Electronic Journal of Differential Equations, Vol. 2007(2007), No. 92, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

CONTINUOUS DEPENDENCE FOR THE BRINKMAN EQUATIONS OF FLOW IN DOUBLE-DIFFUSIVE CONVECTION

HONGLIANG TU, CHANGHAO LIN

Abstract

This paper concerns the structural stability for convective motion in a fluid-saturated porous medium under the Brinkman scheme. Continuous dependence for the solutions on the gravity coefficients and the Soret coefficient are proved. First of all, an a priori bound in L^{2} norm is derived whereby we show the solution depends continuously in L^{2} norm on changes in the gravity coefficients and the Soret coefficient. This estimate also implies that the solutions decay exponentially.

1. Introduction

Within the context of fluid flow in porous media, or simply within theory of fluid flow, there has been substantial recent interest in deriving stability estimates where changes in coefficient are allowed, or even the model (the equations themselves) changes. This type of stability has earned the name structural stability, and is different from continuous dependence on the initial data. The concept of structural stability in which the study of continuous dependence (or stability) is on changes in the model itself rather than the initial data. Thus structural stability constitutes a class of stability problem every bit important. Structural stability is focus of attention now, and for the relevant results, the reader is referred to [1, 2, 3, 5, 6, 7, 8, 9, 10.

The Brinkman model is believed accurate when the flow velocity is too large for Darcy's law to be valid, and additionally the porosity is not too small. In this article, we are concerned with structural stability for the Brinkman equations modeling the double diffusive convection. The temperature field is non-constant and a solute is also diffused throughout the porous body.

The Brinkman equations governing the flow of fluid in double-diffusive convection are

$$
\begin{gather*}
u_{i, t}=\nu \Delta u_{i}-a u_{i}-p_{, i}+g_{i} T+h_{i} C \\
T_{, t}+u_{i} T_{, i}=\Delta T \\
C_{, t}+u_{i} C_{, i}=\Delta C+\rho \Delta T \quad \text { in } \Omega \times t>0 \tag{1.1}\\
u_{i, i}=0
\end{gather*}
$$

[^0]where u_{i}, T, C and p represent fluid velocity, temperature, salt concentration and pressure, respectively. The quantities $g_{i}(x)$ and $h_{i}(x)$ are gravity vector terms, and positive constants ρ, a are known the Soret coefficient and the Darcy coefficient, respectively. Ω is a bounded domain of of R^{3}, and with sufficiently smooth boundary $\partial \Omega$. Δ is the Laplace operator, $\|\cdot\|$ and $\langle u, v\rangle$ denote the norm and inner product on $L^{2}(\Omega)$.

Associated with (1.1), we impose the boundary data

$$
\begin{equation*}
u_{i}=0 ; \quad T=0 ; C=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{equation*}
$$

and the initial data

$$
\begin{equation*}
u_{i}(x, 0)=z_{i}(x) ; T(x, 0)=T_{0}(x) ; C(x, 0)=C_{0}(x) ; x \in \Omega \tag{1.3}
\end{equation*}
$$

In (1.1) and in the equations throughout, a comma is used to denote partial differentiation: For example $u_{i, i}$ denotes $\frac{\partial u_{i}}{\partial x_{i}}$ and $u_{i, t}$ denotes $\frac{\partial u_{i}}{\partial t}$, and we employ the convention of summing over repeated indices from 1 to 3 .

2. A Priori bounds

Multiplying 1.12_{2} by T and integrating over Ω, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|T\|^{2}=-\|\nabla T\|^{2} \tag{2.1}
\end{equation*}
$$

Multiplying 1.1$)_{3}$ by C and integrating over Ω, then using arithmetic-geometric mean inequality, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|C\|^{2}+\frac{1}{2}\|\nabla C\|^{2} \leq \frac{\rho^{2}}{2}\|\nabla T\|^{2} \tag{2.2}
\end{equation*}
$$

Multiplying 1_{1} by u_{i} and integrating over Ω, furthermore using CauchySchwarz, arithmetic-geometric mean, then using Poincare's inequality, we find

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|u\|^{2}+\nu\|\nabla u\|^{2}+\frac{a}{2}\|u\|^{2} & \leq \frac{1}{a}\left[g^{2}\|T\|^{2}+h^{2}\|C\|^{2}\right] \\
& \leq \frac{1}{a \lambda_{1}}\left[g^{2}\|\nabla T\|^{2}+h^{2}\|\nabla C\|^{2}\right] \tag{2.3}
\end{align*}
$$

where

$$
g^{2}=\max _{\Omega} g_{i} g_{i} ; \quad h^{2}=\max _{\Omega} h_{i} h_{i}
$$

and λ_{1} is the first eigenvalue of the problem

$$
\begin{gathered}
\Delta \phi+\lambda \phi=0 \quad \text { in } \Omega \\
\phi=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Multiplying 1_{1} by $u_{i, t}$ and integrating over Ω, furthermore using CauchySchwarz and arithmetic-geometric mean inequality, then using Poincare's Poincare's inequality, we find

$$
\begin{align*}
\frac{a}{2} \frac{d}{d t}\|u\|^{2}+\frac{\nu}{2} \frac{d}{d t}\|\nabla u\|^{2} & \leq \frac{1}{2}\left[g^{2}\|T\|^{2}+h^{2}\|C\|^{2}\right] \tag{2.4}\\
& \leq \frac{1}{2 \lambda_{1}}\left[g^{2}\|\nabla T\|^{2}+h^{2}\|\nabla C\|^{2}\right]
\end{align*}
$$

Multiplying (2.1) by $\Gamma_{11},(2.2)$ by Γ_{12} and (2.3) by Γ_{13}, then adding all results to (2.4) leads to

$$
\begin{equation*}
\frac{d}{d t} Q_{1}(t)+G(t) \leq 0 \tag{2.5}
\end{equation*}
$$

where $\Gamma_{1 i},(i=1,2,3)$ are positive constants at our disposal,

$$
\begin{equation*}
Q_{1}(t)=\frac{\Gamma_{11}}{2}\|T\|^{2}+\frac{\Gamma_{12}}{2}\|C\|^{2}+\frac{\left(\Gamma_{13}+a\right)}{2}\|u\|^{2}+\frac{\nu}{2}\|\nabla u\|^{2} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{align*}
G(t)= & {\left[\frac{\left(2 \Gamma_{11}-\rho^{2} \Gamma_{12}\right)}{2}-\frac{1}{\lambda_{1}} g^{2}\left(\frac{1}{2}+\frac{\left.\Gamma_{13}\right)}{a}\right]\|\nabla T\|^{2}+\frac{a \Gamma_{13}}{2}\|u\|^{2}\right.} \tag{2.7}\\
& +\left[\frac{\Gamma_{12}}{2}-\frac{1}{\lambda_{1} 1} h^{2}\left(\frac{1}{2}+\frac{\left.\Gamma_{13}\right)}{a}\right]\|\nabla C\|^{2}+\Gamma_{13} \nu\|\nabla u\|^{2}\right.
\end{align*}
$$

We can select $\Gamma_{1 i},(i=1,2,3)$ to secure that all the all the coefficients of 2.7) are positive, such as

$$
\Gamma_{13}=\frac{a}{2} ; \quad \Gamma_{12}=\frac{4 h^{2}}{\lambda_{1}} ; \quad \Gamma_{11}>\frac{\left(2 h^{2} \rho^{2}+g^{2}\right)}{\lambda_{1}} .
$$

Thus, with the help of Poincare's inequality, we can show that

$$
\begin{align*}
G(t) \geq & {\left[\lambda_{1} \frac{\left(2 \Gamma_{11}-\rho^{2} \Gamma_{12}\right)}{2}-g^{2}\left(\frac{1}{2}+\frac{\left.\Gamma_{13}\right)}{a}\right]\|T\|^{2}+\Gamma_{13} \nu\|\nabla u\|^{2}\right.} \tag{2.8}\\
& +\left[\frac{2 \lambda_{1} \Gamma_{12}}{2}-h^{2}\left(\frac{1}{2}+\frac{\Gamma_{13}}{a}\right]\|C\|^{2}+\Gamma_{13} \frac{a}{2}\|u\|^{2}\right.
\end{align*}
$$

We can easily show that

$$
\begin{equation*}
\kappa_{1} Q_{1}(t) \leq G(t) \tag{2.9}
\end{equation*}
$$

where κ_{1} is a positive constant represented by

$$
\begin{aligned}
\kappa_{1}=\min \{ & \frac{1}{\Gamma_{11}}\left[\lambda_{1}\left(2 \Gamma_{11}-\rho^{2} \Gamma_{12}\right)-g^{2}\left(1+\frac{\left.2 \Gamma_{13}\right)}{a}\right],\right. \\
& \frac{1}{\Gamma_{12}}\left[\Gamma_{12} \lambda_{1}-h^{2}\left(1+\frac{\left.2 \Gamma_{13}\right)}{a}\right], \frac{a \Gamma_{13}}{\Gamma_{13}+a}, 2 \Gamma_{13}\right\}
\end{aligned}
$$

Thus, from 2.5), we can derive that

$$
\begin{equation*}
\frac{d}{d t} Q_{1}(t)+\kappa_{1} Q_{1}(t) \leq 0 \tag{2.10}
\end{equation*}
$$

Furthermore, we obtain

$$
\begin{equation*}
Q_{1}(t) \leq Q_{1}(0) e^{-\kappa_{1} t} \tag{2.11}
\end{equation*}
$$

Therefore, recalling the definition of $Q_{1}(t)$ and combining 2.5), we can obtain

$$
\begin{gather*}
\|T\|^{2} \leq M_{1} ; \quad\|C\|^{2} \leq M_{1} ; \quad\|u\|^{2} \leq M_{1} ; \quad\|\nabla u\|^{2} \leq M_{1} ; \quad \int_{0}^{t}\|u\|^{2} d \eta \leq M_{1} \\
\quad \int_{0}^{t}\|\nabla u\|^{2} d \eta \leq M_{1} ; \quad \int_{0}^{t}\|\nabla T\|^{2} d \eta \leq M_{1} ; \quad \int_{0}^{t}\|\nabla C\|^{2} d \eta \leq M_{1} \tag{2.12}
\end{gather*}
$$

where M_{1} is a generic positive constant depending on the coefficients of 1.1 and the initial data terms in 1.3 .

It also follows from inequality 2.11 that $\|\nabla u\|^{2},\|T\|^{2}$ and $\|C\|^{2}$ decay exponentially as t tends to ∞.

3. Continuous dependence on the gravity coefficients

Let $\left(u_{i}, T, C, P\right)$ and $\left(u_{i}^{*}, T^{*}, C^{*}, P^{*}\right)$ be solutions to 1.1 with the same boundary and initial data $1.2,(1.3)$, but with different gravity coefficients $\left(g_{i}, h_{i}\right)$ and $\left(g_{i}^{*}, h_{i}^{*}\right)$, respectively.

Namely,

$$
\begin{gathered}
u_{i, t}=\nu \Delta u_{i}-a u_{i}-p_{, i}+g_{i} T+h_{i} C \\
T_{, t}+u_{i} T_{, i}=\Delta T \\
C_{, t}+u_{i} C_{, i}=\Delta C+\rho \Delta T \quad \text { in } \Omega \times t>0 \\
u_{i, i}=0
\end{gathered}
$$

and

$$
\begin{gathered}
u_{i, t}^{*}=\nu \Delta u_{i}^{*}-a u_{i}^{*}-p_{, i}^{*}+g_{i}^{*} T^{*}+h_{i}^{*} C^{*} \\
T_{, t}^{*}+u_{i}^{*} T_{, i}^{*}=\Delta T^{*} \\
C_{, t}^{*}+u_{i}^{*} C_{, i}^{*}=\Delta C^{*}+\rho \Delta T^{*} \quad \text { in } \Omega \times t>0 \\
u_{i, i}^{*}=0
\end{gathered}
$$

Now set

$$
\begin{gather*}
w_{i}=u_{i}-u_{i}^{*}, \quad \Pi=p-p^{*}, S=T-T^{*}, \quad \Sigma=C-C^{*} \tag{3.1}\\
\gamma_{i}=g_{i}-g_{i}^{*}, \quad \mu_{i}=h_{i}-h_{i}^{*}
\end{gather*}
$$

Clearly, $\left(w_{i}, \Pi, S, \Sigma\right)$ satisfies the equations

$$
\begin{gather*}
w_{i, t}=\nu \Delta w_{i}-a w_{i}-\Pi_{, i}+\gamma_{i} T+g_{i}^{*} S+\mu_{i} C+h_{i}^{*} \Sigma \\
S_{, t}+w_{i} T_{, i}+u_{i}^{*} S_{, i}=\Delta S \\
\Sigma_{, t}+w_{i} C_{, i}+u_{i}^{*} \Sigma_{, i}=\Delta \Sigma+\rho \Delta S \quad \text { in } \Omega \times\{t>0\} \tag{3.2}\\
w_{i, i}=0
\end{gather*}
$$

with the boundary-initial data

$$
\begin{gather*}
w_{i}=S=\Sigma=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
w_{i}(x, 0)=S(x, 0)=\Sigma(x, 0)=0 \quad \text { in } \Omega \tag{3.3}
\end{gather*}
$$

Multiplying 3.21_{1} by w_{i} and integrating over Ω, then using Cauchy-Schwarz's inequality, and the arithmetic-geometric mean inequality, we obtain

$$
\begin{equation*}
\nu\|\nabla w\|^{2}+\frac{a}{2}\|w\|^{2}+\frac{1}{2} \frac{d}{d t}\|w\|^{2} \leq \frac{2}{a}\left[\left(g^{*}\right)^{2}\|S\|^{2}+\left(h^{*}\right)^{2}\|\Sigma\|^{2}+\mu^{2}\|C\|^{2}+\gamma^{2}\|T\|^{2}\right], \tag{3.4}
\end{equation*}
$$

where

$$
\gamma^{2}=\max _{\Omega} \gamma_{i} \gamma_{i} ; \quad \mu^{2}=\max _{\Omega} u_{i} ; \quad\left(g^{*}\right)^{2}=\max _{\Omega} g_{i}^{*} g_{i}^{*} ; \quad\left(h^{*}\right)^{2}=\max _{\Omega} h_{i}^{*} h_{i}^{*}
$$

Multiplying 3.2$)_{1}$ by $w_{i, t}$ and integrating over Ω, then using Cauchy-Schwarz inequality, and the arithmetic-geometric mean inequality, we have

$$
\begin{equation*}
\frac{1}{2} \nu \frac{d}{d t}\|\nabla w\|^{2}+\frac{a}{2} \frac{d}{d t}\|w\|^{2} \leq\left(g^{*}\right)^{2}\|S\|^{2}+\left(h^{*}\right)^{2}\|\Sigma\|^{2}+\mu^{2}\|C\|^{2}+\gamma^{2}\|T\|^{2} \tag{3.5}
\end{equation*}
$$

Multiplying $(3.2)_{2}$ by S and integrating over Ω, then using Cauchy-Schwarz, the arithmetic-geometric mean inequality, the Sobolev inequality , which holds for all $\varphi \in C_{0}^{1}(\varphi)$,

$$
\|\varphi\|_{4} \leq \Lambda\left\|\varphi_{, i}\right\|
$$

where $\|\cdot\|_{4}$ is the norm on $L^{4}(\Omega)$.
we derive

$$
\frac{d}{d t}\|S\|^{2}=-2\|\nabla S\|^{2}+2\left\langle T_{, i}, w_{i} S\right\rangle
$$

therefore

$$
\begin{align*}
\frac{d}{d t}\|S\|^{2} & \leq-2\|\nabla S\|^{2}+2\|\nabla T\| \cdot\|w\|_{4}\|S\|_{4} \\
& \leq-2\|\nabla S\|^{2}+2 \Lambda^{\frac{1}{2}}\|\nabla T\| \cdot\|\nabla w\| \cdot\|\nabla S\| \tag{3.6}\\
& \leq-2\|\nabla S\|^{2}+2 \alpha_{11}\|\nabla S\|^{2}+\frac{\Lambda}{2 \alpha_{11}}\|\nabla w\|^{2}\|\cdot\| \nabla T \|^{2}
\end{align*}
$$

where α_{11} is a positive constant at our disposal.
Using similar method as in (3.6), from equation $(3.2)_{3}$, we find that

$$
\begin{equation*}
\frac{d}{d t}\|\Sigma\|^{2} \leq\left(-2+\alpha_{12}+\alpha_{13}\right)\|\nabla \Sigma\|^{2}+\frac{\Lambda}{\alpha_{13}}\|\nabla w\|^{2} \cdot\|\nabla C\|^{2}+\frac{\rho^{2}}{\alpha_{12}}\|\nabla S\|^{2} \tag{3.7}
\end{equation*}
$$

where $\alpha_{1 i}, i=2,3$ are positive constants at our disposal.
Multiplying (3.6) by Γ_{21} and adding (3.7) leads to

$$
\begin{align*}
& \frac{d}{d t}\left(\|\Sigma\|^{2}+\Gamma_{21}\|S\|^{2}\right) \\
& \leq \frac{\Lambda}{2}\|\nabla w\|^{2}\left(\frac{\Gamma_{21}}{\alpha_{11}}\|\nabla T\|^{2}+\frac{2}{\alpha_{13}}\|\nabla C\|^{2}\right) \tag{3.8}\\
& \quad+2\left[\left(\alpha_{11}-1\right)+\frac{\rho^{2}}{2 \alpha_{12} \Gamma_{21}}\right] \Gamma_{21}\|\nabla S\|^{2}+\left(-2+\alpha_{12}+\alpha_{13}\right)\|\nabla \Sigma\|^{2}
\end{align*}
$$

where Γ_{21} is a positive constant at our disposal.
In (3.8), we choose

$$
\alpha_{11}=\frac{1}{4} ; \quad \alpha_{12}=\alpha_{13}=\frac{1}{2} ; \quad \Gamma_{21}=4 \rho^{2} .
$$

it follows that

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Sigma\|^{2}+4 \rho^{2}\|S\|^{2}\right)+\|\nabla \Sigma\|^{2}+4 \rho^{2}\|\nabla S\|^{2} \leq 2 \Lambda\|\nabla w\|^{2}\left(4 \rho^{2}\|\nabla T\|^{2}+\|\nabla C\|^{2}\right) \tag{3.9}
\end{equation*}
$$

Multiplying (3.4) by Γ_{22} and (3.5) by Γ_{23}, then adding all the results to (3.9), then using Poincare's inequality, we have

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{\Gamma_{23}}{2} \nu\|\nabla w\|^{2}+\frac{\left(\Gamma_{22}+a \Gamma_{23}\right)}{2}\|w\|^{2}+\left(\|\Sigma\|^{2}+4 \rho^{2}\|S\|^{2}\right)\right] \\
& +\left[\lambda_{1}-\left(\frac{2 \Gamma_{22}}{a}+\Gamma_{23}\right)\left(g^{*}\right)^{2}\right]\|\Sigma\|^{2} \\
& +\left[4 \rho^{2} \lambda_{1}-\left(\frac{2 \Gamma_{22}}{a}+\Gamma_{23}\right)\left(h^{*}\right)^{2}\right]\|S\|^{2}+\Gamma_{22} \nu\|\nabla w\|^{2}+\frac{a \Gamma_{22}}{2}\|w\|^{2} \tag{3.10}\\
& \leq w \|^{2}\left[4 \rho^{2}\|\nabla T\|^{2}+\left\|C_{, i}\right\|^{2}\right]+\left(\frac{\Gamma_{22}}{a}+\Gamma_{23}\right)\left[\mu^{2}\|C\|^{2}+\gamma^{2}\|T\|^{2}\right]
\end{align*}
$$

where $\Gamma_{2 i}, i=2,3$ are positive constants at our disposal.
We can choose Γ_{22} and Γ_{23} sufficient small to make sure that all the coefficients in 3.10 are positive, such as

$$
\Gamma_{22}=\min \left\{\frac{a \lambda_{1}}{8\left(g^{*}\right)^{2}}, \frac{\rho^{2} a \lambda_{1}}{2\left(h^{*}\right)^{2}}\right\} ; \quad \Gamma_{23}=\min \left\{\frac{\lambda_{1}}{4\left(g^{*}\right)^{2}}, \frac{\rho^{2} \lambda_{1}}{\left(h^{*}\right)^{2}}\right\}
$$

Let

$$
Q_{2}(t)=\left\{\frac{\Gamma_{23}}{2} \nu\|\nabla w\|^{2}+\frac{\left(\Gamma_{22}+a \Gamma_{23}\right)}{2}\|w\|^{2}+\|\Sigma\|^{2}+4 \rho^{2}\|S\|^{2}\right\}
$$

and

$$
\begin{gather*}
\kappa_{2}=\min \left\{\frac{2 \Gamma_{22} \nu}{\Gamma_{23} \nu} ; \frac{a \Gamma_{22}}{\left(\Gamma_{22}+a \Gamma_{23}\right)} ;\left(\lambda_{1}-\left(\frac{2 \Gamma_{22}}{a}+\Gamma_{23}\right)\left(g^{*}\right)^{2}\right)\right. \tag{3.11}\\
\left.\frac{1}{4 \rho^{2}}\left[4 \rho^{2} \lambda_{1}-\left(\frac{2 \Gamma_{22}}{a}+\Gamma_{23}\right)\left(h^{*}\right)^{2}\right]\right\}
\end{gather*}
$$

It follows from (3.10) that
$\frac{d}{d t} Q_{2}(t)+\kappa_{2} Q_{2}(t) \leq\left(\frac{\Gamma_{22}}{a}+\Gamma_{23}\right)\left[\mu^{2}\|C\|^{2}+\gamma^{2}\|T\|^{2}\right]+2 \Lambda\|\nabla w\|^{2}\left[4 \rho^{2}\|\nabla T\|^{2}+\|\nabla C\|^{2}\right]$
It is easy to show that

$$
\begin{equation*}
2 \Lambda\|\nabla w\|^{2}\left[4 \rho^{2}\|\nabla T\|^{2}+\|\nabla C\|^{2}\right] \leq Q_{2}(t) f_{2}(t) \tag{3.13}
\end{equation*}
$$

where

$$
f_{2}(t)=\tau_{2}\left(\|\nabla T\|^{2}+\|\nabla C\|^{2}\right), \quad \tau_{2}=\frac{4 \Lambda}{\Gamma_{23} \nu}\left(4 \rho^{2}+1\right)
$$

Thus, combining (3.12) and (3.13), we obtain

$$
\begin{equation*}
\frac{d}{d t} Q_{2}(t)+\kappa_{2} Q_{2}(t) \leq M_{2}\left(\mu^{2}+\gamma^{2}\right)+f_{2}(t) Q_{2}(t) \tag{3.14}
\end{equation*}
$$

where $M_{2}=2\left(\frac{\Gamma_{22}}{a}+\Gamma_{23}\right) M_{1}$.
Now, multiplying both sides of 3.14 by $e^{\kappa_{2} t}$ and integrating from 0 and t, we get

$$
\begin{equation*}
Q_{2}(t) \leq \frac{M_{2}}{\kappa_{2}}\left(\mu^{2}+\gamma^{2}\right)+\int_{0}^{t} f_{2}(\eta) Q_{2}(\eta) d \eta \tag{3.15}
\end{equation*}
$$

Hence, applying Gronwall's lemma and using 2.12, we obtain

$$
\begin{equation*}
Q_{2}(t) \leq \frac{M_{2}}{\kappa_{2}} e^{\int_{0}^{t} f_{2}(\eta) d \eta} \cdot\left(\mu^{2}+\gamma^{2}\right) \leq \frac{M_{2}}{\kappa_{2}} e^{2 \tau_{2} M_{1}} \cdot\left(\mu^{2}+\gamma^{2}\right), \forall t>0 \tag{3.16}
\end{equation*}
$$

Consequently, from inequality (3.16), we can see that $Q_{2}(t) \rightarrow 0$, as $g_{i} \rightarrow g_{i}^{*}$ and $h_{i} \rightarrow h_{i}^{*}$. Recalling the definition of $Q_{2}(t)$, so $\left(w_{i}, \Pi, S, \Sigma\right) \rightarrow 0$ and $\left(u_{i}, T, C\right) \rightarrow$ $\left(u_{i}^{*}, T^{*}, C^{*}\right)$. So, continuous dependence on the gravity coefficients is proved.

4. Continuous dependence on the Soret coefficient

Let $\left(u_{i}, T, C, P\right)$ and $\left(u_{i}^{*}, T^{*}, C^{*}, P^{*}\right)$ be solutions to 1.1$)$, with the same boundary and initial data $1.2,1.3$, but with different Soret coefficient ρ and ρ^{*}, respectively:

$$
\begin{gathered}
u_{i, t}=\nu \Delta u_{i}-a u_{i}-p_{, i}+g_{i} T+h_{i} C \\
T_{, t}+u_{i} T_{, i}=\Delta T \\
C_{, t}+u_{i} C_{, i}=\Delta C+\rho \Delta T \quad \text { in } \Omega \times t>0 \\
u_{i, i}=0
\end{gathered}
$$

and

$$
\begin{gathered}
u_{i, t}^{*}=\nu \Delta u_{i}^{*}-a u_{i}^{*}-p_{, i}^{*}+g_{i} T^{*}+h_{i} C^{*} \\
T_{, t}^{*}+u_{i}^{*} T_{, i}^{*}=\Delta T^{*} \\
C_{, t}^{*}+u_{i}^{*} C_{, i}^{*}=\Delta C^{*}+\rho^{*} \Delta T^{*} \quad \text { in } \Omega \times t>0 \\
u_{i, i}^{*}=0
\end{gathered}
$$

Now set

$$
\begin{equation*}
w_{i}=u_{i}-u_{i}^{*}, \quad \Pi=p-p^{*}, \quad S=T-T^{*}, \quad \Sigma=C-C^{*} \tag{4.1}
\end{equation*}
$$

Clearly, $\left(w_{i}, \Pi, S, \Sigma\right)$ satisfies the equations

$$
\begin{gather*}
w_{i, t}=\nu \Delta w_{i}-a w_{i}-\Pi_{, i}++g_{i} S++h_{i} \Sigma \\
S_{, t}+w_{i} T_{, i}+u_{i}^{*} S_{, i}=\Delta S \\
\Sigma_{, t}+w_{i} C_{, i}+u_{i}^{*} \Sigma_{, i}=\Delta \Sigma+\left(\rho-\rho^{*}\right) \Delta T+\rho^{*} \Delta S \quad \text { in } \Omega \times\{t>0\} \tag{4.2}\\
w_{i, i}=0
\end{gather*}
$$

with the boundary-initial data

$$
\begin{gather*}
w_{i}=S=\Sigma=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
w_{i}(x, 0)=S(x, 0)=\Sigma(x, 0)=0 \quad \text { in } \Omega \tag{4.3}
\end{gather*}
$$

Multiplying 4.2$)_{1}$ by w_{i} and integrating over Ω, furthermore using the CauchySchwarz's inequality, and the arithmetic-geometric mean inequality, we have

$$
\begin{equation*}
\nu\|\nabla w\|^{2}+\frac{a}{2}\|w\|^{2}+\frac{1}{2} \frac{d}{d t}\|w\|^{2} \leq \frac{1}{a}\left[g^{2}\|S\|^{2}+h^{2}\|\Sigma\|^{2}\right] \tag{4.4}
\end{equation*}
$$

where

$$
g^{2}=\max _{\Omega} g_{i} g_{i}, h^{2}=\max _{\Omega} h_{i} h_{i}
$$

Multiplying $(4.2)_{1}$ by $w_{i, t}$ and integrating over Ω, then using the Cauchy-Schwarz inequality, and the arithmetic-geometric mean inequality, we get

$$
\begin{equation*}
\frac{1}{2} \nu \frac{d}{d t}\|\nabla w\|^{2}+\frac{a}{2} \frac{d}{d t}\|w\|^{2} \leq \frac{1}{2}\left[g^{2}\|S\|^{2}+h^{2}\|\Sigma\|^{2}\right] \tag{4.5}
\end{equation*}
$$

Multiplying 4.2$)_{2}$ by S and integrating over Ω, then using Cauchy-Schwarz, the arithmetic-geometric mean inequality, and using the Sobolev inequality, we can derive

$$
\begin{equation*}
\frac{d}{d t}\|S\|^{2} d \eta \leq-2\|\nabla S\|^{2}+2 \alpha_{21}\|\nabla S\|^{2}+\frac{\Lambda}{2 \alpha_{21}}\|\nabla w\|^{2}\|\nabla T\|^{2} \tag{4.6}
\end{equation*}
$$

for α_{21} is a positive constant at our disposal.
Using similar method as in 4.6, from equation 4.23_{3}, we can find that

$$
\begin{align*}
\frac{d}{d t}\|\Sigma\|^{2} \leq & \left(-2+\alpha_{22}+\alpha_{23}+\alpha_{24}\right)\|\nabla \Sigma\|^{2}+\frac{\Lambda}{\alpha_{23}}\|\nabla w\|^{2}\|\nabla C\|^{2} \\
& +\frac{\rho^{* 2}}{\alpha_{22}}\|\nabla S\|^{2}+\frac{\left(\rho-\rho^{*}\right)^{2}}{\alpha_{24}}\|\nabla T\|^{2} \tag{4.7}
\end{align*}
$$

for $\alpha_{2 i},(i=2,3,4)$ are positive constants at our disposal.

Multiplying 4.6 by Γ_{31} and adding 4.7), leads to

$$
\begin{align*}
& \frac{d}{d t}\left(\|\Sigma\|^{2}+\Gamma_{31}\|S\|^{2}\right) \\
& \leq\left(-2+\alpha_{22}+\alpha_{23}+\alpha_{24}\right)\|\nabla \Sigma\|^{2}+2\left[\left(\alpha_{21}-1\right)+\frac{\rho^{* 2}}{2 \alpha_{22} \Gamma_{31}}\right] \Gamma_{31}\|\nabla S\|^{2} \tag{4.8}\\
& \quad+\frac{\left(\rho-\rho^{*}\right)^{2}}{\alpha_{24}}\|\nabla T\|^{2}+\frac{\Lambda}{2}\|\nabla w\|^{2}\left[\frac{\Gamma_{31}}{\alpha_{21}}\|\nabla T\|^{2}+\frac{2}{\alpha_{23}}\|\nabla C\|^{2}\right]
\end{align*}
$$

where Γ_{31} is a positive constant at our disposal.
In (4.8), we choose $\alpha_{21}=1 / 2, \alpha_{22}=1, \alpha_{23}=\alpha_{24}=1 / 4$, It follows that

$$
\begin{align*}
& \frac{d}{d t}\left(\|\Sigma\|^{2}+\Gamma_{31}\|S\|^{2}\right)+\|\nabla \Sigma\|^{2}+\left(\Gamma_{31}-\rho^{* 2}\right)\|\nabla S\|^{2} \tag{4.9}\\
& \leq \Lambda\|\nabla w\|^{2}\left(\Gamma_{31}\|\nabla T\|^{2}+4\|\nabla C\|^{2}\right)+4\left(\rho-\rho^{*}\right)^{2}\|\nabla T\|^{2}
\end{align*}
$$

Multiplying (4.4) by Γ_{32} and 4.5 by Γ_{33}, furthermore adding all the results to (4.9), we get

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{\Gamma_{33}}{2} \nu\|\nabla w\|^{2}+\frac{\left(\Gamma_{32}+a \Gamma_{33}\right)}{2}\|w\|^{2}+\left(\|\Sigma\|^{2}+\Gamma_{4}\|S\|^{2}\right)\right] \\
& +\Gamma_{32} \nu\|\nabla w\|^{2}+\frac{a \Gamma_{32}}{2}\|w\|^{2}+\|\nabla \Sigma\|^{2}+\left(\Gamma_{31}-\rho^{* 2}\right)\|\nabla S\|^{2} \tag{4.10}\\
& \leq\left(\frac{2 \Gamma_{32}}{a}+\Gamma_{33}\right)\left[g^{2}\|\Sigma\|^{2}+h^{2}\|S\|^{2}\right]+2 \Lambda\|\nabla w\|^{2}\left[\Gamma_{31}\|\nabla T\|^{2}\right. \\
& \left.\quad+4\|\nabla C\|^{2}\right]+4\left(\rho-\rho^{*}\right)^{2}\|\nabla T\|^{2}
\end{align*}
$$

where $\Gamma_{3 i},(i=2,3)$ are positive constants at our disposal.
We can choose Γ_{31} to make sure that $\Gamma_{31}>\rho^{* 2}$, therefore, by the Poincare's inequality from 4.10, we have

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{\Gamma_{33}}{2} \nu\|\nabla w\|^{2}+\frac{\left(\Gamma_{32}+a \Gamma_{33}\right)}{2}\|w\|^{2}+\left(\|\Sigma\|^{2}+\Gamma_{31}\|S\|^{2}\right)\right] \\
& +\left[\lambda_{1}\left(\Gamma_{31}-\rho^{* 2}\right)-\left(2 \frac{\Gamma_{32}}{a}+\Gamma_{33}\right) h^{2}\right]\|S\|^{2}+\frac{a \Gamma_{32}}{2}\|w\|^{2} \tag{4.11}\\
& +\Gamma_{32} \nu\|\nabla w\|^{2}+\left[\lambda_{1}-\left(\frac{2 \Gamma_{32}}{a}+\Gamma_{33}\right) g^{2}\right]\|\Sigma\|^{2} \\
& \leq \Lambda\|\nabla w\|^{2}\left[\Gamma_{31}\|\nabla T\|^{2}+4\|\nabla C\|^{2}\right]+4\left(\rho-\rho^{*}\right)^{2}\|\nabla T\|^{2}
\end{align*}
$$

We can choose Γ_{32} and Γ_{33} sufficient small to make sure that all the coefficients in 4.11) are positive, such as we may choose

$$
\Gamma_{32}=\min \left\{\frac{a \lambda_{1}}{8 g^{2}}, \frac{a \lambda_{1}\left(\Gamma_{31}-\rho^{* 2}\right)}{8 h^{2}}\right\} ; \quad \Gamma_{33}=\min \left\{\frac{\lambda_{1}}{4 g^{2}}, \frac{\lambda_{1}\left(\Gamma_{31}-\rho^{* 2}\right)}{4 h^{2}}\right\}
$$

Let

$$
Q_{3}(t)=\left\{\frac{\Gamma_{33}}{2} \nu\|\nabla w\|^{2}+\frac{\left(\Gamma_{32}+a \Gamma_{33}\right)}{2}\|w\|^{2}+\|\Sigma\|^{2}+\Gamma_{31}\|S\|^{2}\right\}
$$

and

$$
\begin{gather*}
\kappa_{3}=\min \left\{\frac{2 \Gamma_{32}}{\Gamma_{33}} ; \frac{a \Gamma_{32}}{\left(\Gamma_{32}+a \Gamma_{33}\right)} ;\left(\lambda_{1}-\left(\frac{2 \Gamma_{32}}{a}+\Gamma_{33}\right) g^{2}\right)\right. \\
\left.\frac{1}{\Gamma_{31}}\left[\lambda_{1}\left(\Gamma_{31}-\rho^{* 2}\right)-\left(\frac{2 \Gamma_{32}}{a}+\Gamma_{33}\right) h^{2}\right]\right\} \tag{4.12}
\end{gather*}
$$

Then, it follows from (4.11) that

$$
\begin{equation*}
\frac{d}{d t} Q_{3}(t)+\kappa_{3} Q_{3}(t) \leq \Lambda\|w\|^{2}\left[\Gamma_{31}\|\nabla T\|^{2}+4\left\|C_{, i}\right\|^{2}\right]+4\left(\rho-\rho^{*}\right)^{2}\|\nabla T\|^{2} \tag{4.13}
\end{equation*}
$$

Also, it can be easily shown that

$$
\begin{equation*}
\Lambda\|\nabla w\|^{2}\left[\Gamma_{31}\|\nabla T\|^{2}+4\|\nabla C\|^{2}\right] \leq f_{3}(t) Q_{3}(t) \tag{4.14}
\end{equation*}
$$

where

$$
f_{3}(t)=\tau_{3}\left(\|\nabla T\|^{2}+\|\nabla C\|^{2}\right), \tau_{3}=\frac{2 \Lambda}{\Gamma_{33} \nu}\left(\Gamma_{31}+4\right)
$$

Thus, combing 4.13 and 4.14, we obtain

$$
\begin{equation*}
\frac{d}{d t} Q_{3}(t)+\kappa_{3} Q_{3}(t) \leq 4\left(\rho-\rho^{*}\right)^{2}\|\nabla T\|^{2}+f_{3}(t) Q_{3}(t) \tag{4.15}
\end{equation*}
$$

Now, multiplying both sides of 4.15 by $e^{\kappa_{3} t}$ and integrating over [0, t], we obtain

$$
\begin{equation*}
Q_{3}(t) \leq \frac{M_{3}}{\kappa_{3}}\left(\rho-\rho^{*}\right)^{2}+\int_{0}^{t} f_{3}(\eta) Q_{3}(\eta) d \eta \tag{4.16}
\end{equation*}
$$

where $M_{3}=4 M_{1}$.
Hence, applying Gronwall's lemma and using (2.12), we obtain

$$
\begin{equation*}
Q_{3}(t) \leq \frac{M_{3}}{\kappa_{3}} e^{\int_{0}^{t} f_{3}(\eta) d \eta} \cdot\left(\rho-\rho^{*}\right)^{2} \leq \frac{M_{3}}{\kappa_{3}} e^{2 \tau_{3} M_{1}} \cdot\left(\rho-\rho^{*}\right)^{2}, \quad \forall t>0 \tag{4.17}
\end{equation*}
$$

As a result, from inequality 4.17, we can see that $Q_{3}(t) \rightarrow 0$, as $\rho \rightarrow \rho^{*}$. Recalling the definition of $Q_{3}(t)$, so $\left(w_{i}, \Pi, S, \Sigma\right) \rightarrow 0$ and $\left(u_{i}, T, C\right) \rightarrow\left(u_{i}^{*}, T^{*}, C^{*}\right)$. Consequently, continuous dependence on the Soret coefficient is proved.

Acknowledgments. The authors would like to express their gratitude to Professor Yan Liu for his help in writing parts of this article.

References

[1] K. A. Ames, B. Straughan; Non-standard and improperly posed problems. Mathematics in Science and Engineering Series, Vol. 194, San Diego Academic Press, 1997.
[2] F. Franchi, B. Straughan; Continuous dependence and decay for the Forchheimer equations. Proc.Roy.Soc.London A, 459 (2003), 3195-3202.
[3] J. Guo, Y. Qin; Steady nonlinear double-diffusive convection in a porous medium base upon the Brinkman-Forchheimer model. Journal of Mathematical Analysis and Applications, 204 (1996), 138-155.
[4] P. N. Kaloni, Y. Qin; Spatial decay estimates for plane flow in the Darcy-Forchheimer model. Quarterly of Applied Mathematics, 56 (1998), 71-87.
[5] L. E. Payne, B. Straughan; Convergence and continuous dependence for the BrinkForchheimer equations. Studies in Applied Mathematics, 102 (1999), 419-439.
[6] L. E. Payne, B. Straughan; Stability in the initial-time geometry problem for Brinkman and Darcy equations of flow in a porous media. Journal de Mathematics Pureset Appliquees, 75 (1996), 225-271.
[7] L. E. Payne, B. Straughan; Structural stability for the Darcy equations of flow in porous media. Proceedings of the royal Society London.Series A, 454 (1998), 1691-1698.
[8] L. E. Payne, J. C. Song, B. Straughan; Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proceedings of the royal Society London. Series A, 455 (1999), 2173-2190.
[9] L. E. Payne, J. C. Song, B. Straughan; Effect of anisotropic permeability on Darcy'Law. Math. Meth. Appl. Sci, 24 (2001), 427-438.
[10] B. Straughan, K. Hutter; A priori bounds and structural stability for double diffusive convection incorporating the Soret effect. Proceedings of the Royal Society London.Series A, 455 (1999), 767-777.

Hongliang Tu
Department of Applied Mathematics, Zhuhai college of Jilin University, 519041, China
E-mail address: tuhongliang00@126.com
Changhao Lin
School of Mathematical Sciences, South China Normal University, 510631, China
E-mail address: linchh@scnu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35B30, 35K55, 35Q35.
 Key words and phrases. Continuous dependence; structural stability;
 gravity coefficients; Soret coefficient; Brinkman equations.
 (C) 2007 Texas State University - San Marcos.

 Submitted April 9, 2007. Published June 16, 2007.

