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REALITY CONDITIONS OF LOOP SOLITONS GENUS g:
HYPERELLIPTIC AM FUNCTIONS

SHIGEKI MATSUTANI

Abstract. This article is devoted to an investigation of a reality condition
of a hyperelliptic loop soliton of higher genus. In the investigation, we have

a natural extension of Jacobi am-function for an elliptic curves to that for a

hyperelliptic curve. We also compute winding numbers of loop solitons.

1. Introduction

In this article, we investigate a reality condition of loop solitons with genus g.
Here the loop soliton is defined as follows.

Definition 1.1. For a real parameter t2 ∈ R, let us consider a smooth immersion of
a curve in C parameterized by t1 ∈ R and its smooth deformation by t2, Zt2 : R ↪→ C
(t1 7→ Z(t1, t2) := Zt2(t1) = X1 +

√
−1X2) with ∂t1Z = e

√
−1φ(t1,t2). We call

the deformation of the curve loop soliton if its real tangential angle φ(t1, t2) is
characterized by a solution of MKdV equation

∂t2φ +
1
4
(∂t1φ)3 + ∂3

t1φ = 0. (1.1)

The loop soliton or geometry of MKdV equation has been studied by several
researchers from viewpoints of a connection between integrable system and classical
differential geometry, and a relation between algebraic geometry and differential
geometry ([9] and references therein). From a historical point of view, simple loop
solitons appeared in Euler’s book [2] as solutions of an elastica problem which was
proposed by James Bernoulli as a problem in mathematical science [11]. In [4], we
have proposed a problem of statistical mechanics of elasticas as a generalization of
the elastica problem, which we sometimes call quantized elastica using similarity
between quantum mechanics and statistical mechanics. The new problem is related
to large polymers in a heat bath. In [4] we show that the equi-energy state of
quantized elastica is given by the loop soliton. It means that the loop soliton is
directly related to (low energy) physics. Thus we have studied the loop soliton and
quantized elastica in a series of works [4, 5, 6].

In [5], we gave explicit solutions of loop solitons in terms of hyperelliptic func-
tions based upon theories of Baker’s [1, 5] and Weierstrass’s [13] as follows. For a
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hyperelliptic curve Cg given by an affine equation,

Cg : y2 = x2g+1 + λ2gx
2g + λ2g−1x

2g−1 + · · ·+ λ2x
2 + λ1x + λ0

= (x− e1)(x− e2)(x− e3) . . . (x− e2g)(x− e2g+1),
(1.2)

where each ea is a complex number C, we have a coordinate system in a complex
vector space J∞g := Cg as maps from Abelian universal covering of symmetric
product of Cg, USymg(Cg) to J∞g :

ug−1 =
g∑

i=1

u
(i)
g−1, ug =

g∑
i=1

u(i)
g , (1.3)

u
(i)
g−1 =

∫ (x(i),y(i))

∞

xg−2dx

2y
, u(i)

g =
∫ (x(i),y(i))

∞

xg−1dx

2y
. (1.4)

Proposition 1.2. A hyperelliptic solution of the loop soliton of genus g is give by

∂t1Z
(a) =

g∏
i=1

(x(i) − ea), (1.5)

where t1 = Kug and t2 = K(ug−1− (λ2g + ea)−1ug) for a constant positive number
K, if the curve (1.2) and integrals contours which satisfy the reality condition,

(1) |∂ugZ(a)| = R for a constant positive number R,
(2) ug ∈ R.

The proof or this proposition can be found in [5, Proposition 3.4].
However, we did not deal with explicit expression of its reality conditions in [5]

Thus we will concentrate on the reality condition of loop soliton in this article. The
reality condition of soliton equations were investigated well [[8, 3] and references
therein] but these investigations can not be directly applied to our problem. On
the other hand in [7], Mumford gave natural results on the reality condition of the
elastica and a loop soliton of genus one. In other words, he showed the moduli of
loop solitons of genus one as elasticas in terms of θ functions, or the geometry of
the Abelian varieties of genus one. However when one considers its straightforward
extension to general genus case, he encounters a difficulty. In the higher genus
case, there appears a problem that the moduli of the Abelian varieties differs from
the moduli of Jacobian varieties, i.e., a problem that there are excess parameters
in the Abelian varieties. On the other hand, on the investigation of loop soliton
even with higher genus, we have chosen the strategy that we use only the data of
curves themselves to avoid the problem of excess parameters, and give some explicit
results in [5, 6]. Thus we will go on to follow the strategy to investigate the reality
condition.

To use the strategy, we will, first, interpret the results of Mumford in terms of
the language of the curve in the case of genus one. After then, we will apply the
scheme to the reality condition of higher genus case. Section two is devoted to
the reinterpretation of Mumford results. Section three gives the moduli of the loop
solitons of genus two, which can be easily generalized to higher genus cases as in §4.
As we will show in Theorem 4.4, the reality condition is reduced to the following
conditions.

Theorem 1.3. Let a set of the zero points eb of y in (1.2) be denoted by B. Z(a)

satisfies the reality condition if and only if the following conditions satisfy,
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(1) each ec ∈ B is real,
(2) there exists g pairs (ecj , edj )j=1,...,g satisfies (ecj − ea)(edj − ea) = e2

a for
negative ea,

(3) the contour in the integral ug in (1.3) satisfies a certain condition.

Using our result of this article, we give in principle explicit solutions of the loop
solitons, even though the numerical problems might remain to illustrate its shape
graphically. Though [12] illustrated shapes of large polymers in terms of elliptic
functions as approximations, our results of this article promises to steps to exact
solutions of such shapes.

In the investigation, we have a natural extension of Jacobi am-function for an
elliptic curves to that for a hyperelliptic curve. We also compute winding numbers
of loop soliton.

As there are so many open problems related to this as in [6, 9], this result could
be applied to them.

2. Genus One

First we consider the genus one case using data from the curve given by

y2 = x3 + λ2x
2 + λ1x + λ0

= (x− e1)(x− e2)(x− e3).
(2.1)

The coordinate u of the complex plane J∞1 := C is given by,∫ (x,y)

du, du =
dx

2y
. (2.2)

It is known that a shape of the (classical) elastica, i.e., a loop soliton with genus
one, Z : R ↪→ C (u 7→ Z(u) = X1(u) +

√
−1X2(u)) with ∂uZ = e

√
−1φ satisfies the

differential equation,

a∂u(φ) +
1
3
(∂uφ)3 + ∂3

uφ = 0, (2.3)

where ∂u := d/du.

Proposition 2.1 (Euler [2]). A solution of (2.3) is given by

∂uZ(a) = (x− ea),

for an elliptic curve given by the form (2.1). If it is a loop soliton if an only if it
satisfies the reality condition:

(1) |∂uZ(a)| = 1.
(2) u ∈ R.

For a proof of the above propositions, see [5, Proposition 3.4].

Proposition 2.2 (Mumford [7]). The moduli Λ of elastica or loop soliton of genus
one is given by the following subspace in the upper half plane H := {z ∈ C | =z > 0}
modulo PSL(2, Z),

Λ :=
√
−1R>0 ∪

(
1
2

+
√
−1R>0

)
∪∞ modulo PSL(2, Z).

Here R>0 is {x ∈ R | x > 0}.
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Though Mumford led this result using the geometry of Abelian variety of genus
one [7], we will give another proof only using the language of curve itself as men-
tioned in Introduction. The purpose of this section is to give its proof using only
the data of the curve itself.

Lemma 2.3. For different numbers a, b and c in {1, 2, 3}, let e2
√
−1ϕa := (x −

ea)/ccba, eab := ea − eb and ccba :=
√

ecaeba. The elliptic differential of the first
kind (2.2) up to sign is

du =
dϕa√

(
√

eba −
√

eca)2 + 4
√

ebaeca sin2 ϕa

.

Proof. Direct computations give

dx = 2ccba

√
−1e2

√
−1ϕadϕa,

y = ccba

√
−1e2

√
−1ϕa

√
eba(e−2

√
−1ϕa − ccbae−1

ba )(e2
√
−1ϕa − c−1

cbaeca)

= ccba

√
−1e2

√
−1ϕa

√
eba + eca − 2

√
ebaeca cos 2ϕa,

up to sign. The addition formula cos(2ϕ) = 1− 2 sin2 ϕ leads the result. �

Let us use the standard representations,

k :=
2
√
−1 4
√

ebaeca√
eba −

√
eca

and then

du =
dϕa

(
√

eba −
√

eca)
√

1− k2 sin2 ϕa

. (2.4)

By letting w := sin(ϕa), (2.4) becomes

du =
dw

(
√

eba −
√

eca)
√

(1− w2)(1− k2w2)
(2.5)

Remark 2.4. (1) Due to the (2.4), we have the following elliptic integral u(ϕa)

u(ϕa) =
∫ ϕa

0

dϕ

H
[1]
a (ϕ)

,

and its inverse function ϕa(u) gives

exp(
√
−1ϕa(u)) =

√
x− ea.

As
√

(e3 − e1)/(x− e3) is sn-function, ϕa(u) is essentially the same as Jacobi-am
function am(u) [10], though we need Landen-transformation.
(2) Behind (2.5), there is a kinematic system with an energy

E = ẇ2 + (1− w2)(1− k2w2).

Due to the reality condition, Proposition 2.1 (1), ϕa belongs to a subregion
of a real number. For any ϕa in a certain region [ϕl, ϕu], the reality condition,
Proposition 2.1 (2), requires that the denominator in (2.5) should be real and thus
that k2, or

√
ebaeca and (

√
eba −

√
eca)2, should be real;

=
√

eba = =
√

eca, arg(eba) = − arg(eca),
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Figure 1. Geometry of Contours: α and β are Homology basis of
the elliptic curves.

where arg(a) := = log(a) for a ∈ C. Accordingly introducing an expression eba =:
βbae

√
−1αba , using αba ∈ [0, π) and βba ∈ R,1 the reality condition of the loop soliton

Z(a) require alternative cases:
(1) αba and αcavanish, i.e., eba and eca belong to R, or
(2) αba = −αca and βba = βca.

However, the second case means that (
√

eba −
√

eca)2 vanishes and corresponds to
k = ∞.2 Thus we find the following lemma.

Lemma 2.5. The reality condition of the loop soliton Z(a) is reduced to two alter-
native cases:

I-1 eba > 0 and eca > 0, i.e., k ∈
√
−1R≥0, w ≡ sinϕa ∈ [−1, 1].

I-2 eba ≤ 0 and eca ≤ 0, i.e., k > 1 and w ≡ sinϕa ∈ [1/k, 1] or w ≡ sinϕa ∈
[−1,−1/k].

Proof. For general ϕa ∈ R, u must be real. Hence the candidates of eba’s are
followings: (I-0) eba < 0 and eca > 0, or eba > 0 and eca < 0, (I-1) eba > 0 and
eca > 0, and (I-2) eba ≤ 0 and eca ≤ 0.

In (I-0) case (
√

eba −
√

eca) has a non-trivial angle in the complex plane, which
cannot be cancelled by the other factors. We remove (I-0) case. (I-1) is obvious.
The region of sinφa must be a subset of [−1, 1]. On the case (I-2), noting that
prefactor 1/(

√
eba −

√
eca) generates the factor

√
−1, we conclude that k > 1 and

sinφa ∈ [1/k, 1] or sinφa ∈ [−1,−1/k]. �

1Here we defined βba ∈ R rather than βba ∈ R≥0 due to the domain of αba.
2Though it is not important, it is interesting that the second case can be reduced to the first

case, i.e., αca = 0, by transforming ϕa to ϕa−αca due to the formula in the proof in Lemma 2.3.
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Proof of Proposition 2.2. Let us consider the geometry of the integration. Fig.1
gives an illustration of our situations, where Fig.1 (a) corresponds to case I-1 and
(b) to case I-2 in Lemma 2.5
I-1: The periodicity (4ω, 2ω′) of

√
(x− ea) is given by

ω =
∫ 1

0

dw√
(1− w2)((

√
eba −

√
eca)2 + 4

√
ebaecaw2)

,

ω′ = (
∫ 0

1

+
∫ √

−1/|k|

0

)
dw√

(1− w2)((
√

eba −
√

eca)2 + 4
√

ebaecaw2)
.

Thus ω′ = ω +
√
−1L[k] for general k with a certain real valued function L. On

the other hand, for k → 0, L → ∞ and for k → ∞, L vanishes. Further L[k] is a
continuous function of k and its range is R>0. Hence τ = 2ω′/4ω ∈ (1/2+

√
−1R>0).

I-2: The periodicity (4ω, 2ω′) of
√

(x− ea) is given by

ω = 2
∫ 1/k

0

dw√
(1− w2)((

√
eba −

√
eca)2 + 4

√
ebaecaw2)

,

ω′ =
∫ 1

1/k

dw√
(1− w2)((

√
eba −

√
eca)2 + 4

√
ebaecaw2)

.

On the other hand, for k → 0, ω →∞ and for k →∞, ω vanishes while ω′ is a finite
number. Further ω[k] and ω′[k] are continuous in k. Hence τ = 2ω′/4ω ∈

√
−1R>0.

Since theory of the Jacobi elliptic functions gives the fact that k′ :=
√

1− k2

gives the inversion of moduli τ → −1/τ , the constraint k > 1 in Lemma 2.5 is less
important.

We note that the periodicity of
√

(x− ea) differs from ∂uZ(a) by twice but the
difference is not so significant. Hence we have a complete proof of Proposition 2.2
based upon geometry of elliptic curve itself instead of geometry of Abelian variety
as a domain of elliptic theta function. �

Remark 2.6. (1) We list its special cases for a = 1:
(a) k = 0 in I-1: its shape is a circle and its related curve is y2 = (x−e1)2(x−e2)
(b) k = ∞ in I-2: its shape is a loop soliton solution, and its related curve is

y2 = (x− e1)(x− e2)2

(2) Since ∂sZ ≡ e
√
−1φ can be regarded as a harmonic map: ∂sZ : S1 → S1 with

energy

E =
∮

ds|∂sφ|2.

(3) Above Lemma 2.5, we argued the angle of eba’s. However the geometry of the
integrals depends only on

√
ebaeca and

√
eba −

√
eca rather than eba’s themselves.

For the map ∂uZ : S1 → S1, we can find index as a winding number as shown
in Fig.2. We call it index(∂uZ).

Corollary 2.7. The index(∂uZ) is given as follows.
I-1 index(∂uZ) = ±1.
I-2 index(∂uZ) = 0.

Proof. In the case I-1, since the contours w ≡ sinϕa is [−1, 1] which is identified
with the range of sine function, ϕa becomes a monotonic increasing function of
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Figure 2. The behavior of ϕ

u. In fact passing by w = ±1 changes the sign of
√

1− w2 or cos ϕa. By paying
attentions on the orientation of the contour, we have the sign of the index. On the
other hand, in the case I-2, ϕ does not wind around S1 like Fig. 2(b). The branch
point (1/k, 0) does not have an effect of the sign of

√
1− w2. �

3. Genus Two

In this section, we will investigate the reality condition associated with a hyper-
elliptic curve C2 of genus two expressed by

y2 = x5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0

= (x− e1)(x− e2)(x− e3)(x− e4)(x− e5),
(3.1)

where each ea is a complex number C. We have the coordinate system of the
complex vector space J∞2 := C2;

u1 = u
(1)
1 + u

(2)
1 , u2 = u

(1)
2 + u

(2)
2 , (3.2)

u
(i)
1 =

∫ (x(i),y(i))

∞

dx

2y
, u

(i)
2 =

∫ (x(i),y(i))

∞

xdx

2y
. (3.3)

Let the Abelian map Sym2(C2) → J2 := J∞2 /Λ be denoted by ω′A where Λ is
a lattice in J∞2 associated with C2. Considering winding numbers, we will de-
note the Abelian universal covering of Sym2(C2) by USym2(C2) and its map from
USym2(C2) to J∞2 by ωA.

The loop soliton solution of (3.1) is given by ∂t1Z
(a) = (x(1) − ea)(x(2) − ea) if

it satisfies the reality condition.

Lemma 3.1. For different numbers a, b and c of {1, 2, 3, 4, 5}, let e2
√
−1ϕ(i)

a :=
(x(i) − ea)/ccba, eab := ea − eb and ccba :=

√
ebaeca. In general, the following
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relation up to sign holds:

du
(i)
2 =

√
−1(ccbae

√
−1ϕ(i)

a + eae−
√
−1ϕ(i)

a )dϕ
(i)
a√

((
√

eba −
√

eca)2 + 4
√

ebaeca sin2 ϕ
(i)
a )ccbaeda(e−2

√
−1ϕ

(i)
a − ccbae−1

da )

× 1√
(e2

√
−1ϕ

(i)
a − c−1

cbaeea)
.

Proof. Direct computations lead the formula. �

We will find a subspace (Γ, ωA(Γ)) ⊂ USym2(C2) × J∞2 which satisfies the re-
ality condition. We note that since the reality condition is local, we need not pay
attentions upon the difference between Sym2(C2) and USym2(C2).

Lemma 3.2. The reality condition of the loop soliton Z(a) satisfies if and only if
(x(1), x(2)) ∈ USym2(C2) and λ’s satisfy the following relations:

(1) |(x(i) − ea)| = Ki of a real constant Ki, (i = 1, 2),
(2) u

(i)
2 ∈ R for i = 1, 2.

Proof. Proposition 1.2 leads to (x(1), x(2)) ∈ Γ ⊂ USym2(C2) satisfying the reality
conditions is given by

|x(2) − ea| =
K

|x(1) − ea|
, (3.4)

for a real constant K and

=u
(2)
2 (x(2)) = −=u

(1)
2 (x(1)). (3.5)

When (3.4) is trivial, i.e., |(x(i) − ea)| = Ki of a real constant Ki, (i = 1, 2), and
both sides in (3.5) vanish, we obtain above conditions as sufficient conditions.

Thus we will consider its necessity condition. Assume that both conditions
(3.4) and (3.5) are not trivial, i.e., x(2) and x(1) are not independent. Since these
conditions (3.4) and (3.5) are real analytic ones, we must also deal with their
complex conjugate x(1), x(2), and so on. Due to the conditions, for example, x(2)

is a function of x(1), x(1), and x(2). Of course, there is no guarantee whether there
exists such a function x(2)(x(1), x(1), x(2)) and even continuity but we can assume
that they exist, at least, locally. The reality condition locally determines an open
subspace ωA(Γ) in J∞2 . Due to the dependence between x(1) and x(2) or u

(1)
2 and

u
(2)
2 , u1, u2 u1 and u2 are neither independent over ωA(Γ). Hence ∂/∂x(1)|x(2) nor

∂/∂u1|u2 do not behave well as differential operators among sections over Γ and
ωA(Γ), and should be replaced with covariant derivatives. For example, ∂/∂u1|u2

is replaced with ∂/∂u1 −Au1(u1, u2, u1, u2) using an appropriate connection Au1 .
On the other hand, the loop soliton ∂t1Z

(a) is a meromorphic function over Γ and
ωA(Γ). However it is a restricted section of the J∞2 at ωA(Γ) in (3.2) and satisfies
the MKdV equation (1.1) with respect only to the differentials of u1 and u2 over
there as mentioned in Proposition 1.2. However the connection Au1 prevents that
the angle part of ∂t1Z

(a) does satisfy the MKdV equation (1.1). Hence Au1 and
Au2 must vanish.

However, the condition that Au1 vanishes means that ωA(Γ) is a flat real plane
in J∞2 = C2 and x(2) is independent of x(1). Hence we prove this Lemma. �
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Remark 3.3. By letting an appropriate immersion ι : S1 ↪→ C2, ∂u2Z ◦ωA ◦ ι is a
analytic map from S1 to S1.

Lemma 3.4. For the situation of Lemma 3.1, the reality condition of the loop
soliton Z(a) needs ea = −ccba and ceda = ccba, and then we have the relation up to
sign,

du
(i)
2

=
2
√

ccba sinϕ
(i)
a dϕ

(i)
a√

((
√

eba −
√

eca)2 + 4
√

ebaeca sin2 ϕ
(i)
a )((

√
eda −

√
eea)2 + 4

√
edaeea sin2 ϕ

(i)
a )

.

Proof. Due to the Lemma 3.2, ϕ
(i)
a is real and each factor must be real. Hence the

imaginary parts should be canceled locally. It means the conditions. �

Let us introduce a representation as an extension of the standard representation
(2.4),

k1 :=
2
√
−1 4
√

ebaeca√
eba −

√
eca

, k2 :=
2
√
−1 4
√

edaeea√
eda −

√
eea

,

and then

du
(i)
2 =

2 4
√

ebaeca sinϕ
(i)
a dϕ

(i)
a

(
√

eba −
√

eca)(
√

eda −
√

eea)
√

1− k2
1 sin2 ϕ

(i)
a

√
1− k2

2 sin2 ϕ
(i)
a

. (3.6)

By letting w := sin(ϕ(i)
a ), we have

du
(i)
2

=
4
√

ebaecawdw√
(1− w2)((

√
eba −

√
eca)2 + 4

√
ebaecaw2)((

√
eda −

√
eea)2 + 4

√
edaeeaw2)

=
2 4
√

ebaecawdw

(
√

eba −
√

eca)(
√

eda −
√

eea)
√

(1− w2)(1− k2
1w

2)(1− k2
2w

2)
.

(3.7)

Remark 3.5. (1) (3.7) is an elliptic integral by u = w2 due to a specialty of genus
two. It cannot be generalized to higher genus case.
(2) Due to the remark 2.4, we should be regard that (3.6) gives the integral as a
function u

(i)
2 of ϕ

(i)
a ,

u
(i)
2 =

∫ ϕ(i)
a

0

dϕ
(i)′
a

H
[2]
a (ϕ(i)′

a )

for an appropriate function H
[2]
2 . Hence the inverse function ϕ

(i)
a (u(i)

2 ) gives the
relation,

exp(
√
−1ϕ(i)

a (u(i)
2 )) =

√
(x(i) − ea)/ccba.

Further ϕa := ϕ
(1)
a (u(1)

2 )+ϕ
(2)
a (u(2)

2 ) gives the al-function of u2 := u
(1)
2 +u

(2)
2 [1, 13],

exp(
√
−1ϕa(u2)) = ala(u2).

Accordingly, we should regard this ϕa as a hyperelliptic am-function of genus two.
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Figure 3. Geometry of Contours: α1, β1, α2 and β2 are Homology
basis of the hyperelliptic curves.

(3) Behind the hyperelliptic am-functions, there is also kinematic system with a
hamiltonian:

E = ẇ2 + (1−w2)((
√

eba −
√

eca)2 + 4
√

ebaecaw2)((
√

eda −
√

eea)2 + 4
√

edaeeaw2).

For each ϕ
(i)
a in a region [ϕl, ϕu], the reality condition of the loop soliton Z(a),

Lemma 3.2 (2), requires that the denominator should be real and thus that k2
d, or√

ebaeca and
√

eba −
√

eca should be also real.

Theorem 3.6. The reality condition of the loop soliton Z(a) of genus two is reduced
to the conditions: ea = −ccba and ceda = ccba with three alternative cases:

II-1. eba > 0, eca > 0 eea > 0, eda > 0, i.e., k1, k2 ∈
√
−1R and sinϕa ∈ [−1, 1].

II-2. eba > 0, eca > 0, eea ≤ 0 and eda ≤ 0, i.e., k1 ∈
√
−1R and k2 ∈ R

sinϕa ∈ [1/k2, 1] or sinϕa ∈ [−1,−1/k2].
II-3. eba ≤ 0, eca ≤ 0 eea ≤ 0, eda ≤ 0, i.e., k1, k2 ∈ R, (k1 < k2),

(a) if k2 < 1, sinϕa ∈ [−1, 1].
(b) if k2 > 1, sinϕa ∈ [−1/k2, 1/k2].
(c) if k1 > 1, sinϕa ∈ [1/k1, 1] or sinϕa ∈ [−1,−1/k1].

Proof. As in the case of the elliptic curves, we have the results. �

Fig.3 gives an illustration of our situation, where Fig.3 (a) corresponds to II-1
and (b) does to II-2 and (c) to II-3.

In this case, we show the index(∂t1Z).

Corollary 3.7. The index(∂t1Z) as a winding number of the map ι(S1) to S1 is

II-1. index(∂t1Z) = 0 or ±2,
II-2. index(∂t1Z) = 0,
II-3. (a) index(∂t1Z) = 0 or ±2, and (b) (c) index(∂t1Z) = 0.
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Proof. These indexes consist of those of each 2ϕ
(i)
a . If the index of 2ϕ

(i)
a is one,

that of 2ϕa is sum over i = 1, 2, ϕa = ±ϕ
(1)
a ± ϕ

(2)
a . Here ± depends upon the

orientation of contours. The computations of ϕa are essentially the same as the
genus one illustrated in Fig. 2. �

4. Genus g

The computations of genus two are easily extended to higher genus loop solitons.
Let us introduce the sets, A := {1, 2, 3, . . . , 2g + 1}, Aa := A − {a} for a ∈ A,
O1 := {3, 5, . . . , 2g − 1}, and a bijection σa : {1, 2, . . . , 2g} → Aa for a ∈ A which
determines the order. We will fix the order σa for an a ∈ A.

Recalling the facts in genus two case, the direct computations give the following
lemmas.

Lemma 4.1. For a ∈ A, let e2
√
−1ϕ(i)

a := (x(i) − ea)/ccba, eba := eσa(b) − ea and
ccba :=

√
ebaeca,

D(i)
a,σa

(ϕa) :=
(
(
√

e1a −
√

e2a)2 + 4
√

e1ae2a sin2 ϕ(i)
a )

×
∏

d∈O1,e=d+1

c12aeda(e−2
√
−1ϕ(i)

a − c12ae−1
da )(e2

√
−1ϕ(i)

a − c−1
12aeea)

)1/2

,

N (i)
a,σa

(ϕa) :=
(√

−1(c12ae
√
−1ϕ(i)

a + eae−
√
−1ϕ(i)

a )
)g−1

.

In general, (1.4) up to sign becomes

du(i)
g =

N
(i)
a,σadϕa

D
(i)
a,σa

.

Lemma 4.2. For the situations of Lemma 4.1, the reality condition of the loop
soliton Z(a) requires the conditions that ea = −ccba for any c ∈ O1, b = c + 1 and
then we have

D(i)
a,σa

(ϕa) =
(
((
√

e1a −
√

e2a)2 + 4
√

e1ae2a sin2 ϕ(i)
a )

×
∏

d∈O1,e=d+1

((
√

eda −
√

eea)2 + 4
√

edaeea sin2 ϕ(i)
a )

)1/2

,
(4.1)

N (i)
a,σa

(ϕa) =
(
2
√

c12a sinϕ(i)
a

)g−1

.

These lemma can be proved along the line of the arguments for the case of genus
two.

Corresponding to Remark 3.5, we have the following remarks:

Remark 4.3. (1) Let ϕa := ϕ
(1)
a + ϕ

(2)
a + · · ·+ ϕ

(g)
a and then (1.5) is expressed by

∂t1Z
(a) = e2

√
−1ϕa ,

as a function of ug := u
(1)
g +u

(2)
g + · · ·+u

(g)
g . The hyperelliptic al-function is written

by
ala(u) = e

√
−1ϕa(u),

(2) ϕa can be regarded as hyperelliptic am-function of genus g.
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We will state our main theorem as follows, which is also proved along the line of
the same arguments in the case of genus two.

Theorem 4.4. The reality condition of the loop soliton Z(a) in (1.5) can be reduced
to the conditions that there are g pairs (eb,a, eb+1,a)b∈O1 ∈ R2 satisfying −ea =
√

eb,aeb+1,a ≥ 0, and the contour of integral of each u
(i)
g of i = 1, . . . , g should be

chosen so that u
(i)
g is real.
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