−−−→ W 2,2
0 (Ω)

j−−−−→ C0(Ω)

A× C0(Ω)yΦ

C0(Ω)
Bi

n−−−−→ C(Ω) i0−−−−→ W 0,2(Ω) T̂−−−−→ W 2,2
0 (Ω)

j−−−−→ C0(Ω)

Here i0 denotes the natural inclusion i0 : C(Ω) →W 0,2(Ω).
Let f1

n : A× C0(Ω) → C0(Ω) be given by

f1
n(λ, u) = u− TB1

nΦ(λ, u).

The zeros of the map f1
n correspond to the solutions of the problem (1.9). Similarly

let f2
n : A× C0(Ω) → C0(Ω) be given by

f2
n(λ, u) = u− TB2

nΦ(λ, u).

The zeros of the map f2
n correspond to the solutions of the problem (1.10).

We are going to prove Theorems 1.3, 1.4 and 1.5 in the sequence of lemmas.

Lemma 2.1. If (λ, u) ∈ R, then u ≥ 0.

Proof. Assume that U = {(x, y) ∈ Ω|u(x, y) < 0} 6= ∅. Because of (1.7) the relation
(Lu)(x, y) ≤ 0 holds for all (x, y) ∈ U . That is why, by the maximum principle
(see [6]), there exists (x, y) ∈ ∂U such that u(x, y) < 0. On the other hand the
definition of U implies that if (x, y) ∈ ∂U then either u(x, y) = 0 or (x, y) ∈ ∂Ω.
The latter and boundary conditions imply that u(x, y) = 0 as well. So we have the
contradiction with the maximum principle. �

Corollary 2.2. If u = λmT |u| and u 6= 0, then λ = µ0
m .

Proof. Because of Lemma 2.1, we can see that |u| = u. Hence λ is the eigenvalue of
the problem (1.5) with the corresponding nonnegative eigenvector. So λm = µ0. �

Remark 2.3. Without loss of generality we may assume that ϕ(λ, (x, y), s) = λm|s|
for s < 0, λ ∈ A and (x, y) ∈ Ω. Because of Lemma 2.1, both the original and
modified problem have the same set of solutions.

Hence, we may assume that the strenghtened version of (1.6) holds

∀ε>0∃δ>0∀(x,y)∈Ω,λ∈B,s∈R|s| ≤ δ ⇒
∣∣∣ϕ(λ, (x, y), s)− λm|s|

∣∣∣ ≤ ε|s|, (2.1)

for any bounded B ⊂ A.

Lemma 2.4. For any compact B ⊂ A \ {µ0
m }, there exist γ > 0 and δ > 0, such

that
‖f(λ, u)‖0 ≥ γ‖u‖0 for λ ∈ B, ‖u‖0 ≤ δ. (2.2)
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Proof. Let us first observe, that the inequality holds

γ0 = inf
λ∈B,‖u‖0=1

∥∥∥u− λmT |u|
∥∥∥

0
> 0.

Assume, contrary to our claim, that there exists the sequence {(λn, un)} ⊂ B ×
C0(Ω), such that ‖un‖0 = 1, (λn, un) ∈ B × C0(Ω) and un − λnmT |un| → 0.
Because T is completely continuous, we can see that {T |un|} contains convergent
subsequence, so we may assume that un → u0 ∈ C0(Ω). Of course, we may also
assume, that λn → λ0 ∈ B. Hence, without the loss of generality, we have u0 =
λ0mT |u0|, so by corollary 2.2 λ0m = µ0, a contradiction.

Because of (2.1) there exists δ0 > 0, such that for λ ∈ B,

‖u‖0 ≤ δ0 ⇒
∥∥∥TΦ(λ, u)−mλT |u|

∥∥∥
0
≤ γ0

2
‖u‖0.

So, for ‖u‖0 ≤ δ0 and λ ∈ B, the relation holds

‖f(λ, u)‖0 ≥
∥∥∥u− λmT |u|

∥∥∥
0
−

∥∥∥TΦ(λ, u)−mλT |u|
∥∥∥

0

≥ γ0‖u‖0 −
γ0

2
‖u‖0

=
γ0

2
‖u‖0 > 0.

This completes the proof. �

Lemma 2.5. (i) If λ < µ0
m , then deg(f(λ, ·), B(0, r), 0) = 1 for r > 0 small

enough.
(ii) If λ > µ0

m , then deg(f(λ, ·), B(0, r), 0) = 0 for r > 0 small enough.

Proof. First, let us observe that for any [a, b] ⊂ A \ {µ0
m } there exists r > 0, such

that for λ ∈ [a, b] the map f(λ, ·) : B(0, r) → C0(Ω) may be joined by homotopy
with f0(λ, ·) : B(0, r) → C0(Ω) given by f0(λ, u) = u − λmT |u|. By Lemma 2.4
there exist r1 > 0 and γ > 0 such that

‖f(λ, u)‖0 ≥ γ‖u‖0
for λ ∈ [a, b] and ‖u‖0 ≤ r1.

From (2.1) we may conclude that for ‖u‖0 ≤ r2 the inequality holds

‖Φ(λ, u)−mλ|u|‖0 ≤
γ

2‖T‖
‖u‖0.

Let us take r = min{r1, r2} and define the homotopy h : [0, 1] × B(0, r) → C0(Ω),
by

h(τ, u) = f0(λ, u)− τ [f(λ, u)− f0(λ, u)].
Then for ‖u‖0 = r we have

‖h(τ, u)‖0 ≥ γ‖u‖0 −
γ

2
‖u‖0 > 0,

so the homotopy is well defined.
Moreover, if λ < µ0

m the homotopy h1 : [0, 1] × B(0, r) → C0(Ω), given by
h1(τ, u) = u − τλmT |u|, joins f0(λ, ·) with identity map. As we can see from
corollary 2.2 the homotopy may have nontrivial zero only when τλ = µ0

m , which is
not possible. So (i) is proved.

On the other hand if λ > µ0
m , then the map f0(λ, ·) may be joined by homotopy

with the map f1 : B(0, r) → C0(Ω) given by f1(u) = f0(λ, u) − u0, where u0 is
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positive eigenvector of (1.5), associated with the eigenvalue µ0. The homotopy
may be given by

h1(τ, u) = u− λmT |u| − τu0.

So, let us now assume that h1(τ, u) = 0 for ‖u‖0 ≤ r and τ ∈ [0, 1]. Then we have
u = λmT |u|+ τu0 ≥ 0 and∫

Ω

uu0 = λm

∫
Ω

(Tu)u0 + τ

∫
Ω

u2
0.

As we can see from the definition of a weak solution (see [6]) of the Dirichlet
problem, for each u, v ∈W 2,2

0 (Ω) the relation
∫
Ω
(Tu)v =

∫
Ω
(Tv)u holds, so∫

Ω

(Tu)u0 =
∫

Ω

u(Tu0) =
1
µ0

∫
Ω

uu0.

Hence

(1− mλ

µ0
)
∫

Ω

uu0 = τ

∫
Ω

u2
0 > 0,

what implies λ < µ0
m , and contradicts our assumption. That is why (ii) holds

true. �

Proof of Theorem 1.3. We are going to refer to the generalization of Rabinowitz
global bifurcation theorem given in [4]. This theorem refers to the more general
case of convex-valued maps, but may be applied to the single valued case, as in
Theorem 1.3. What we need is the interval [a, b], such that the set of all bifurcation
points of f is contained in that interval, and the change of local topological degree
of the maps f(λ, ·) : B(0, r) → C0(Ω) on the small balls around zero. As we can
see, because of Lemma 2.1, the only bifurcation point is (µ0

m , 0), so we may take
[a, b] = [µ0

m , µ0
m ]. Additionally, by Lemma 2.5, there is the degree change in the

neighborhood of µ0
m . �

Lemma 2.6. Let δ > 0 and K = (a, µ0
m − δ) ∪ (µ0

m + δ, b) ⊂ [a, b] ⊂ A. Then there
exists r > 0, such that (K ×B(0, r)) ∩Ri

n = ∅ for almost all n ∈ N.

Proof. Let us have i ∈ {1, 2} fixed. Assume, contrary to our claim, that there exists
the increasing sequence {γ(n)} ⊂ N and points (λn, un) ∈ K × C0(Ω), such that
f i

γ(n)(λn, un) = 0, un 6= 0, un → 0 and λn → λ0 ∈ K. Then

un = TBi
γ(n)Φ(λn, un),

un = λnmTB
i
γ(n)|un|+ TBi

γ(n)[Φ(λn, un)−mλn|un|].

Let us now denote vn = un/‖un‖0. Then

vn = λnmTB
i
γ(n)|vn|+ TBi

γ(n)

Φ(λn, un)−mλn|un|
‖un‖0

.

Because of (2.1) there is
∥∥∥Φ(λn,un)−mλn|un|

‖un‖0

∥∥∥
0
→ 0. Then, because of ‖T ◦Bi

γ(n)‖ ≤
‖T‖, letting n→ +∞ gives

TBi
γ(n)

Φ(λn, un)−mλn|un|
‖un‖0

→ 0.
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Additionally, the sequence {Bi
γ(n)vn} is bounded, so taking appropriate subse-

quence of {vn} we may assume that vn → v0 ∈ C0(Ω). Moreover, we can see
that

‖Bi
γ(n)vn − v0‖0 ≤ ‖Bi

γ(n)(vn − v0)‖0 + ‖Bi
γ(n)v0 − v0‖0.

Because ‖Bi
γ(n)‖ ≤ 1 and Bi

γ(n)v0 → v0, we can see that Bi
γ(n)vn → v0. So, letting

n → +∞ we have v0 = λ0mT |v0|. This, for ‖v0‖0 = 1, implies λ0 = µ0
m 6∈ K, a

contradiction. �

Lemma 2.7. Let δ > 0 and K = (a, µ0
m − δ) ∪ (µ0

m + δ, b) ⊂ [a, b] ⊂ A. Then there
exists r0 > 0, such that

deg(f(λ, ·), B(0, r), 0) = deg(fn(λ, ·), B(0, r), 0),

for all r ∈ (0, r0), almost all n ∈ N and for all λ ∈ K.

Proof. Let us now take γ > 0 and δ > 0 as in Lemma 2.4, for B = K. Let us also
take r ∈ (0, δ), such that for all λ ∈ K, the implication holds

‖u‖0 ≤ r ⇒ ‖Φ(λ, u)−mλ|u|‖0 ≤
γ

6‖T‖
‖u‖0.

Let us, for the fixed n ∈ N, λ ∈ K and i ∈ {1, 2} take, the homotopy hi
n,λ :

[0, 1]×B(0, r) → C0(Ω), given by

hi
n,λ(τ, u) = f(λ, u)− τ [f i

n(λ, u)− f(λ, u)].

Assume now that hi
n,λ(τ, u) = 0 for ‖u‖0 = r and τ ∈ [0, 1]. Then

u = T [Φ(λ, u) + τ(Bi
nΦ(λ, u)− Φ(λ, u))].

Because the set

A = {Φ(λ, u) + τ(Bi
nΦ(λ, u)− Φ(λ, u)) : u ∈ C0(Ω), ‖u‖0 = r, τ ∈ [0, 1]}

is bounded, the set T (A) is relatively compact, so all functions u ∈ C0(Ω), such
that hi

n,λ(τ, u) = 0 and ‖u‖0 = r, are uniformly continuous. Hence, by Lemma
1.1 and 1.2, we may assume, that for n ∈ N large enough, λ ∈ K and u ∈ A the
inequality holds ‖mλT (|u|−Bi

n|u|)‖0 ≤
γ
6 r = γ

6 ‖u‖0. That is why, for all functions
u ∈ C0(Ω), such that hi

n,λ(τ, u) = 0 and ‖u‖0 = r, and n ∈ N large enough

‖f(λ, u)− f i
n(λ, u)‖0

≤ ‖T (Φ(λ, u)−mλ|u|)‖0 + ‖TBi
n(mλ|u| − Φ(λ, u))‖0 + ‖mλT (|u| −Bi

n|u|)‖0

≤ γ

6‖T‖
‖T‖‖u‖0 +

γ

6‖T‖
‖T‖‖u‖0 +

γ

6
‖u‖0 =

γ

2
‖u‖0.

Consequently
‖hi

n,λ(τ, u)‖0 ≥ γ‖u‖0 −
γ

2
‖u‖0 > 0,

which is a contradiction. �

Proof of Theorem 1.4. Let us take any ε > 0 and the interval [a, b] ⊂ A, such that
µ0
m ∈ (a, b). From Lemma 2.6 we can see that for almost all n ∈ N the relation
holds Ri

n ∩ (([a, µ0
m − ε] ∪ [µ0

m + ε, b]) × {0}) = ∅. So the set of bifurcation points
of f i

n|(a,b)×C0(Ω) is contained in the interval [µ0
m − ε, µ0

m + ε]. Moreover, by Lemmas
2.5 and 2.7, there is the change of topological degree for λ < µ0

m −ε and λ > µ0
m +ε.



10 J. GULGOWSKI EJDE-2007/86

So, as in the proof of Theorem 1.3, we may apply the global bifurcation theorem
given in [4]. �

For the rest of this article, let us have an interval [a, b] ⊂ A, such that µ0
m ∈ (a, b),

and a constant R > 0 fixed. Moreover, let us assume, according to Theorem 1.5,
that

(i) C ⊂ R is noncompact component, such that (µ0
m , 0) ∈ C;

(ii) Ci
n ⊂ Ri

n is a component, such that Cn
i ∩

(
(µ0

m − ε, µ0
m + ε)×{0}

)
6= ∅ and

Ci
n ∩ ∂([a, b]×B(0, R)) 6= ∅;

(iii) S is a component of C ∩
(
[a, b]×B(0, R)

)
, such that (µ0

m , 0) ∈ S;

(iv) Si
n is a component of Ci

n ∩
(
[a, b]×B(0, R)

)
, such that Si

n ∩
(
(µ0

m − ε, µ0
m +

ε)× {0}
)
6= ∅.

Lemma 2.8. For almost all n ∈ N the inclusion Si
n ⊂ Oε(S) holds.

Proof. Let us fix i ∈ {1, 2}. Let us observe that

∀η>0∃n0∈N∀n>n0(f
i
n)−1(0) ∩ ([a, b]×B(0, R)) ⊂ Oη

(
f−1(0) ∩ ([a, b]×B(0, R))

)
.

(2.3)
Assume, contrary to our claim, that there exists η0 > 0 and the sequence (λn, un) ∈
(f i

γ(n))
−1(0)∩([a, b]×B(0, R)), where {γ(n)} ⊂ N, such that (λn, un) 6∈ Oη0(f

−1(0)∩
([a, b]×B(0, R))).

We may assume that λn → λ0 ∈ [a, b]. Moreover, the sequence {Bi
γ(n)Φ(λn, un)}

is bounded, so un = TBi
γ(n)Φ(λn, un), contains convergent subsequence. So we may

also assume that un → u0 ∈ B(0, R). We can see that

‖TBi
γ(n)Φ(λn, un)− TΦ(λn, un)‖0

≤ ‖TBi
γ(n)Φ(λn, un)− TBi

γ(n)Φ(λ0, u0)‖0 + ‖TBi
γ(n)Φ(λ0, u0)− TΦ(λ0, u0)‖0.

As we can see the above sum converges to zero, what gives u0 = TΦ(λ0, u0), a
contradiction.

Let us now show that

∀η>0∃n0∈N∀n>n0 S
i
n ⊂ Oη(R0), (2.4)

where R0 = R∩ ([a, b]×B(0, R)).
Assume, contrary to our claim, that there exists the sequence Si

γ(n) and positive
number η0 > 0, satisfying Si

γ(n) 6⊂ Oη0(R0). Let (λn, un) ∈ Sγ(n) satisfy (λn, un) 6∈
Oη0(R0). By Lemma 2.6 (applied for an open open neighbourhood of K) there
exists r0 > 0, such that for almost all n ∈ N,

Sγ(n) ∩
(
K ×B(0, r0)

)
= ∅,

where K = [a, µ0
m − η0

2 ] ∪ [µ0
m + η0

2 , b]. We may assume that r0 < η0
2 .

If ‖un‖0 < r0, then λn ∈ (µ0
m − η0

2 ,
µ0
m + η0

2 ) and consequently (λn, un) ∈
B((µ0

m , 0), η0) ⊂ Oη0(R0), what contradicts our assumption. That is why there
must be ‖un‖0 ≥ r0 and |λn − λ|+ ‖un‖0 > r0, for any λ ∈ [a, b].

So (λn, un) 6∈ Or0([a, b] × {0}) and (λn, un) 6∈ Or0(R0), what contradicts (2.3),
because f−1(0) ∩ ([a, b]× B(0, R)) = ([a, b]× {0}) ∪ R0. The contradiction proves
(2.4).
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Now we are going to prove

∀ε>0∃n0∈N∀n>n0 S
i
n ⊂ Oε(S). (2.5)

Assume that there exists η0 > 0 and the subsequence Si
γ(n) of Si

n such that

Si
γ(n) 6⊂ Oη0(S).

But for almost all n ∈ N we have

∅ 6= Si
γ(n) ∩ ([a, b]× {0}) ⊂ (

µ0

m
− η0,

µ0

m
+ η0)× {0} ⊂ Oη0(S)

and consequently Si
γ(n) ∩Oη0(S) 6= ∅.

Assume that (λn, un) ∈ Si
γ(n) are points such that (λn, un) 6∈ Oη0(S). Because,

by (2.4)

∀ε>0∃n0∈N∀n>n0(λn, un) ∈ Oε(R0),

andR0 is compact, there exists the subsequence of {(λn, un)} converging to (λ0, u0)
in R0. Because (λn, un) 6∈ Oη0(S) the relation (λ0, u0) 6∈ Oη0(S) holds as well. The
set R0 is a compact metric space, X = S ∩ R0 and Y = {(λ0, u0)} are its closed
subsets, not belonging to the same component of R0. By separation lemma (see
[16]) there exists the separation R0 = Rx∪Ry of R0 , where Rx and Ry are closed
and disjoint, and such that S ∩R0 ⊂ Rx and (λ0, u0) ∈ Ry.

This implies, that there exist open and disjoint subsets Ux, Uy ⊂ [a, b]×B(0, R),
such that (λ0, u0) ∈ Uy and S ∩R0 ⊂ Ux and R0 ⊂ Ux ∪ Uy.

Because R0 is compact, there exists η > 0, such that Oη(R0) ⊂ Ux ∪Uy. Let us
observe that, by (2.4), for almost all n ∈ N the relation holds Si

γ(n) ⊂ Oη(R0) ⊂
Ux∪Uy. Moreover, Si

γ(n)∩Ux 6= ∅ and Si
γ(n)∩Uy 6= ∅, what (because of Ux∩Uy = ∅)

contradicts the connectedness of Si
γ(n). The contradiction proves (2.5) and finishes

the proof of the lemma. �

Now Theorem 1.5 follows as a corollary of the above result.

Remark 2.9. Both approximations are, in fact, the finitely dimensional ones. Let
us take, as an example, the approximation on the triangle. Let us denote N =
n(n+1)

2 and associate the coordinates of the point ξ ∈ RN with ξi,j,k = u( i
n ,

j
n ,

k
n ),

where i, j, k ≥ 0 and i+ j + k = n. Then we have

u(x, y) = T [B1
nΦ(λ, u)],

and substituting (x, y) = i0
n P + j0

n Q+ k0
n R we have

ξi0,j0,k0 =
∑

i,j,k≥0;i+j+k=n

ϕ(λ, ξi,j,k)[T (Tn
i,j,k)](

i0
n
,
j0
n
,
k0

n
). (2.6)

where [T (Tn
i,j,k)]( i0

n ,
j0
n ,

k0
n ) are known coefficients depending on T and Ω only. In

the above formula we should treat the function T (Tn
i,j,k) ∈ C(Ω) as extended by

zero to the whole triangle T. That is why the dimension of the problem (2.6) is
generally smaller then N .
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3. Existence theorem

In this section we are going to show how the approximation theorem for global
bifurcation branches given above, may be applied in the proof of the existence
theorem for the boundary-value problem

(Lu)(x, y) + ϕ(x, y, u(x, y)) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(3.1)

We will show, that the solution of the above problem exists and is approximated
by solutions of

(Lu)(x, y) + (B1
nϕ̃(·, u(·)))(x, y) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(3.2)

and
(Lu)(x, y) + (B2

nϕ̂(·, u(·)))(x, y) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(3.3)

Theorem 3.1. Let ϕ : Ω×R → R be the continuous function, such that there exist
the positive numbers A < µ0 < B satisfying

∀ε>0∃δ>0∀(x,y)∈Ω,s∈R0 ≤ s ≤ δ ⇒ |ϕ((x, y), s)−Bs| ≤ ε|s|; (3.4)

∀ε>0∃R>0∀(x,y)∈Ω,s∈Rs ≥ R⇒ |ϕ((x, y), s)−As| ≤ ε|s|. (3.5)

Then
(a) there exists the nonnegative solution u of (3.1) and for almost all n ∈ N

there exists solution un of (3.2), such that, there exists the subsequence
{uγ(n)} satisfying limn→+∞ ‖uγ(n) − u‖0 = 0, and

(b) there exists the nonnegative solution u of (3.1) and for almost all n ∈ N
there exists solution vn of (3.3), such that, there exists the subsequence
{vγ(n)} satisfying limn→+∞ ‖vγ(n) − u‖0 = 0.

Proof. Let us assume that ϕ((x, y), s) = B|s|, for s < 0 and (x, y) ∈ Ω. Let us now
define the continuous function ψ : (0,+∞)× Ω× R → R, by

ψ(λ, (x, y), s) = λϕ((x, y), s).

We may now consider the nonlinear spectral problem

(Lu)(x, y) + ψ(λ, (x, y), u(x, y)) = 0 for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(3.6)

Function ψ satisfies (1.6) and (1.7), so Theorem 1.3 may be applied to problem
(3.6). So, there exists the noncompact component C of R for the problem (3.6),
such that (µ0

B , 0) ∈ C and for (λ, u) ∈ C, the inequality holds u ≥ 0.
Let us now observe that, because C is not compact, one of the three situations

takes place
(i) there exists sequence (λn, un) ∈ C, such that λn → 0;
(ii) there exists sequence (λn, un) ∈ C, such that ‖un‖0 → +∞.
(iii) there exists sequence (λn, un) ∈ C, such that λn → +∞;

For all those situations, we may assume that un 6= 0. In the reasoning below let
Φ : C0(Ω) → C0(Ω) denote the Niemytzki operator associated with the function ϕ.
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The first conclusion is that (i) implies (ii). Assume, contrary to the claim, that
λn → 0 and ‖un‖0 ≤M , for a constant M > 0. So un = λnTΦ(un) implies un → 0.
Then,

vn = λnBTvn + λnT
Φ(un)−Bun

‖un‖0
,

where vn = un

‖un‖0 . We can see that {Tvn} contains convergent subsequence. Be-

cause of our assumption the sequence {Φ(un)−Bun

‖un‖0 } converges to zero. Letting
n→ +∞ we have vn → 0, so we came to the contradiction, with ‖vn‖0 = 1.

So at least one of (ii) and (iii) holds true. That is why in the component C,
there exist the point (λ, u), such that the sum ‖u‖0 + |λ| is arbitrary large. We are
now going to show that there exists λ1 > 1 and R1 > 0, such that

∀(λ,u)∈C‖u‖0 ≥ R1 ⇒ λ ∈ (λ1,+∞).

Assume contrary to our claim that, there exists the sequence (λn, un) ∈ C, such
that ‖un‖0 → +∞ and λn → λ0 ∈ [0, 1]. Then, for vn = un

‖un‖0 , the relation holds

vn = λnT
Φ(un)−Aun

‖un‖0
+ λnATvn.

Let us now observe that Φ(un)−Aun

‖un‖0 → 0. We will show, that for any positive

η > 0, the inequality |Φ(un)(x,y)−Aun(x,y)
‖un‖0 | < η holds for almost all n ∈ N. First, let

us choose R > 0, such that for s > R the relation holds∣∣∣ϕ((x, y), s)−As

s

∣∣∣ < η.

Because the function |ϕ((x, y), s)−As| is bounded on Ω× [0, R] we can see that for
n ∈ N large enough the implication holds

un(x, y) ∈ [0, R] ⇒
∣∣∣Φ(un)(x, y)−Aun(x, y)

‖un‖0

∣∣∣ < η.

Moreover, for ‖un‖0 > R the implication holds

un(x, y) > R⇒ |Φ(un)(x, y)−Aun(x, y)|
|un(x, y)|

≤
∣∣∣Φ(un)(x, y)−Aun(x, y)

‖un‖0

∣∣∣ < η

what proves |Φ(un)(x,y)−Aun(x,y)
‖un‖0 | < η, for any (x, y) ∈ Ω. Hence 1

‖un‖0T (Φ(un) −
Aun) → 0. Moreover, there exists the convergent subsequence of {Tvn}. So we
may assume that vn → v0 and then we have

v0 = λ0ATv0

for v0 6= 0 and v0 ≥ 0. This implies λ0 = µ0
A > 1, what contradicts our assumption.

By Theorem 1.4 there exists the sequence of connected sets Ci
n ⊂ (0,+∞) ×

C0(Ω), such that for n ∈ N large enough Ci
n ∩ ((0, 1)× {0}) 6= ∅ and for any R > 0

the relation holds Ci
n ∩∂([ µ0

2B , 2]×B(0, R) 6= ∅. Let us observe that for R > 0 large
enough, there exists (λn, un) ∈ Ci

n such that λn ∈ (1, 2].
So, from the connectedness of the sets C and Ci

n, we may conclude that there
exist pairs (1, u) ∈ C, (1, un) ∈ C1

n and (1, vn) ∈ C2
n, and because of Theorem 1.5

the point (1, u) may be selected in such way that there exists infinitely many points
(1, un) ∈ C1

n or (1, vn) ∈ C2
n being arbitrarily close to (1, u). �
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