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VARIATIONAL AND TOPOLOGICAL METHODS FOR
OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS

ON ORLICZ-SOBOLEV SPACES

GEORGE DINCA, PAVEL MATEI

Abstract. Let a : R → R be a strictly increasing odd continuous function

with limt→+∞ a(t) = +∞ and A(t) =
R t
0 a(s) ds, t ∈ R, the N -function gener-

ated by a. Let Ω be a bounded open subset of RN , N ≥ 2, T [u, u] a nonneg-
ative quadratic form involving the only generalized derivatives of order m of

the function u ∈ W m
0 EA(Ω) and gα : Ω × R → R, |α| < m, be Carathéodory

functions.
We study the problem

Jau =
X
|α|<m

(−1)|α|Dαgα(x, Dαu) in Ω,

Dαu = 0 on ∂Ω, |α| ≤ m− 1,

where Ja is the duality mapping on
`
W m

0 EA(Ω), ‖ · ‖m,A

´
, subordinated to

the gauge function a (given by (1.5)) and

‖u‖m,A = ‖
p

T [u, u]‖(A),

‖ · ‖(A) being the Luxemburg norm on EA(Ω).

By using the Leray-Schauder topological degree and the mountain pass
theorem of Ambrosetti and Rabinowitz, the existence of nontrivial solutions

is established. The results of this paper generalize the existence results for

Dirichlet problems with p-Laplacian given in [12] and [13].

1. Introduction

Throughout this paper Ω denotes a bounded open subset of RN , N ≥ 2. Let a :
R → R be a strictly increasing odd continuous function with limt→+∞ a(t) = +∞.
For m ∈ N∗, let us denote by Wm

0 EA(Ω) the Orlicz-Sobolev space generated by the
N− function A, given by

A(t) =
∫ t

0

a(s) ds. (1.1)
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In this paper we study the existence of solutions of the boundary-value problem

Jau =
∑
|α|<m

(−1)|α|Dαgα(x,Dαu) in Ω, (1.2)

Dαu = 0 on ∂Ω, |α| ≤ m− 1, (1.3)

in the following functional framework:
• T [u, v] is a nonnegative symmetric bilinear form on the Orlicz-Sobolev space

Wm
0 EA(Ω), involving the only generalized derivatives of order m of the functions

u, v ∈Wm
0 EA(Ω), satisfying

c1
∑
|α|=m

(Dαu)2 ≤ T [u, u] ≤ c2
∑
|α|=m

(Dαu)2 ∀u ∈Wm
0 LA(Ω), (1.4)

with c1, c2 being positive constants;
• ‖u‖m,A = ‖

√
T [u, u]‖(A) is a norm on Wm

0 EA(Ω), ‖ · ‖(A) designating the
Luxemburg norm on the Orlicz space LA(Ω);
• Ja :

(
Wm

0 EA(Ω), ‖ · ‖m,A

)
→
(
Wm

0 EA(Ω), ‖ · ‖m,A

)∗ is the duality mapping on(
Wm

0 EA(Ω), ‖ · ‖m,A

)
subordinated to the gauge function a:

〈Jau, h〉 =
a (‖u‖m,A) ·

∫
Ω
a
(√T [u,u]

‖u‖m,A

) T [u,h]√
T [u,u]

dx∫
Ω
a
(√T [u,u]

‖u‖m,A

)√T [u,u]

‖u‖m,A
dx

, u, h ∈Wm
0 EA(Ω); (1.5)

• gα : Ω × R → R, |α| < m, are Carathéodory functions satisfying some appro-
priate growth conditions.

The main existence results are contained in Theorems 6.4 and 7.4 and the tech-
niques used are essentially based on Leray-Schauder topological degree and on the
mountain pass theorem due to Ambrosetti and Rabinowitz, respectively.

Let us remark that for the particular choice of a(t) = |t|p−2 · t, 1 < p < ∞,
m = 1 and T [u, v] = ∇u · ∇v, the existence results given by Theorems 6.4 and 7.4
reduce to the well known existence results of the weak solution in W 1,p

0 (Ω) for the
Dirichlet problem

−∆pu = g0(x, u) in Ω
u = 0 on ∂Ω.

The plan of the paper is as follows: In section 2, some fundamental results
concerning the Orlicz-Sobolev spaces are given; these results are taken from Adams
[1], Gossez [19], Krasnosel’skij and Rutitskij [22], Tienari [30].

The main results of section 3 concern the smoothness and the uniform convexity
of the space

(
Wm

0 EA(Ω), ‖ · ‖m,A

)
. Note that, in order to prove the uniform con-

vexity of the space
(
Wm

0 EA(Ω), ‖ · ‖m,A

)
, an inequality given by Proposition 3.9

and playing a similar role to that of Clarkson’s inequalities is used. This inequality
is a corollary of a result due to Gröger [20] (see, also Langenbach [23]).

The content of section 4 is as follows: the smoothness and the uniform convexity
of the space

(
Wm

0 EA(Ω), ‖ · ‖m,A

)
allow us to show that the duality mapping on(

Wm
0 EA(Ω), ‖ · ‖m,A

)
corresponding to the gauge function a is given by

Ja(0) = 0,

Jau = a(‖ · ‖m,A)‖ · ‖′m,A(u), u 6= 0.

Moreover, Ja is bijective with a continuous inverse, J−1
a .
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Section 5 deals with the properties of the so called Nemytskij operator on Orlicz
spaces. These properties will be used later coupled with compact imbeddings of
Orlicz-Sobolev spaces in some Orlicz spaces (a prototype of such a theorem is
Theorem 2.12, due to Donaldson and Trudinger [15] (see, also Adams [1]).

In section 6, the existence of a solution for problem (1.2), (1.3), reduces to a
fixed point existence theorem. Since for any u ∈ Wm

0 EA(Ω) one has Dαu
∣∣
∂Ω

= 0,
|α| ≤ m − 1, the approach is realized in Wm

0 EA(Ω)-space. It is shown that if a
point u ∈Wm

0 EA(Ω) satisfies

Jau = (i∗ ◦N ◦ i)u,

or, equivalently,
u = (J−1

a ◦ i∗ ◦N ◦ i)u,
then u satisfies (1.2) (in the sense of (Wm

0 EA(Ω))∗), that is u is a weak solution for
(1.2), (1.3). In writing of compact operator P = J−1

a ◦ i∗ ◦N ◦ i, i∗ is the adjoint
of i and the meaning of i and N are given by Propositions 6.2 and 6.3 respectively.
In order to prove that P possesses a fixed point in Wm

0 EA(Ω), an a priori estimate
method is used.

In section 7, the existence of a solution for problem (1.2), (1.3), reduces to
proving the existence of a critical point for the functional F : Wm

0 EA(Ω) → R,
given by (7.13). In order to prove that F possesses a critical point in Wm

0 EA(Ω),
we show that F has a mountain-pass geometry. Consequently, the mountain pass
theorem of Ambrosetti and Rabinowitz applies.

In section 8, some examples of functions a for which existence results for the
problem (1.2), (1.3) may be obtained are given. It would be notice that the same
function a appears in examples 8.3 and 8.4; however, the corresponding hypotheses
being different, the existence results are obtained by using distinct techniques: the
mountain-pass theorem for example 8.3 and a priori estimate method for exam-
ple 8.4. The same is true for examples 8.6 and 8.7. The only a Leray-Schauder
technique can be applied for example 8.8. A slight modification of function a, ap-
pearing in example 8.8, enables the use of the mountain-pass theorem, as example
8.10 shows.

2. Orlicz and Orlicz-Sobolev spaces

Definition 2.1. A function A : R → R+ is called an N -function if it admits the
representation

A(t) =
∫ |t|

0

a(s) ds,

where the function a : R+ → R+ is right-continuous for t ≥ 0, positive for t > 0
and non-decreasing which satisfies the conditions a(0) = 0, limt→∞ a(t) = ∞.

It is assumed everywhere below that the function a is continuous.

Remark 2.2. In many applications, it will be convenient to extend the function a
for negative values of the argument. Thus, let ã : R → R+ be the function given by

ã(s) =

{
a(t), if t ≥ 0
−a(−t), if t < 0.
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Then, the function A : R → R+,

A(t) =
∫ t

0

ã(s) ds,

is an N -function. Obviously, the function ã is continuous and odd.

Throughout this paper, we suppose that a : R → R is a strictly increasing odd
continuous function with limt→+∞ a(t) = +∞ and A is the N−function given by
(1.1).

Let us consider the Orlicz class

KA(Ω) = {u : Ω → R measurable;
∫

Ω

A(u(x))dx <∞}.

The Orlicz space LA(Ω) is defined as the linear hull of KA(Ω) and it is a Banach
space with respect to the Luxemburg norm

‖u‖(A) = inf{k > 0;
∫

Ω

A
(u(x)
k

)
dx ≤ 1}.

Remark 2.3. If a(t) = |t|p−2 · t, 1 < p <∞, then A(t) = |t|p
p , KA(Ω) = LA(Ω) =

Lp(Ω) and ‖u‖(A) = p−
1
p ‖u‖Lp(Ω).

Generally KA(Ω) ⊂ LA(Ω). Moreover, KA(Ω) = LA(Ω) if and only if A satisfies
the ∆2-condition: there exist k > 0 and t0 > 0 such that

A(2t) ≤ kA(t), for all t ≥ t0. (2.1)

Theorem 2.4 ([22, p. 24]). A necessary and sufficient condition for the N - func-
tion A to satisfy the ∆2-condition is that there exists a constant α such that, for
u > 0,

ua(u)
A(u)

< α. (2.2)

The N -function given by

A(u) =
∫ |u|

0

a−1(s) ds,

is called the complementary N -function to A.

Remark 2.5. Let p, q be such that p > 1 and p−1 + q−1 = 1. If A(t) = |t|p
p , then

A(t) = |t|q
q . Consequently KA(Ω) = LA(Ω) = Lq(Ω).

We recall Young’s inequality

uv ≤ A(u) +A(v), ∀u, v ∈ R

with equality if and only if u = a−1(|v|) · sign v or v = a(|u|) · signu.
The space LA(Ω) is also a Banach space with respect to the Orlicz norm

‖u‖A = sup
{∣∣ ∫

Ω

u(x)v(x) dx
∣∣; v ∈ KA(Ω),

∫
Ω

A(v(x)) dx ≤ 1
}
.

Moreover [22, p. 80],

‖u‖(A) ≤ ‖u‖A ≤ 2‖u‖(A), ∀u ∈ LA(Ω).
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One also has a Hölder’s type inequality : if u ∈ LA(Ω) and v ∈ LA(Ω), then uv ∈
L1(Ω) and ∣∣ ∫

Ω

u(x)v(x) dx
∣∣ ≤ 2‖u‖(A)‖v‖(A). (2.3)

We shall denote the closure of L∞(Ω) in LA(Ω) by EA(Ω). One has EA(Ω) ⊂
KA(Ω) and EA(Ω) = KA(Ω) if and only if A satisfies the ∆2 -condition. We shall
denote by

∏(
EA(Ω), r

)
the set of those u from LA(Ω) whose distance (with respect

to the Orlicz norm) to EA(Ω) is strictly less than r. If the N -function A does not
satisfy the ∆2-condition, then∏

(EA(Ω), r) ⊂ KA(Ω) ⊂
∏

(EA(Ω), r),

the inclusions being proper.

Theorem 2.6 ([22, p. 79]). If u ∈ LA(Ω) and ‖u‖(A) ≤ 1, then u ∈ KA(Ω) and
ρ(u;A) =

∫
Ω
A(u(x)) dx ≤ ‖u‖(A). If u ∈ LA(Ω) and ‖u‖(A) > 1, then ρ(u;A) ≥

‖u‖(A).

Lemma 2.7 ([18]). If u ∈ EA(Ω), then a(|u|) ∈ KA(Ω).

The Orlicz-Sobolev space WmLA(Ω)
(
WmEA(Ω)

)
is the space of all u ∈ LA(Ω)

whose distributional derivativesDαu are in LA(Ω) (EA(Ω)) for any α, with |α| ≤ m;
The spaces WmLA(Ω) and WmEA(Ω) are Banach spaces with respect to the

norm

‖u‖W mLA(Ω) =
( ∑
|α|≤m

‖Dαu‖2(A)

)1/2

. (2.4)

If Ω has the segment property, then C∞(Ω) is dense in WmEA(Ω) [1, Theorem
8.28]. The space Wm

0 EA(Ω) is defined as the norm-closure of D(Ω) in WmEA(Ω).
Now, let us suppose that the boundary ∂Ω of Ω is C1. Consider the “restriction

to ∂Ω” mapping γ̃ : C∞(Ω) → C(∂Ω), γ̃(u) = u|∂Ω. This mapping is continuous
from

(
C∞(Ω), ‖ · ‖W 1LA(Ω)

)
to
(
C(∂Ω), ‖ · ‖LA(∂Ω)

)
[19, p. 69]. Consequently, the

mapping γ̃ can be extended into a continuous mapping, denoted γ and called the
”trace mapping”, from

(
W 1EA(Ω), ‖ · ‖W 1LA(Ω)

)
to
(
EA(∂Ω), ‖ · ‖EA(∂Ω)

)
.

Theorem 2.8 ([19, Proposition 2.3]). The kernel of the trace mapping
γ : W 1EA(Ω) → EA(∂Ω) is W 1

0EA(Ω).

The following results are useful.

Theorem 2.9 ([7]). WmLA(Ω) is reflexive if and only if the N -functions A and
A satisfy the ∆2-condition.

Proposition 2.10 ([18]). There exist constants cm and cm,Ω such that∫
Ω

∑
|α|<m

A(Dαu) dx ≤ cm

∫
Ω

∑
|α|=m

A(cm,ΩD
αu) dx,

for all u ∈Wm
0 LA(Ω).

Corollary 2.11 ([18]). The two norms( ∑
|α|≤m

‖Dαu‖2(A)

)1/2

and
( ∑
|α|=m

‖Dαu‖2(A)

)1/2

are equivalent on Wm
0 LA(Ω).
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We recall that, if A and B are two N -functions, we say that B dominates A near
infinity if there exist positive constants k and t0 such that

A(t) ≤ B(kt) (2.5)

for all t ≥ t0. The two N -functions A and B are equivalent near infinity if each
dominates the other near infinity. If B dominates A near infinity and A and B are
not equivalent near infinity, then we say that A increases essentially more slowly
than B near infinity and we denote A ≺≺ B. This is the case if and only if for
every k > 0

lim
t→∞

A(kt)
B(t)

= 0. (2.6)

If the N -functions A and B are equivalent near infinity, then A and B define the
same Orlicz space [1, p. 234].

Let us now introduce the Orlicz-Sobolev conjugate A∗ of the N -function A. We
shall always suppose that

lim
t→0

∫ 1

t

A−1(τ)

τ
N+1

N

dτ <∞, (2.7)

replacing, if necessary, A by another N -function equivalent to A near infinity (which
determines the same Orlicz space).

Suppose also that

lim
t→∞

∫ t

1

A−1(τ)

τ
N+1

N

dτ = ∞. (2.8)

With (2.8) satisfied, we define the Sobolev conjugate A∗ of A by setting

A−1
∗ (t) =

∫ t

0

A−1(τ)

τ
N+1

N

dτ, t ≥ 0. (2.9)

Theorem 2.12 ([1]). If the N -function A satisfies (2.7) and (2.8), then

W 1
0LA(Ω) → LA∗(Ω).

Moreover, if Ω0 is a bounded subdomain of Ω, then the imbeddings

W 1
0LA(Ω) → LB(Ω0)

exist and are compact for any N -function B increasing essentially more slowly than
A∗ near infinity.

Theorem 2.13 ([30, Theorem 2.7]). The compact imbedding

W 1
0LA(Ω) → EA(Ω)

holds.

3. Geometry and smoothness of the space (Wm
0 EA(Ω), ‖ · ‖m,A)

Definition 3.1. The space X is said to be smooth, if for each x ∈ X, x 6= 0X ,
there exists a unique functional x∗ ∈ X∗, such that ‖x∗‖ = 1 and 〈x∗, x〉 = ‖x‖.

The following results will be useful.

Theorem 3.2 ([10]). Let (X, ‖‖) be a real Banach space. The norm of X is Gâteaux
differentiable if and only if X is smooth.

In order to study the smoothness of the space Wm
0 EA(Ω), we recall a result

concerning the differentiability of the norm on Orlicz spaces.
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Theorem 3.3 ([22]). The Luxemburg norm ‖ · ‖(A) is Gâteaux-differentiable on
EA(Ω). For u 6= 0, we have

〈‖ · ‖′(A)(u), h〉 =

∫
Ω
a
( u(x)
‖u‖(A)

)
h(x) dx∫

Ω
a
( u(x)
‖u‖(A)

) u(x)
‖u‖(A)

dx
, for all h ∈ EA(Ω). (3.1)

Moreover, if the N -function A satisfies the ∆2-condition, then the norm ‖ · ‖(A) is
Fréchet-differentiable on EA(Ω).

The following results will be also useful.

Lemma 3.4 ([30, Lemma 2.5]). If (un)n ⊂ EA(Ω) with un → u in EA(Ω), then
there exists h ∈ KA(Ω) ⊂ LA(Ω) and a subsequence (unk

)nk
such that |unk

(x)| ≤
h(x) a.e. and unk

(x) → u(x) a.e.

Lemma 3.5 ([22, Lemma 18.2]). Let A and A be mutually complementary N -
functions the second of which satisfies the ∆2-condition. Suppose that the derivative
a of A is continuous. Then, the operator Na, defined by means of the equality
Nau(x) = a(|u(x)|), acts from

∏
(EA(Ω), 1) into KA(Ω) = LA(Ω) = EA(Ω) and is

continuous.

Now, let T [u, v] be a nonnegative symmetric bilinear form involving the only
generalized derivatives of order m of the functions u, v ∈Wm

0 EA(Ω), satisfying the
inequalities (1.4). From these inequalities and taking into account Corollary 2.11,
we obtain that Wm

0 EA(Ω) may be (equivalent) renormed by using the norm

‖u‖m,A = ‖
√
T [u, u]‖(A). (3.2)

Theorem 3.6. The space
(
Wm

0 EA(Ω), ‖·‖m,A

)
is smooth. Thus, the norm ‖·‖m,A

is Gâteaux-differentiable on Wm
0 EA(Ω). For u 6= 0W m

0 EA(Ω), we have

〈‖ · ‖′m,A(u), h〉 =

∫
Ω
a
(√T [u,u](x)

‖u‖m,A

) T [u,h](x)√
T [u,u](x)

dx∫
Ω
a
(√T [u,u](x)

‖u‖m,A

)√T [u,u](x)

‖u‖m,A
dx
, for all h ∈Wm

0 EA(Ω). (3.3)

Moreover, if the N -function A satisfies the ∆2-condition, then u → ‖ · ‖′m,A(u) is
continuous thus ‖ · ‖m,A is Fréchet-differentiable.

Proof. Let u 6= 0 be in Wm
0 EA(Ω), that is

√
T [u, u] 6= 0EA(Ω). Let us denote

ψ(u) = ‖
√
T [u, u]‖(A). It is obvious that ψ can be written as a product ψ = QP ,

where Q : EA(Ω) → R is given by Q(v) = ‖v‖(A) and P : Wm
0 EA(Ω) → EA(Ω) is

given by P (u) =
√
T [u, u]. The functional Q is Gâteaux differentiable (see Theorem

3.3) and

〈Q′(v), h〉 = ‖v‖′(A)(h), (3.4)

for all v, h ∈ EA(Ω), v 6= 0EA(Ω). Simple computations show that the operator P
is Gâteaux differentiable at u and

P ′(u)(h) =
T [u, h]√
T [u, u]

, (3.5)
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for all u, h ∈ Wm
0 EA(Ω), u 6= 0W m

0 EA(Ω). Combining (3.4) and (3.5), we obtain
that ψ is Gâteaux differentiable at u and

〈ψ′(u), h〉 = 〈Q′(Pu), P ′(u)(h)〉

= 〈‖ · ‖′(A)(Pu),
T [u, h]√
T [u, u]

〉

=

∫
Ω
a
(√T [u,u](x)

‖u‖m,A

) T [u,h](x)√
T [u,u](x)

dx∫
Ω
a
(√T [u,u](x)

‖u‖m,A

)√T [u,u](x)

‖u‖m,A
dx
.

Now, we will show that the mapping u 7→ ψ′(u) is continuous. In order to do
that it is sufficient to show that any sequence (un)n ⊂ Wm

0 EA(Ω) converging to
u ∈Wm

0 EA(Ω) contains a subsequence (unk
)k ⊂ (un)n such that ψ′(unk

) → ψ′(u),
as k →∞, in

(
Wm

0 EA(Ω)
)∗. We set

〈ψ′(u), h〉 =
〈ϕ(u), h〉
q(u)

, ∀h ∈Wm
0 EA(Ω),

where ϕ : Wm
0 EA(Ω) →Wm

0 EA(Ω) is defined by

〈ϕ(u), h〉 =
∫

Ω

a
(√T [u, u](x)

‖u‖m,A

) T [u, h](x)√
T [u, u](x)

dx

and q : Wm
0 EA(Ω) → R is given by

q(u) =
∫

Ω

a
(√T [u, u](x)

‖u‖m,A

)√T [u, u](x)
‖u‖m,A

dx.

First, we show that if un → u in Wm
0 EA(Ω), then the sequence (un)n contains a

subsequence (unk
)k ⊂ (un)n such that q(unk

) → q(u) as k →∞. Since

|
√
T [un, un]−

√
T [u, u]| ≤

√
T [un − u, un − u], (3.6)

it follows from

‖un − u‖m,A = ‖
√
T [un − u, un − u]‖(A) → 0 as n→∞, (3.7)

that √
T [un, un] →

√
T [u, u] as n→∞, in EA(Ω); (3.8)

therefore √
T [un, un]
‖un‖m,A

→
√
T [u, u]
‖u‖m,A

as n→∞, in EA(Ω).

By applying Lemma 3.5, and obtain

a
(√T [un, un]
‖un‖m,A

)
→ a

(√T [u, u]
‖u‖m,A

)
as n→∞, in EA(Ω).

Then, from Lemma 3.4, it follows that there exists a subsequence (unk
)k ⊂ (un)n

and w ∈ KA(Ω) = EA(Ω), such that

a
(√T [unk

, unk
](x)

‖unk
‖m,A

)
→ a

(√T [u, u](x)
‖u‖m,A

)
as k →∞, for a.e. x ∈ Ω (3.9)

and

a
(√T [unk

, unk
](x)

‖unk
‖m,A

)
≤ w(x), for a.e. x ∈ Ω. (3.10)
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Taking into account (3.7), written for (unk
)k, and applying again Lemma 3.4, it

follows that there exists a subsequence (also denoted (unk
)k), and w1 ∈ KA(Ω)

such that √
T [unk

− u, unk
− u](x) → 0 as k →∞, for a.e. x ∈ Ω. (3.11)

and √
T [unk

, unk
](x) ≤ w1(x), for a.e. x ∈ Ω. (3.12)

Out of (3.11) and (3.6), we obtain√
T [unk

, unk
](x) →

√
T [u, u](x) as k →∞, for a.e. x ∈ Ω. (3.13)

Consequently

a
(√T [unk

, unk
](x)

‖unk
‖m,A

)√
T [unk

, unk
](x)

→ a
(√T [u, u](x)

‖u‖m,A

)√
T [u, u](x) as k →∞, for a.e. x ∈ Ω

and

a
(√T [unk

, unk
](x)

‖unk
‖m,A

)√
T [unk

, unk
](x) ≤ w(x) · w1(x), for a.e. x ∈ Ω.

Since w·w1 ∈ L1(Ω), by using (3.8) and Lebesgue’s dominated convergence theorem,
it follows that ∫

Ω

a
(√T [unk

, unk
](x)

‖unk
‖m,A

)√T [unk
, unk

](x)
‖unk

‖m,A
dx

→
∫

Ω

a
(√T [u, u](x)

‖u‖m,A

)√T [u, u](x)
‖u‖m,A

dx, as k →∞,

which is q(unk
) → q(u) as k →∞.

For the (unk
)k obtained above, we shall show that

ϕ(unk
) → ϕ(u), as k →∞, in

(
Wm

0 EA(Ω)
)∗
.

But
T [u, v] =

∑
|α|=|β|=m

cαβ(x)DαuDβv,

where cαβ ∈ C(Ω), therefore they are bounded.
First let us remark that, for arbitrary h, one has

| (ϕ(unk
)− ϕ(u)) (h)|

=
∣∣∣ ∑
|α|=|β|=m

∫
Ω

cαβ

[
a
(√T [unk

, unk
](x)

‖unk
‖m,A

) Dαunk√
T [unk

, unk
](x)

− a
(√T [u, u](x)

‖u‖m,A

) Dαu√
T [u, u](x)

]
Dβhdx

∣∣∣
≤M

∑
|α|=|β|=m

∣∣∣ ∫
Ω

[
a
(√T [unk

, unk
](x)

‖unk
‖m,A

) Dαunk√
T [unk

, unk
](x)

− a
(√T [u, u](x)

‖u‖m,A

) Dαu√
T [u, u](x)

]
Dβhdx

∣∣∣.

(3.14)
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We intend to apply Hölder’s inequality (2.3) in (3.14). Since Dβh ∈ EA(Ω), for all
β with |β| = m, it is sufficient to show that

a
(√T [unk

, unk
]

‖unk
‖m,A

) Dαunk√
T [unk

, unk
]
− a
(√T [u, u]
‖u‖m,A

) Dαu√
T [u, u]

∈ LA(Ω).

Moreover, we will show that

a
(√T [unk

, unk
]

‖unk
‖m,A

) Dαunk√
T [unk

, unk
]
− a
(√T [u, u]
‖u‖m,A

) Dαu√
T [u, u]

∈ EA(Ω) = KA(Ω).

(3.15)

Indeed, a
(√T [u,u]

‖u‖m,A

)
Dαu√
T [u,u]

∈ KA(Ω), because
√

T [u,u]

‖u‖m,A
∈ EA(Ω), by Lemma 2.7, we

obtain a
(√T [u,u]

‖u‖m,A

)
∈ KA(Ω). On the other hand, since T satisfies inequalities (1.4),

we have
Dαu√
T [u, u].

≤ 1
√
c1

;

therefore

a
(√T [u, u]
‖u‖m,A

) Dαu√
T [u, u]

≤ 1
√
c1
a
(√T [u, u]
‖u‖m,A

)
∈ KA(Ω) = EA(Ω)

(the N -function A satisfies the ∆2-condition). Consequently,

a
(√T [u, u]
‖u‖m,A

) Dαu√
T [u, u]

∈ KA(Ω) = EA(Ω). (3.16)

Now, using the same technique, we obtain

a
(√T [unk

, unk
]

‖unk
‖m,A

) Dαunk√
T [unk

, unk
]
∈ KA(Ω) = EA(Ω);

therefore we have (3.15). Applying Hölder’s inequality in (3.14), we obtain

| (ϕ(unk
)− ϕ(u)) (h)| ≤M1

∑
|α|=|β|=m

∥∥∥a(√T [unk
, unk

](x)
‖unk

‖m,A

) Dαunk√
T [unk

, unk
](x)

− a
(√T [u, u](x)

‖u‖m,A

) Dαu√
T [u, u](x)

‖(A)

∥∥∥h‖m,A.

Consequently,

‖ϕ(unk
)− ϕ(u)‖ ≤M1

∑
|α|=|β|=m

∥∥∥a(√T [unk
, unk

](x)
‖unk

‖m,A

) Dαunk√
T [unk

, unk
](x)

− a
(√T [u, u](x)

‖u‖m,A

) Dαu√
T [u, u](x)

‖(A).

Finally, we show that∥∥a(√T [unk
, unk

](x)
‖unk

‖m,A

) Dαunk√
T [unk

, unk
](x)

− a
(√T [u, u](x)

‖u‖m,A

) Dαu√
T [u, u](x)

∥∥
(A)

→ 0,

(3.17)
as k →∞.
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We will use the following result [29, Theorem 14, p. 84]. An element f ∈ LA(Ω)
has an absolutely continuous norm if and only if for each measurable fn such that
fn → f̃ a.e. and |fn| ≤ |f |, a.e., we have ‖fn− f̃‖(A) → 0 as n→∞. The fact that
f ∈ LA(Ω) has an absolutely continuous norm means that for every ε > 0 there
exists a δ > 0 such that ‖f · χE‖A < ε provided mes(E) < δ (E ⊂ Ω). Moreover,
any function from EA(Ω) has an absolutely continuous norm [22, Theorem 10.3].

Then, (3.17) follows from the above result with the following choices:

fk = a
(√T [unk

, unk
]

‖unk
‖m,A

) Dαunk√
T [unk

, unk
]
∈ EA(Ω),

f̃ = a
(√T [u, u]
‖u‖m,A

) Dαu√
T [u, u]

∈ EA(Ω)

From (1.4) and (3.11), it follows

Dαunk
(x) → Dαu(x), for a.e. x ∈ Ω;

therefore, taking into account (3.9), (3.13), we obtain

fk(x) → f̃(x), as k →∞, for a.e. x ∈ Ω.

On the other hand, from (1.4) and (3.10), we have

|fk(x)| ≤ w(x)
√
c1
, for a.e. x ∈ Ω,

with w ∈ KA(Ω) = EA(Ω). Setting

f =
w
√
c1
∈ EA(Ω),

it follows (3.17). It follows that ‖ϕ(unk
)− ϕ(u)‖ → 0 as k →∞. �

Now, we will study the uniform convexity of the space
(
Wm

0 EA(Ω), ‖ · ‖m,A

)
.

To do it, we still need some prerequisites. We begin with a technical result due to
Gröger ([20]) (see, also [23, p. 153]).

Lemma 3.7. Let A(u) =
∫ |u|
0

p(t) dt and A1(u) =
∫ |u|
0

p1(t) dt be two N -functions,
such that the functions p and p1 should satisfy the conditions

p(τ)
τ

≥ p(t)
t
, τ ≥ t > 0, (3.18)

p(t+ τ)− p(τ) ≥ p1(t), τ ≥ t > 0. (3.19)

Then
1
2
A(a) +

1
2
A(b)−A(c) ≥ A1(c∗), (3.20)

where

a ≥ b ≥ 0,
a− b

2
≤ c ≤ a+ b

2
, c∗ =

√
a2 + b2

2
− c2. (3.21)

The next corollary is a direct consequence of the preceding lemma.

Corollary 3.8. Let A(u) =
∫ |u|
0

p(t) dt be an N -function. Suppose that the function
p(t)/t is nondecreasing on (0,∞). Then

1
2
A(a) +

1
2
A(b)−A(c) ≥ A(c∗),

where a, b, c and c∗ are as in (3.21).
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Proposition 3.9. Let A(u) =
∫ |u|
0

p(t)dt be an N -function. Suppose that the
function p(t)

t is nondecreasing on (0,∞). Then

1
2
A
(√

T [u, u]
)

+
1
2
A
(√

T [v, v]
)
−A

(√
T [
u+ v

2
,
u+ v

2
]
)
≥ A

(√
T [
u− v

2
,
u− v

2
]
)
.

Proof. We apply Corollary 3.8 with a =
√
T [u, u], b =

√
T [v, v],

c =

√
T [
u+ v

2
,
u+ v

2
], c∗ =

√
T [
u− v

2
,
u− v

2
].

�

Proposition 3.10. Let A be an N -function. If the N -function A satisfies the
∆2-condition, then

ρ : LA(Ω) = EA(Ω) = KA(Ω) → R, ρ(u) =
∫

Ω

A(u(x))dx,

is continuous.

Proof. Obviously, ρ is convex, therefore it suffices to show that ρ is upper bounded
on a neighborhood of 0. But, if ‖u‖(A) < 1, then ρ(u) ≤ ‖u‖(A) < 1. �

Proposition 3.11. Let A be an N -function. Then, one has:
(i) If ρ(u) =

∫
Ω
A(u(x))dx = 1, then ‖u‖(A) = 1;

(ii) if, in addition, A satisfies a ∆2-condition, then ρ(u) =
∫
Ω
A(u(x))dx = 1

if and only if ‖u‖(A) = 1.

Proof. (i) Indeed, we have

1 = ρ(u) =
∫

Ω

A(
u(x)

1
)dx ≥ ‖u‖(A),

the last inequality being justified by the definition of the ‖·‖(A)-norm. If ‖u‖(A) < 1,
then (see Theorem 2.6), we have∫

Ω

A(u(x))dx ≤ ‖u‖(A) < 1,

which is a contradiction.
(ii) Taking into account the result given by (i), the “only if” implication has to

be proved. Now, since ‖u‖(A) = 1, we can write

ρ(u) =
∫

Ω

A(
u(x)

1
)dx =

∫
Ω

A(
u(x)
‖u‖(A)

)dx ≤ 1.

The strict inequality cannot hold. Indeed, if for some u with ‖u‖(A) = 1, we
have

∫
Ω
A(u(x))dx < 1, then there exists ε > 0 such that

∫
Ω
A(u(x))dx + ε < 1.

From Proposition 3.10, limλ→1+ ρ(λu) = ρ(u), therefore, there exists δ > 0, such
that for each λ with |λ− 1| < δ, we have∣∣ ∫

Ω

A(λu(x))dx−
∫

Ω

A(u(x))dx
∣∣ < ε.

It follows that, for 1 < λ < 1 + δ,
∫
Ω
A(λu(x))dx <

∫
Ω
A(u(x))dx + ε < 1. Since∫

Ω
A(λu(x))dx < 1, we infer that ‖u‖(A) ≤ 1

λ < 1, which is a contradiction. �
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Proposition 3.12. Let A be an N -function which satisfies the ∆2-condition. If
‖u‖(A) > ε, then there exists η > 0 such that

∫
Ω
A(u(x))dx > η.

Proof. Let u be such that ‖u‖(A) > ε. Assume that the assertion in the proposition
is not true, therefore for each η we have

∫
Ω
A(u(x))dx ≤ η. This means that ρ(u) =∫

Ω
A(u(x))dx = 0. Then, the ∆2-condition implies that, ρ(2pu) ≤ kpρ(u) = 0,

therefore ρ(2pu) = 0. Consequently ‖2pu‖A ≤ ρ(2pu) + 1 = 1, therefore ‖u‖(A) ≤
‖u‖A ≤ 1

2p < ε for p large enough, which is a contradiction. �

Definition 3.13. The space (X, ‖ · ‖X) is called uniformly convex if for each ε ∈
(0, 2] there exists δ(ε) ∈ (0, 1] such that for u, v ∈ X with ‖u‖X = ‖v‖X = 1 and
‖u− v‖X ≥ ε, one has ‖u+v

2 ‖X ≤ 1− δ(ε).

Theorem 3.14. Let A(u) =
∫ |u|
0

p(t) dt be an N -function. Suppose that the
function p(t)/t is nondecreasing on (0,∞). If the N -function A satisfies the ∆2-
condition, then Wm

0 EA(Ω) endowed with the norm

‖u‖m,A = ‖
√
T [u, u]‖(A)

is uniformly convex.

Proof. We start with the following technical remark: if the N -function A satisfies a
∆2-condition and

∫
Ω
A(u(x))dx < 1−η for some 0 < η < 1, there is δ > 0 such that

‖u‖(A) < 1− δ. In the contrary case, there is u satisfying
∫
Ω
A(u(x))dx < 1− η for

which ‖u‖(A) ≥ 1− δ for any δ > 0. In particular inequality
∫
Ω
A(u(x))dx < 1− η

may be satisfied for some u with ‖u‖(A) > 1/2. On the other hand, every u satisfying∫
Ω
A(u(x))dx < 1 − η has to satisfy ‖u‖(A) < 1 (see Theorem 2.6 and Proposition

3.11). Put a = 1/‖u‖(A). Clearly 1 < a < 2, ‖au‖(A) = 1 and
∫
Ω
A(au(x))dx = 1

(again by Proposition 3.11).
Now, by the convexity of A we derive that

1 =
∫

Ω

A(au(x)) dx

=
∫

Ω

A (2(a− 1)u(x) + (2− a)u(x)) dx

≤ (a− 1)
∫

Ω

A(2u(x)) dx+ (2− a)
∫

Ω

A(u(x)) dx

≤ (a− 1)k
∫

Ω

A(u(x)) dx+ (2− a)
∫

Ω

A(u(x)) dx;

therefore

1 ≤ [(a− 1)k + 2− a] ·
∫

Ω

A(u(x)) dx < [(a− 1)k + 2− a] · (1− η).

On the other hand, from 1
2 < a < 1, 0 < η < 1 and k > 2, it follows that

[(a− 1)k + 2− a] · (1− η) < 1, which is a contradiction.
Now, let ε > 0 be and u, v ∈ Wm

0 EA(Ω) such that ‖u‖m,A = ‖
√
T [u, u]‖(A) = 1

, ‖v‖m,A = ‖
√
T [v, v]‖(A) = 1 and ‖u− v‖m,A = ‖

√
T [u− v, u− v]‖(A) > ε. Then

‖u−v
2 ‖m,A = ‖

√
T [u−v

2 , u−v
2 ]‖(A) >

ε
2 . From Proposition 3.12 it follows that there

exists η > 0 such that
∫
Ω
A
(√

T [u−v
2 , u−v

2 ]
)
dx > η. On the other hand, from

Proposition 3.11, we have
∫
Ω
A
(√

T [u, u]
)
dx =

∫
Ω
A(
√
T [v, v]) dx = 1. Taking
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into account Proposition 3.9, we obtain that
∫
Ω
A
(√

T [u+v
2 , u+v

2 ]
)
dx < 1 − η.

From the above remark, we conclude that there is a δ > 0 depending on ε such that
‖u+v

2 ‖m,A = ‖
√
T [u+v

2 , u+v
2 ]‖(A) < 1− δ. �

4. Duality mapping on
(
Wm

0 EA(Ω), ‖ · ‖m,A

)
Let X be a real Banach space and let ϕ : R+ → R+ be a gauge function, i.e. ϕ

is continuous, strictly increasing, ϕ(0) = 0 and ϕ(t) →∞ as t→∞.
By duality mapping corresponding to the gauge function ϕ we understand the

multivalued mapping Jϕ : X → P(X∗), defined as follows:

Jϕ0 = {0},
Jϕx = ϕ(‖x‖){u∗ ∈ X∗; ‖u∗‖ = 1, 〈u∗, x〉 = ‖x‖}, if x 6= 0.

(4.1)

According to the Hahn-Banach theorem it is easy to see that the domain of Jϕ is
the whole space:

D(Jϕ) = {x ∈ X; Jϕx 6= ∅} = X.

Due to Asplund’s result [3],

Jϕ = ∂ψ, ψ(x) =
∫ ‖x‖

0

ϕ(t)dt, (4.2)

for any x ∈ X and ∂ψ stands for the subdifferential of ψ in the sense of convex
analysis.

By the preceding definition, it follows that Jϕ is single valued if and only if X is
smooth, i.e. for any x 6= 0 there is a unique element u∗(x) ∈ X∗ having the metric
properties

〈u∗(x), x〉 = ‖x‖, ‖u∗(x)‖ = 1 (4.3)
But it is well known (see, for example, Diestel [10]) that a real Banach space X is
smooth if and only if its norm is differentiable in the Gâteaux sense, i.e. at any
point x ∈ X, x 6= 0 there is a unique element ‖ · ‖′(x) ∈ X∗ such that, for any
h ∈ X, the following equality

lim
t→0

‖x+ th‖ − ‖x‖
t

= 〈‖ · ‖′(x), h〉

holds. Since, at any x 6= 0, the gradient of the norm satisfies

‖‖ · ‖′(x)‖ = 1, 〈‖ · ‖′(x), x〉 = ‖x‖ (4.4)

and it is the unique element in the dual space having these properties, we imme-
diately get that: if X is a smooth real Banach space, then the duality mapping
corresponding to a gauge function ϕ is the single valued mapping Jϕ : X → X∗,
defined as follows:

Jϕ0 = 0,

Jϕx = ϕ(‖x‖)‖ · ‖′(x), if x 6= 0.
(4.5)

Remark 4.1. By coupling (4.5) with the Asplund’s result quoted above, we get:
if X is smooth, then

Jϕx = ψ′(x) =

{
0 if x = 0
ϕ(‖x‖)‖ · ‖′(x) if x 6= 0,

(4.6)

where ψ is given by (4.2).
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From (4.4) and (4.5), it follows that

‖Jϕx‖ = ϕ(‖x‖),
〈Jϕx, x〉 = ϕ(‖x‖)‖x‖, for all x ∈ X.

(4.7)

The following surjectivity result will play an important role in what follows:

Theorem 4.2. If X is a real reflexive and smooth Banach space, then any duality
mapping Jϕ : X → X∗ is surjective. Moreover, if X is also strictly convex, then
Jϕ is a bijection of X onto X∗.

In proving the surjectivity of Jϕ, the main ideas are as follows: (for more details,
see Browder [5], Lions [24], Deimling [9])

(i) Jϕ is monotone:

〈Jϕx− Jϕy, x− y〉 ≥ (ϕ(‖x‖)− ϕ (‖y‖)) (‖x‖ − ‖y‖) ≥ 0,∀x, y ∈ X.
The first inequality is a direct consequence of (4.7) while the second one follows
from ϕ being increasing.

(ii) Any duality mapping on a real smooth and reflexive Banach space is demi-
continuous:

xn → x⇒ Jϕxn ⇀ Jϕx.

Indeed, since (xn)n is bounded and ‖Jϕxn‖ = ϕ (‖xn‖), it follows that (Jϕxn)n is
bounded in X∗. Since X∗ is reflexive, in order to prove Jϕxn ⇀ Jϕx it is enough
to prove that Jϕx is the unique point in the weak closure of (Jϕxn)n.

(iii) Jϕ is coercive, in the sense that

〈Jϕx, x〉
‖x‖

= ϕ(‖x‖) →∞ as ‖x‖ → ∞.

According to a well-known surjectivity result due to Browder (see, for example,
Browder [5], Lions [24], Zeidler [31], Deimling [9]), if X is a reflexive real Banach
space, then any monotone, demicontinuous and coercive operator T : X → X∗ is
surjective.

Consequently, from (i), (ii), (iii) and the Browder’s surjectivity result above
mentioned it follows that, under the hypotheses of Theorem 4.2, Jϕ is surjective.

It can be shown that if X is a strictly convex real Banach space, then any duality
mapping Jϕ : X → P(X∗) is strictly monotone, in the following sense: if x, y ∈ X
and x 6= y, then, for any x∗ ∈ Jϕx and y∗ ∈ Jϕy one has 〈x∗ − y∗, x − y〉 > 0.
Clearly, the strict monotonicity implies the injectivity: if x, y ∈ X and x 6= y then
Jϕx ∩ Jϕy = ∅. In particular, if the strictly convex real Banach space X is also a
smooth one, then any duality mapping Jϕ : X → X∗ is strictly monotone:

〈Jϕx− Jϕy, x− y〉 > 0, ∀x, y ∈ X,x 6= y,

and, consequently, injective.

Corollary 4.3. If X is a reflexive and smooth real Banach space having the Kadeč-
Klee property, then any duality mapping Jϕ : X → X∗ is bijective and has a
continuous inverse. Moreover,

J−1
ϕ = χ−1J∗ϕ−1 , (4.8)

where J∗ϕ−1 : X∗ → X∗∗ is the duality mapping on X∗ corresponding to the gauge
function ϕ−1 and χ : X → X∗∗ is the canonical isomorphism defined by 〈χ(x), x∗〉 =
〈x∗, x〉, for all x ∈ X, for all x∗ ∈ X∗.
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Proof. The existence of J−1
ϕ follows from Theorem 4.2. As far as formula (4.8) is

concerned, first we shall prove that, under the hypotheses of Corollary 4.3, any
duality mapping on X∗ (in particular, that corresponding to the gauge function
ϕ−1) is single valued. This is equivalent with proving that X∗ is smooth.

The smoothness of X∗ will be proved by using the (partial) duality between
strict convexity and smoothness given by the following theorem due to Klee (see
Diestel [10, Chapter 2, §2, Theorem 2]):

X∗ smooth (strictly convex) ⇒ X strictly convex (smooth).

Clearly, if X is reflexive, then

X∗ smooth (strictly convex) ⇔ X strictly convex (smooth).

Now, by the hypotheses of Corollary 4.3, X is reflexive and smooth. Also, by the
same hypotheses, X possesses the Kadeč-Klee property, that means: X is strictly
convex and

[xn ⇀ x and ‖xn‖ → ‖x‖] ⇒ xn → x. (4.9)
Consequently, X being reflexive, smooth and strictly convex so is X∗.
Let us prove that equality (4.8) holds or, equivalently,

χJ−1
ϕ x∗ = J∗ϕ−1x∗,∀x∗ ∈ X∗. (4.10)

From the definition of duality mappings, J∗ϕ−1x∗ is the unique element in X∗∗

having the metric properties

〈J∗ϕ−1x∗, x∗〉 = ϕ−1 (‖x∗‖) ‖x∗‖,
‖J∗ϕ−1x∗‖ = ϕ−1 (‖x∗‖) .

(4.11)

We shall show that χJ−1
ϕ x∗ possesses the same metric properties and then the result

follows by unicity. Putting x∗ = Jϕx it follows (by definition of Jϕ) that

x∗ = ϕ(‖x‖),
〈x∗, x〉 = ϕ(‖x‖)‖x‖ = ϕ−1 (‖x∗‖) ‖x∗‖

and, consequently, we deduce that

〈χJ−1
ϕ x∗, x∗〉 = 〈χ(x), x∗〉 = 〈x∗, x〉 = ϕ−1 (‖x∗‖) ‖x∗‖,

‖χJ−1
ϕ x∗‖ = ‖χ(x)‖ = ‖x‖ = ϕ−1(‖x‖)

(4.12)

Equality (4.10) follows by comparing (4.11) and (4.12) and using the uniqueness
result evoked above. Formula (4.8) is basic in proving the continuity of J−1

ϕ . Indeed,
let x∗n → x∗ in X∗. As any duality mapping on a reflexive Banach space, J∗ϕ−1 is
demicontinuous, J∗ϕ−1x∗n ⇀ J∗ϕ−1x∗. Consequently, we deduce that

J−1
ϕ x∗n = χ−1J∗ϕ−1x∗n ⇀ χ−1J∗ϕ−1x∗ = J−1

ϕ x∗. (4.13)

On the other hand,

‖J−1
ϕ x∗n‖ = ‖χ−1J∗ϕ−1x∗n‖ = ‖J∗ϕ−1x∗n‖ = ϕ−1 (‖x∗n‖) → ϕ−1(‖x‖) = ‖J−1

ϕ x∗‖.
(4.14)

From (4.13), (4.14) and the Kadeč-Klee property of X, we infer that J−1
ϕ x∗n →

J−1
ϕ x∗. �

Corollary 4.4. If X is a weakly locally uniformly convex, reflexive and smooth
real Banach space, then any duality mapping Jϕ : X → X∗ is bijective and has a
continuous inverse given by (4.8).
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Proof. Since any weakly locally uniformly convex Banach space has the Kadeč-Klee
property (see Diestel[Chapter 2, §2, Theorems 3 and 4(iii)][10]) the result follows
by Corollary 4.3. �

Theorem 4.5. Let ϕ be a gauge function. The duality mapping on (Wm
0 EA(Ω),

‖u‖m,A) is the single valued operator Jϕ : Wm
0 EA(Ω) →

(
Wm

0 EA(Ω)
)∗ defined by

Jϕu = ψ′(u) =

{
0 if u = 0
ϕ(‖u‖m,A)‖ · ‖′m,A(u) if u 6= 0,

where

ψ(u) =
∫ ‖u‖m,A

0

ϕ(t)dt = Φ (‖u‖m,A) , ∀u ∈Wm
0 EA(Ω),

where Φ is the N -function generated by ϕ and, for any u 6= 0, ‖ · ‖′m,A(u) being
given by (3.3).

This result immediately follows by Theorem 3.6 and Remark 4.1.

5. Nemytskij operator on LA(Ω)

We recall that f : Ω× R → R is a Carathéodory function if it satisfies:
(i) for each s ∈ R, the function x→ f(x, s) is Lebesgue measurable in Ω;
(ii) for a.e. x ∈ Ω, the function s→ f(x, s) is continuous in R.

We make convention that in the case of a Carathéodory function, the assertion
x ∈ Ω to be understood in the sense a.e. x ∈ Ω.

Proposition 5.1 ([22, Theorem 17.1]). Suppose that f : Ω×R → R is a Carathéo-
dory function. Then, for each measurable function u, the function Nfu : Ω → R,
given by

(Nfu)(x) = f(x, u(x)), for each x ∈ Ω (5.1)

is measurable in Ω.

Definition 5.2. Let M be the set of all measurable functions u : Ω → R, f :
Ω × R → R be a Carathéodory function. The operator Nf : M → M given by
(5.1) is called Nemytskij operator defined by Carathéodory function f .

Theorem here below states sufficient conditions when Nemytskij operator maps
a Orlicz class KA(Ω) into another Orlicz class KB(Ω), being at the same time
continuous and bounded. The following result is useful.

Theorem 5.3. Let A and B be two N -functions and f : Ω×R → R be a Carathéo-
dory function which satisfies the growth condition

|f(x, u)| ≤ c(x) + bB−1 (A(u)) , x ∈ Ω, u ∈ R, (5.2)

where c ∈ KB(Ω) and b ≥ 0 is a constant. Then the following statements are true:
(i) If B satisfies the ∆2-condition, then Nf is well-defined and mean bounded

from KA(Ω) into KB(Ω) = EB(Ω). Moreover, Nf :
(
EA(Ω), ‖ · ‖(A)

)
→(

EB(Ω), ‖ · ‖(B)

)
is continuous;

(ii) If both A and B satisfy the ∆2-condition, then Nf :
(
EA(Ω), ‖ · ‖(A)

)
→(

EB(Ω), ‖ · ‖(B)

)
is norm bounded.
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Proof. Let us first remark that the well-definedness of Nf as well as the continuity
and the boundedness on every ball B(0, r) ⊂ LA(Ω), with r < 1, may be obtained as
consequences Theorem 17.6 in Krasnosel’skij and Rutickij ([22]). The proof of this
theorem is quite complicated; that is why a direct proof of Theorem 5.3, including
the supplementary result given by (ii), will be given below.

(i) Let u, v ∈ R. Since B is convex and satisfies the ∆2-condition, one has

B(u+ v) = B
(
2 · 1

2
(u+ v)

)
≤ k

2
(B(u) +B(v)) . (5.3)

Let p be such that 2p ≥ b. Since B satisfies the ∆2-condition, one has

B(bu) ≤ B(2pu) ≤ kpB(u). (5.4)

Now, let u ∈ KA(Ω). By using (5.2), (5.3), ( 5.4) and integrating on Ω, we have∫
Ω

B [Nf (u)(x)] dx =
∫

Ω

B (|f(x, u(x))|) dx

≤ k

2

∫
Ω

B (c(x)) dx+
kp+1

2

∫
Ω

A(u(x)) dx <∞,

(5.5)

saying then Nf (KA(Ω)) ⊂ LB(Ω) = EB(Ω).
From (5.5) it follows that, if u ∈ KA(Ω) and

∫
Ω
A(u(x)) dx ≤const., then∫

Ω

B [Nf (u)(x)] dx ≤ k

2

∫
Ω

B (c(x)) dx+ const.;

therefore Nf transforms mean bounded sets in KA(Ω) into mean bounded sets in
EB(Ω).

Now, let us consider u ∈ EA(Ω). For the continuity of Nf , it suffices to show
that every sequence (un)n ⊂ EA(Ω) such that

lim
n→∞

‖un − u‖A = 0

has a subsequence (unk
)k such that Nf (unk

) → Nf (u) as k → ∞, in LB(Ω) =
EB(Ω).

Indeed, let (un)n be a sequence as above. By using Lemma 3.4, it follows that
there exists a subsequence (unk

)k ⊂ (un)n and h ∈ KA(Ω) such that

lim
k→∞

unk
(x) = u(x), a.e. x ∈ Ω (5.6)

and
|unk

(x)| ≤ |h(x)|, a.e. x ∈ Ω, k ∈ N. (5.7)
The function f being a Carathéodory function, it is clear that

lim
k→∞

Nf (unk
)(x) = Nf (u)(x), a.e. x ∈ Ω,

therefore,
lim

k→∞
B (Nf (unk

)(x)−Nf (u)(x)) = 0, a.e. x ∈ Ω. (5.8)

On the other hand, from (5.2) it follows that

|Nf (unk
)(x)| = |f(x, unk

(x))| ≤ c(x) + bB−1 (A(h(x))) , a.e. x ∈ Ω, k ∈ N.
Consequently, by using a similar argument to that in (5.5) and taking into account
(5.7), one obtains

B (Nf (unk
)(x)) ≤ k

2
B (c(x)) +

kp+1

2
A (h(x)) ,
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and by using a similar argument to that in (5.5), one has

B (Nf (u)(x)) ≤ k

2
B (c(x)) +

kp+1

2
A (h(x)) ;

therefore, by (5.3) and the preceding two inequalities, one obtains

B (Nf (unk
)(x)−Nf (u)(x)) ≤ k

2
B (Nf (unk

)(x)) +
k

2
B (Nf (u)(x))

≤ k2

2
B(c(x)) +

kn+2

4
[A (h(x)) +A(u(x))].

Since the right term of this inequality is in L1(Ω) and (5.8) holds, by applying
Lebesgue’s dominated convergence theorem, it follows that

lim
k→∞

∫
Ω

B (Nf (unk
)(x)−Nf (u)(x)) dx = 0,

that is the subsequence (Nf (unk
))k converges in mean to Nf (u). The N -function B

satisfying the ∆2 -condition, it follows that the subsequence (Nf (unk
))k converges

in norm to Nf (u), therefore the operator Nf is continuous.
(ii) Now, let us suppose that A satisfies the ∆2-condition. If the set M⊂ EA(Ω)

is norm bounded, then, from ∆2-condition, it follows that M is mean bounded,
therefore Nf (M) is also mean bounded. But any mean bounded set is norm
bounded too. �

Now, let us consider the functional G : EA(Ω) → R given by

G(u) =
∫

Ω

G (x, u(x)) dx, (5.9)

where

G (x, s) =
∫ s

0

f(x, τ) dτ. (5.10)

We recall the following result concerning the differentiability of the functional
F .

Theorem 5.4 ([22, Theorem 18.1]). Let f : Ω×R → R be a Carathéodory function.
Assume that there exists an N -function M such that

|f(x, u)| ≤ c(x) + bM
−1

(M(u)) , x ∈ Ω, u ∈ R, (5.11)

where M is the complementary N -function to M , c ∈ KM (Ω), b ≥ 0 is a constant
and M satisfies the ∆2-condition. Then, the functional G, given by (5.9), is of class
C1 on EM (Ω), with Fréchet derivative given by

〈G′(u), h〉 =
∫

Ω

Nf (u)(x)h(x) dx =
∫

Ω

f (x, u(x)) ·h(x) dx, u, h ∈ EM (Ω). (5.12)

6. An existence result for (1.2), (1.3), via a Leray-Schauder technique

Since any u ∈ Wm
0 EA(Ω) satisfies the boundary conditions (1.3) (see Theorem

2.8), the idea is to prove the existence of an element u ∈Wm
0 EA(Ω) which satisfies

also (1.2) in a sense that will be clarified.
First, we shall prove the following result.
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Proposition 6.1. Let A(u) =
∫ |u|
0

a(t) dt be an N -function which satisfies the
∆2-condition. Suppose that the function a(t)

t is nondecreasing on (0,∞). Then

Ja : Wm
0 EA(Ω) →

(
Wm

0 EA(Ω)
)∗

is a bijection, with monotone, bounded and continuous inverse.

Proof. According to Theorem 3.14, Wm
0 EA(Ω) is uniformly convex (in particular,

reflexive) and smooth (Theorem 3.6) The result follows by Corollary 4.4. �

In what follows, we give a meaning of the right member in (1.2) as operator
acting from Wm

0 EA(Ω) into (Wm
0 EA(Ω))∗. To do it, let us first remark that if Mα,

|α| < m, are the N -functions, then, the space

X =
⋂

|α|<m

Wm−1LMα
(Ω). (6.1)

is complete with respect to the norm

‖u‖X =
∑
|α|<m

‖u‖W m−1LMα (Ω). (6.2)

Indeed, if (un)n is a Cauchy sequence in X, then this sequence is Cauchy in
Wm−1LMα

(Ω), for each α with |α| < m, therefore there exists vα ∈Wm−1LMα
(Ω),

|α| < m, such that

‖un − vα‖W m−1LMα (Ω) → 0 as n→∞,

and α with |α| < m. Then

‖un − vα‖(Mα) → 0 as n→∞,

and α with |α| < m. Consequently, since Ω is bounded, we have the imbeddings

LMα
(Ω) → L1(Ω), for |α| < m,

therefore taking into account the uniqueness of the limit in L1(Ω), we can set
u = vα, |α| < m. Obviously, u ∈ X and ‖un − u‖X → 0 as n → ∞, that is X is
complete.

Proposition 6.2. Let Ω be any domain in RN . Let A(u) =
∫ |u|
0

a(t) dt be an
N -function, which satisfies the conditions (2.7) and (2.8). Let m ∈ N∗ be given.
Suppose that, for each α with |α| < m, there exists an N -function Mα which in-
creases essentially more slowly than A∗ (the Sobolev conjugate of A) near infinity.
Then, the imbedding

Wm
0 EA(Ω)

i
↪→ X =

⋂
|α|<m

Wm−1LMα
(Ω)

exists and is compact.

Proof. If u ∈Wm
0 EA(Ω), then u ∈ EA(Ω), Dβu ∈ EA(Ω), |β| ≤ m and Dβu = 0 on

∂Ω, |β| ≤ m− 1. Therefore, for each β with |β| ≤ m− 1, Dβu ∈ W 1
0EA(Ω), since,

if |β| ≤ m− 1, Dβu ∈ EA(Ω), the first order derivatives of the function Dβu are of
the form Dαu, with |α| = |β| + 1 ≤ m. Or Dαu ∈ EA(Ω), |α| ≤ m and Dβu = 0
on ∂Ω for |β| ≤ m − 1. Therefore, if |β| ≤ m − 1, Dβu ∈ W 1

0EA(Ω). Under the
hypotheses of proposition 6.2, by applying Theorem 2.12, it follows that the imbed-
dings W 1

0EA(Ω) → LMα
(Ω), |α| < m, exist and are compact. Consequently, for a
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fixed α, |α| < m, Dβu ∈ LMα
(Ω), if |β| < m, that is u ∈ Wm−1LMα

(Ω), there-
fore u ∈

⋂
|α|<mWm−1LMα(Ω). Moreover, from the continuity of the imbeddings

W 1
0EA(Ω) → LMα(Ω), |α| < m, it follows that there exists a positive constant C,

such that
‖u‖X ≤ C‖u‖m,A.

On the other hand, for |β| ≤ m− 1, we have

‖Dβu‖W 1
0 EA(Ω) ≤ ‖u‖W m

0 EA(Ω).

Now, let (un)n be a bounded sequence in Wm
0 EA(Ω). Then (Dβun)n is bounded

in W 1
0EA(Ω), for any β, |β| ≤ m− 1. Since the imbeddings W 1

0EA(Ω) → LMα
(Ω),

|α| < m, are compact, for each |β| < m, (Dβun)n is precompact in LMα
(Ω), for any

α. Consequently, the sequence (Dβun)n contains a subsequence (Dβunk
)k which

converges in LMα(Ω), for any α, |α| < m. By finite induction, one can select
a subsequence, also denoted (unk

)k of (un)n, such that for |β| < m, (Dβunk
)k

converges in LMα
(Ω), for all α, |α| < m. Therefore

Dβunk
→ uβ ,α ∈ LMα

(Ω) as k →∞.

Since Ω is bounded, the imbedding LMα(Ω) → L1(Ω) is continuous. It follows
that uβα

= uβ , for each α. Therefore,

Dβunk
→ uβ , k →∞, ∀β, |β| ≤ m− 1, uβ ∈ LMα

(Ω), ∀α, |α| ≤ m− 1.

If unk
→ u as k → ∞ and Dβunk

→ uβ as k → ∞, 0 < |β| ≤ m − 1, then, by
using the continuity of distributional derivation, it follows that Dβunk

→ Dβu as
k →∞, therefore uβ = u. Thus (unk

)k converges to u ∈ Wm−1LMα
(Ω), for every

α with |α| < m. Therefore, u ∈ X and unk
→ u as k →∞ in X. �

Proposition 6.3. Let m ∈ N∗ be given and let gα : Ω × R → R, |α| < m, be the
Carathéodory functions. Suppose that, for each α with |α| < m, there exists an
N -function Mα, such that Mα and Mα satisfy the ∆2-condition, such that

|gα(x, s)| ≤ cα(x) + dαM
−1

α (Mα(s)) , x ∈ Ω, s ∈ R, |α| < m, (6.3)

where cα ∈ KMα
(Ω) and dα is a positive constant. Let us consider the space X

given by (6.1), endowed with the norm (6.2). Then, the operator N : X → X∗,

(Nu) (h) =
∑
|α|<m

∫
Ω

gα(x,Dαu(x))Dαh(x)dx, (6.4)

is well-defined and continuous.

Proof. Indeed, if u ∈
⋂
|α|<mWm−1LMα(Ω), then, for any α, with |α| < m, we have

u ∈ Wm−1LMα
(Ω); therefore, if |α| < m, it follows that, for any β, with |β| < m,

Dβu ∈ LMα
(Ω) = EMα

(Ω), since Mα satisfy the ∆2-condition. Consequently⋂
|α|<m

Wm−1LMα(Ω)

=
{
u ∈

⋂
|α|<m

LMα(Ω) | Dβu ∈
⋂

|α|<m

LMα(Ω),∀|β| ≤ m− 1
}
.

Using Theorem 5.3, it follows that gα(x,Dαu(x)) ∈ KMα
(Ω), |α| < m. Therefore,

N is well-defined.
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Now, we will show that the operator N is continuous. Let u ∈ X and (un)n ⊂ X
be such that ‖un − u‖X → 0. Then, for each α with |α| < m, we have

‖un − u‖W m−1LMα (Ω) → 0 as n→∞.

Consequently, for any β, with |β| ≤ |α| < m, we have

‖Dβun −Dβu‖(Mα ) → 0 as n→∞.

In particular
‖Dαun −Dαu‖(Mα ) → 0 as n→∞,

for any α, with |α| < m. Using Theorem 5.3, we obtain

‖Ngα
(Dαun)−Ngα

(Dαu)‖(Mα) → 0 as n→∞,

for each α, with |α| < m. Consequently, by using the generalized Hölder inequality
(2.3), we have

|N(un)(h)−N(u)(h)|

=
∑
|α|<m

∫
Ω

[gα(x,Dαun(x))− gα(x,Dαu(x))]Dαh(x)dx

≤ 2
∑
|α|<m

‖Ngα
(Dαun)−Ngα

(Dαu)‖(Mα)‖D
αh‖(Mα)

≤ 2
∑
|α|<m

‖Ngα
(Dαun)−Ngα

(Dαu)‖(Mα)‖h‖(W m−1LMα )

≤ 2
( ∑
|α|<m

‖Ngα
(Dαun)−Ngα

(Dαu)‖(Mα)

)
‖h‖X ;

therefore

‖N(un)−N(u)‖X∗ ≤ 2
∑
|α|<m

‖Ngα
(Dαun)−Ngα

(Dαu)‖(Mα) → 0

as n→∞, that is the operator N is continuous. �

Let us suppose that the hypotheses of Propositions 6.2 and 6.3 are satisfied.
Then, the diagram

Wm
0 EA(Ω)

i
↪→

⋂
|α|<m

Wm−1LMα(Ω) N→
( ⋂
|α|<m

Wm−1LMα(Ω)
)∗ i∗

↪→
(
Wm

0 EA(Ω)
)∗

(6.5)
shows that i∗ ◦N ◦ i is a compact operator from Wm

0 EA(Ω) to (Wm
0 EA(Ω))∗.

An element u ∈Wm
0 EA(Ω) is said to be solution of problem (1.2), (1.3) if

Jau = (i∗ ◦N ◦ i) (u) (6.6)

in the sense of
(
Wm

0 EA(Ω)
)∗ i.e.

〈Jau, h〉 = 〈(i∗ ◦N ◦ i) (u), h〉,
for all h ∈Wm

0 EA(Ω) or

a
(
‖u‖m,A

)
·
∫
Ω
a
(√T [u,u]

‖u‖m,A

) T [u,h]√
T [u,u]

dx∫
Ω
a
(√T [u,u]

‖u‖m,A

)√T [u,u]

‖u‖m,A
dx

=
∑
|α|<m

∫
Ω

gα(x,Dαu(x))Dαh(x)dx (6.7)
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for all h ∈Wm
0 EA(Ω).

Problem (1.2), (1.3) reduces to a fixed point problem with compact operator.
Indeed, by Proposition 6.1, the operator J−1

a :
(
Wm

0 EA(Ω)
)∗ → Wm

0 EA(Ω) is
bounded and continuous. Consequently, (6.6 ) can be equivalently written

u =
(
J−1

a ◦ i∗ ◦N ◦ i
)
(u)

with J−1
a ◦ i∗ ◦N ◦ i : Wm

0 EA(Ω) →Wm
0 EA(Ω) being a compact operator. We will

use the ”a priory estimate method” in order to establish the existence of a fixed
point for the compact operator P = J−1

a ◦ i∗ ◦N ◦ i : Wm
0 EA(Ω) →Wm

0 EA(Ω).

Theorem 6.4. Let A(u) =
∫ |u|
0

a(t) dt be an N -function, which satisfies the ∆2-
condition and (2.7), (2.8). Suppose that a(t)

t is nondecreasing on (0,∞). Let m ∈
N∗ be given and let gα : Ω× R → R, |α| < m, be Carathéodory functions. Assume
that, for each α with |α| < m, there exists an N -function Mα which increases
essentially more slowly than A∗ near infinity and satisfies the ∆2-condition, such
that the growth conditions (6.3) hold. If

γα = sup
t>0

tM ′
α(t)

Mα(t)
, |α| < m

and γ = max|α|<m γα satisfies

γ < p0 = inf
t>0

ta(t)
A(t)

,

then the operator P = J−1
a ◦i∗ ◦N ◦i has a fixed point in Wm

0 EA(Ω) or equivalently,
problem (1.2), (1.3) has a solution. Moreover, the solution set of problem (1.2),
(1.3) is compact in Wm

0 EA(Ω).

Proof. In order to prove that the compact operator P has a fixed point, it suffices
to prove that the set

S = {u ∈Wm
0 EA(Ω) | ∃t ∈ [0, 1] such that u = tPu}

is bounded in Wm
0 EA(Ω). To do this, a technical lemma is needed. �

Lemma 6.5. Let A(u) =
∫ |u|
0

a(t) dt be an N -function.

(a) If p0 = inft>0
ta(t)
A(t) , then for any t > 1, one has A(t) ≥ A(1)tp0 ;

(b) If A satisfies the ∆2-condition and

p∗ = sup
t>0

ta(t)
A(t)

,

then ∞ > p∗ > 1 and for any u ∈ LA(Ω) with ‖u‖(A) > 1, one has∫
Ω

A(u(x))dx ≤ ‖u‖p∗

(A). (6.8)

Proof. (a) First, we remark that, from Young’s equality, we have

ta(t)
A(t)

> 1, for any t > 0, (6.9)

therefore p0 ≥ 1. Integrating the inequality
a(τ)
A(τ)

≥ p0

τ
, τ > 0.
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over the interval [1, t], we obtain

A(t) ≥ A(1)tp0 , for t > 1. (6.10)

(b) According to (6.9), p∗ > 1. Since A satisfies the ∆2-condition, kA(t) ≥
A(2t) > ta(t); therefore

ta(t)
A(t)

< k, with k > 2.

Thus, p∗ is finite and
a(τ)
A(τ)

≤ p∗

τ
, τ > 0.

Now, let u be such that ‖u‖(A) > 1. Integrating over the interval [ |u(x)|
‖u‖(A)

, |u(x)|],
we obtain

A(u(x)) ≤ A(
|u(x)|
‖u‖(A)

)‖u‖p∗

(A). (6.11)

Integrating over Ω and taking into account that∫
Ω

A(
|u(x)|
‖u‖(A)

)dx = 1,

it follows (6.7).
Now, let u ∈ S, u = tJ−1

a (i∗Ni)u, t ∈ (0, 1]. Then Ja(u
t ) = (i∗Ni)u, therefore

(see (6.7)), we have

〈Ja(
u

t
),
u

t
〉 =

1
t
〈(i∗Ni)u, u〉 =

1
t

∑
|α|<m

∫
Ω

gα(x,Dαu(x))Dαu(x)dx. (6.12)

On the other hand, we have the following estimate (see (6.3)):∣∣ ∑
|α|<m

∫
Ω

gα(x,Dαu(x))Dαu(x)dx
∣∣

≤
∑
|α|<m

∫
Ω

|gα(x,Dαu(x))||Dαu(x)| dx

≤
∑
|α|<m

∫
Ω

[
cα(x) + dαM

−1

α (Mα(Dαu(x)))
]
|Dαu(x)| dx

≤
∑
|α|<m

∫
Ω

cα(x)|Dαu(x)| dx+
∑
|α|<m

dα

∫
Ω

M
−1

α (Mα(Dαu(x))) |Dαu(x)| dx.

(6.13)
Now, for any N -function Mα one has the inequality

M−1
α (t)M

−1

α (t) ≤ 2t, ∀t ≥ 0;

therefore, setting t = Mα(s), we obtain s ·M−1

α (Mα(s)) ≤ 2Mα(s). Consequently,
we have

M
−1

α (Mα(Dαu(x))) |Dαu(x)| ≤ 2Mα(|Dαu(x)|). (6.14)

Then, taking into account (6.12), (6.13) and (6.14), it follows that

t · |〈Ja(
u

t
),
u

t
〉| ≤

∑
|α|<m

∫
Ω

cα(x)|Dαu(x)| dx+ 2
∑
|α|<m

dα

∫
Ω

Mα(|Dαu(x)|)dx;
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therefore, we have

1
t
‖u‖m,A · a

(1
t
‖u‖m,A

)
= 〈Ja(

u

t
),
u

t
〉

≤ 1
t

∑
|α|<m

∫
Ω

cα(x)|Dαu(x)| dx+
2
t

∑
|α|<m

dα

∫
Ω

Mα(|Dα(u(x))|)dx
(6.15)

However, for |α| < m, we have

‖Dαu‖(Mα) ≤ ‖u‖W m−1LMα (Ω) ≤ ‖u‖X ≤ c‖u‖m,A, (6.16)

the space X being given by (6.1). Therefore, from Holder’s inequality, we have∣∣ ∫
Ω

cα(x)|Dαu(x)| dx
∣∣ ≤ 2‖cα‖(Mα)‖D

αu‖(Mα) ≤ 2c‖cα‖(Mα)‖u‖m,A. (6.17)

On the other hand, if ‖Dαu‖(Mα) ≤ 1, then (see (6.16))∫
Ω

Mα(Dαu(x))dx ≤ ‖Dαu‖(Mα) ≤ c‖u‖m,A.

If ‖Dαu‖(Mα) > 1, then from (6.8),∫
Ω

Mα(Dα(u(x)))dx ≤ ‖Dα(u)‖γα

(Mα) ≤ cγ‖u‖γ
m,A,

with γ ≥ 1. Consequently, if u ∈Wm
0 EA(Ω), we have∫

Ω

Mα(Dαu(x))dx ≤ cγ‖u‖γ
m,A + c‖u‖m,A, |α| < m. (6.18)

Then, from (6.15), (6.17), (6.18), we obtain

1
t
‖u‖m,A · a

(1
t
‖u‖m,A

)
≤ D

t
‖u‖γ

m,A +
E

t
‖u‖m,A,

where D = 2cγ
∑
|α|<m dα and E = 2c

∑
|α|<m

(
dα + ‖cα‖(Mα)

)
.

On the other hand, from Young’s equality and (6.10), we obtain

‖u
t
‖m,A · a

(
‖u
t
‖m,A

)
≥ A

(
‖u
t
‖m,A

)
≥ A(1)‖u

t
‖p0

m,A =
A(1)
tp0

‖u‖p0
m,A;

thus
A(1)
tp0

‖u‖p0
m,A ≤ D

t
‖u‖γ

m,A +
E

t
‖u‖m,A. (6.19)

where D = 2cγ
∑
|α|<m dαand E = 2c

∑
|α|<m

(
dα + ‖cα‖(Mα)

)
. Consequently

A(1)‖u‖p0
m,A ≤ Dtp0−1‖u‖γ

m,A + Etp0−1‖u‖m,A ≤ D‖u‖γ
m,A + E‖u‖m,A; (6.20)

therefore

A(1)‖u‖p0−1
m,A −D‖u‖γ−1

m,A − E ≤ 0. (6.21)

We remark that, since γ < p0, inequality (6.21) implies that there exists a constant
C such that ‖u‖m,A ≤ C. �
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7. An existence result for (1.2), (1.3), via mountain pass theorem

In this section, the existence of weak solution for the problem (1.2), (1.3) will
be proved by a variational method. First, we recall a version of the Mountain Pass
Theorem ([2]) as given in ([28]).

Theorem 7.1. Let X be a real Banach space and I ∈ C1(X,R) with I(0) = 0.
Suppose that the following conditions hold:

(G1) There exist ρ > 0 and r > 0 such that I(u) ≥ r for ‖u‖ = ρ;
(G2) There exists e ∈ X with ‖e‖ > ρ such that I(e) ≤ 0.

Let
Γ = {γ ∈ C([0, 1];X); γ(0) = 0, γ(1) = e}

and set
c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)) (c ≥ r).

Then, there is a sequence (un)n in X such that

I(un) → c and I ′(un) → 0 as n→∞.

Remark 7.2. Let A be the N -function given by (1.1). Suppose that A satisfies
the ∆2-condition. Then, according to Lemma 6.5(b),

∞ > p∗ = sup
u>0

ua(u)
A(u)

> 1.

Therefore,
a(u)
A(u)

≤ p∗

u
, u > 0.

Integrating over the interval [t1, t2], t2 > t1 > 0, we obtain
A(t2)
A(t1)

≤
( t2
t1

)p∗
. (7.1)

In particular, for 0 < t < 1, one obtains

A(t) ≥ A(1)tp
∗

(7.2)

and for 1 < t it follows that
A(t) ≤ A(1)tp

∗
. (7.3)

Lemma 7.3. Let A be an N -function which satisfies the ∆2 -condition. Then,
there exists a positive constant C, such that∫

Ω

A (Dαu(x)) dx ≤ C

∫
Ω

A
(√

T [u, u](x)
)

dx, (7.4)

for all u ∈Wm
0 EA(Ω) and any α with |α| < m.

Proof. Indeed, from Proposition 2.10 and the left hand side of inequality (1.4), we
obtain ∫

Ω

A(Dα) dx ≤ scm

∫
Ω

A
(cm,Ω√

c1

√
T [u, u](x)

)
dx, (7.5)

where s is the number of the multi-index α with |α| = m. Let r be such that
2r ≥ cm,Ω√

c1
. Since A satisfies the ∆2-condition, from (7.5) it follows that∫

Ω

A(Dαu) dx ≤ scmk
r

∫
Ω

A
(√

T [u, u](x)
)
dx

and lemma is proved. �
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Lemma 7.3 allows us to define

λα = inf
u∈W m

0 EA(Ω), u 6=0

∫
Ω
A
(√

T [u, u](x)
)

dx∫
Ω
A (Dαu(x)) dx

, |α| < m, (7.6)

for any α with |α| < m.
It is easy to see that (min|α|<m λα)−1 is the best constant C in writing inequality

(7.4).
Our goal is to prove the following result.

Theorem 7.4. Let A(u) =
∫ u

0
a(t) dt be an N -function, which satisfies the con-

ditions (2.7) and (2.8). Assume that A and A, the complementary N -function to
A, satisfy the ∆2-condition. Also, let gα : Ω × R → R, |α| < m, be Carathéodory
functions with primitives

Gα (x, s) =
∫ s

0

gα(x, τ) dτ. (7.7)

Let us consider the numerical characteristics

p0 = inf
t>0

ta(t)
A(t)

, p∗ = sup
t>0

ta(t)
A(t)

, p∗ = lim inf
t→∞

tA′∗(t)
A∗(t)

, (7.8)

A∗ being the Sobolev conjugate of A.
Suppose that the following conditions hold:
(H1) there exists a positive constant C > 0 such that

A(t) ≥ C · tp0 ,∀t ∈ (0, 1); (7.9)

(H2) there exist the N -functions Mα, |α| < m, which increase essentially more
slowly than A∗ near infinity and satisfy the ∆2-condition, such that

|gα(x, s)| ≤ cα + dαM
−1

α (Mα(s)) , x ∈ Ω, s ∈ R, |α| < m, (7.10)

where Mα are the complementary N -functions to Mα and cα, dα are posi-
tive constants;

(H3)

lim sup
s→0

gα(x, s)
a(s)

<
Cλα

2N0
, |α| < m, (7.11)

uniformly for almost all x ∈ Ω, where λα are given by (7.6) and N0 =∑
|α|<m 1;

(H4) there exist sα > 0 and θα > p∗ such that

0 < θαGα(x, s) ≤ sgα(x, s), for a.e. x ∈ Ω (7.12)

and all s with |s| ≥ sα and p∗ is given by (7.8);
(H5) p0 < p∗.

Then, the problem (1.2), (1.3) has non-trivial weak solutions in Wm
0 EA(Ω).

To prove the theorem, the Mountain Pass Theorem will be applied to the func-
tional F : Wm

0 EA(Ω) → R,

F (u) = A
(
‖u‖m,A

)
−
∑
|α|<m

∫
Ω

Gα (x,Dαu(x)) dx. (7.13)

Proposition 7.5. Under the hypotheses of Theorem 7.4, the functional F given by
(7.13), is well-defined and C1 on Wm

0 EA(Ω).
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Proof. First we shall prove that the functional F is well-defined. This reduces to
proving that for any α with |α| < m and any u ∈Wm

0 EA(Ω),
∫
Ω
Gα (x,Dαu(x)) dx

makes sense. Indeed, by using (H2) it follows that for any α with |α| < m one has

|Gα(x, s)| ≤
∣∣ ∫ s

0

(
cα + dαM

−1

α (Mα(τ))
)
dτ
∣∣

≤ cα|s|+ dα|s|M
−1

α (Mα(|s|)) ,
(7.14)

since M
−1

α and Mα are strictly increasing.
On the other hand, any N -function Mα satisfies

M−1
α (t)M

−1

α (t) ≤ 2t,∀t ≥ 0

and then, from (7.14), one obtains

|Gα(x, s)| ≤ cα|s|+ 2dαMα(|s|). (7.15)

Thus ∫
Ω

Gα (x,Dαu(x)) dx ≤ cα

∫
Ω

|Dαu(x)| dx+ 2dα

∫
Ω

Mα (|Dαu(x)|) dx.

Since, for u ∈ Wm
0 EA(Ω), Dαu ∈ EA(Ω) ↪→ L1(Ω), it follows that

∫
Ω
|Dαu(x)| dx

makes sense. Hypothesis (H2) allows us to apply Theorem 2.12. Consequently,
W 1

0EA(Ω) ↪→ LMα(Ω) = KMα(Ω). Since u ∈ Wm
0 EA(Ω) and |α| < m, we infer

that u ∈W 1
0EA(Ω), therefore Dαu ∈ KMα

(Ω). Consequently,
∫
Ω
Mα (|Dαu(x)|) dx

makes sense.
Now, we shall show that F ∈ C1 over Wm

0 EA(Ω). To do this, we write F as

F = Φ−Ψ,

where
Φ(u) = A (‖u‖m,A) (7.16)

and

Ψ(u) =
∑
|α|<m

∫
Ω

Gα (x,Dαu(x)) dx, (7.17)

and show that both Φ and Ψ are C1. As far as Φ is concerned, it follows from
Theorem 3.6 that Φ is continuously Fréchet differentiable at any u 6= 0 and

〈Φ′(u), h〉 = a(‖u‖m,A) ·

∫
Ω
a
(√T [u,u](x)

‖u‖m,A

) T [u,h](x)√
T [u,u](x)

dx∫
Ω
a
(√T [u,u](x)

‖u‖m,A

)√T [u,u](x)

‖u‖m,A
dx
. (7.18)

If u = 0, then a direct calculus shows that Φ is Gâteaux differentiable at zero and

〈Φ′(0), h〉 = lim
t→0

A (|t|‖h‖m,A)
t

= lim
t→0

a(|t|‖h‖m,A) · sgnt · ‖h‖m,A = 0.

Moreover, u→ Φ′(u) is continuous at zero. We start by showing that for any u 6= 0,

∫
Ω

a

(√
T [u, u](x)
‖u‖m,A

) √
T [u, u](x)
‖u‖m,A

dx ≥ 1. (7.19)
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Indeed, from Young’s equality and Proposition 3.11, we obtain∫
Ω

a
(√T [u, u](x)

‖u‖m,A

)√T [u, u](x)
‖u‖m,A

dx

=
∫

Ω

A
(√T [u, u](x)

‖u‖m,A

)
dx+

∫
Ω

A
(
a
(√T [u, u](x)

‖u‖m,A

))
dx

= 1 +
∫

Ω

A
(
a
(√T [u, u](x)

‖u‖m,A

))
dx ≥ 1.

On the other hand, by using Schwarz’s inequality for nonnegative bilinear symmetric
forms and Hölder’s inequality (2.3), it follows that∣∣ ∫

Ω

a
(√T [u, u](x)

‖u‖m,A

) T [u, h](x)√
T [u, u](x)

dx
∣∣

≤
∣∣ ∫

Ω

a
(√T [u, u](x)

‖u‖m,A

)√
T [h, h](x) dx

∣∣
≤ 2‖h‖m,A‖a

(√T [u, u](x)
‖u‖m,A

)
‖(A).

(7.20)

From (7.19) and (7.20) we infer that

|〈Φ′(u), h〉| ≤ 2a(‖u‖m,A)‖h‖m,A

∥∥a(√T [u, u](x)
‖u‖m,A

)∥∥
(A)
, (7.21)

for all u 6= 0, and all h ∈ Wm
0 EA(Ω). Now, we shall show that, for any u ∈

Wm
0 EA(Ω)\{0}, ∥∥a(√T [u, u](x)

‖u‖m,A

)∥∥
(A)

≤ k + 1, (7.22)

the constant k occurring in expressing the ∆2-property of A (see (2.1)). Indeed,
for any real t, one has

A(a(t)) ≤ A(2t) ≤ kA(t).

Consequently, for any v ∈ EA(Ω),∫
Ω

A (a(v(x))) dx ≤ k

∫
Ω

A (v(x)) dx.

In particular, for v =
√

T [u,u]

‖u‖m,A
with u ∈Wm

0 EA(Ω)\{0}, one obtains∫
Ω

A
(
a
(√T [u, u](x)

‖u‖m,A

))
dx ≤ k

∫
Ω

A
(√T [u, u](x)

‖u‖m,A

)
dx = k.

Consequently,∥∥a(√T [un, un](x)
‖un‖m,A

)
‖(A) ≤ ‖a

(√T [un, un](x)
‖un‖m,A

)
‖A

≤
∫

Ω

A
(
a
(√T [u, u](x)

‖u‖m,A

))
dx+ 1 ≤ k + 1.

From (7.21) and (7.22) it follows that

|〈Φ′(u), h〉| ≤ 2(k + 1)a(‖u‖m,A)‖h‖m,A;
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thus

‖Φ′(u)‖ ≤ 2(k + 1)a(‖u‖m,A) → 0 as ‖u‖m,A → 0.

To conclude that F is C1, the C1-property of Ψ has to be proved. This is a direct
consequence of Theorem 5.4, which also gives us the expression of Ψ′(u):

〈Ψ′(u), h〉 =
∑
|α|<m

∫
Ω

gα (x,Dαu(x))Dαh(x) dx. (7.23)

�

In the next lemma, we shall verify the mountain pass theorem conditions.

Lemma 7.6. Under the hypotheses of Theorem 7.4, the functional F given by
(7.13) has the geometry of the mountain pass theorem.

Proof. We will prove that the hypothesis (G1) of the mountain pass theorem is
fulfilled. For the first term in (7.13), according to (H1), we have

A(‖u‖m,A) ≥ C‖u‖p0
m,A, (7.24)

if ‖u‖m,A < 1.
In what follows, we shall assume that ‖u‖m,A < 1. We shall now handle the

estimations for the second term in (7.13). From (H3) we deduce that for any α
with |α| < m there exist µα ∈

(
0, Cλα

2N0
) and sα > 0 such that

Gα(x, s) < µαA(s), for x ∈ Ω, 0 < |s| < sα. (7.25)

Indeed, from (7.11) it follows that for any α with |α| < m, we can find µα ∈
(
0, Cλα

2N0

)
and sα > 0 such that

gα(x, s)
a(s)

< µα, for x ∈ Ω, 0 < |s| < sα.

The above inequalities imply

gα(x, s) < µαa(s), for x ∈ Ω, s ∈ (0, sα) (7.26)

and, since a is odd

gα(x, s) > −µαa(|s|), for x ∈ Ω, s ∈ (−sα, 0). (7.27)

Thus

|gα(x, s)| < µαa(|s|), for x ∈ Ω, |s| < sα. (7.28)

(Clearly, (7.28) imply gα(x, 0) = 0, for x ∈ Ω and any α with |α| < m. Conse-
quently, the problem (1.2), (1.3) admits the trivial solution.)

By integrating in (7.26), from 0 to s ∈ (0, sα), we obtain that (7.25) is true for
0 < s < sα. For s ∈ (−sα, 0), taking into account (7.27) and the oddness of a, we
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have

Gα(x, s) = −
∫ 0

s

gα(x, τ) dτ

< µα

∫ 0

s

a(|τ |) dτ

= −µα

∫ 0

−s

a(t) dt

= µα

∫ |s|

0

a(t) dt = µαA(s),

showing that (7.25) is true for s ∈ (−sα, 0) too. Now, let us consider |s| ∈ [sα,+∞).
The function Mα(s)

s being increasing, we have

|s| ≤ sα

Mα(sα)
·Mα(|s|).

From (7.15), it follows that

|Gα(x, s)| ≤ CαMα(|s|), for |s| ≥ sα, (7.29)

where Cα = cα
sα

Mα(sα) + 2dα. Since Mα increase essentially more slowly than A∗
near infinity, we have

lim
s→∞

Mα(s)
A∗(ks)

= 0, ∀k > 0,

in particular

lim
s→∞

Mα(s)
A∗(s)

= 0.

Consequently, there exist s′α > sα such that

Mα(s) ≤ C ′αA∗(s), ∀s ≥ s′α (7.30)

The definition of p∗ implies that there exists µ ∈ (0, p∗−p0) and s′′α > s′α such that

A′∗(s)
A∗(s)

≥ p∗ − µ

s
, for s ≥ s′′α. (7.31)

Let us denote by Sα = max (s′α, s
′′
α), kα = Sα

sα
> 1, |α| < m. Taking into account

Theorem 2.12, there exists a positive constant K such that

‖Dαu‖(A∗) ≤ K‖u‖m,A, (7.32)

for any α with |α| < m. If we suppose that

‖u‖m,A <
1(

max|α|<m kα

)
K
, (7.33)

then, it follows from (7.32) that for any α with |α| < m,

kα‖Dαu‖(A∗) < 1. (7.34)

In what follows we assume that

‖u‖m,A < min
(
1,

1(
max|α|<m kα

)
K

)
. (7.35)



32 G. DINCA, P. MATEI EJDE-2007/93

Consequently, the inequalities (7.34) permit us to define for |α| < m, the intervals[
kα|Dαu(x)|, |D

αu(x)|
‖Dαu‖(A∗)

]
, x ∈ Ω. (7.36)

Now, if we denote Ωα = {x ∈ Ω : |Dαu(x)| ≥ sα}, |α| < m, then for any x ∈ Ωα,
we have kα|Dαu(x)| ≥ s′α. Consequently, from (7.30)

Mα (|Dαu(x)|) ≤Mα (kα|Dαu(x)|) ≤ C ′αA∗ (kα|Dαu(x)|) , ∀x ∈ Ωα. (7.37)

At the same time, if x ∈ Ωα, then kα|Dαu(x)| ≥ s′′α, therefore, integrating (7.31)
over the intervals (7.36) , we obtain

A∗ (kα|Dαu(x)|) ≤ kp∗−µ
α ‖Dαu‖p∗−µ

(A∗)
·A∗

( |Dαu(x)|
‖Dαu‖(A∗)

)
. (7.38)

for any x ∈ Ωα.
Integrating on Ωα and taking into account the inequality

∫
Ω
A∗
( v(x)
‖v‖(A)

)
dx ≤ 1,

we find that ∫
Ωα

A∗ (kα|Dαu(x)|) dx ≤ kp∗−µ
α ‖Dαu‖p∗−µ

(A∗)
, (7.39)

for any α with |α| < m. Consequently, for every u ∈ Wm
0 EA(Ω) satisfying (7.35)

and α with |α| < m, by using successively (7.29), (7.37), (7.39), we have∫
Ωα

Gα (x,Dαu(x)) dx ≤ CαC
′
α

∫
Ωα

A∗ (kα|Dαu(x)|) dx

≤ CαC
′
αk

p∗−µ
α ‖Dαu‖p∗−µ

(A∗)
.

(7.40)

Thus, taking into account (7.32), we obtain∑
|α|<m

∫
Ωα

Gα (x,Dαu(x)) dx ≤ D · ‖u‖p∗−µ
m,A , (7.41)

where D =
∑
|α|<mDα, Dα = CαC

′
αk

p∗−µ
α Kp∗−µ, |α| < m.

On the other hand, for any α with |α| < m, from (7.25) and the definition of λα,
we deduce ∫

Ω\Ωα

Gα (x,Dαu(x)) dx ≤ µα

∫
Ω

A (Dαu(x)) dx

≤ µα

λα

∫
Ω

A
(√

T [u, u](x)
)
dx

<
C

2N0

∫
Ω

A
(√

T [u, u](x)
)
dx.

(7.42)

From the definition of p0, we have

a(t)
A(t)

≥ p0

t
, ∀t > 0. (7.43)

Since ‖u‖m,A < 1, one can consider the interval
[√

T [u, u](x),
√

T [u,u](x)

‖u‖m,A

]
. By

integrating in (7.43) over this interval, we obtain

A
(√

T [u, u](x)
)
≤ ‖u‖p0

m,A ·A
(√T [u, u](x)

‖u‖m,A

)
.
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By integrating again this inequality on Ω, we find that∫
Ω

A
(√

T [u, u](x)
)
dx ≤ ‖u‖p0

m,A. (7.44)

Consequently, taking into account (7.42) and (7.44) and summing by α, we have∑
|α|<m

∫
Ω\Ωα

Gα (x,Dαu(x)) dx <
C

2
‖u‖p0

m,A. (7.45)

Then, from (7.24), (7.41), (7.45), we obtain

F (u) > C‖u‖p0
m,A −

C

2
‖u‖p0

m,A −D · ‖u‖p∗−µ
m,A = ‖u‖p0

m,A

[C
2
−D‖u‖p∗−µ−p0

m,A

]
.

So, for

‖u‖m,A = ρ ≤ min
(
1,

1
(max|α|<m kα)K

,
( C
3D
) 1

p∗−µ−p0

)
it follows that F (u) > C

6 ρ
p > 0.

Now, we shall verify the hypothesis (G2) of the mountain pass theorem. Let θα

and sα be as in (H4). We shall deduce that for any α with |α| < m, one has

Gα(x, s) ≥ γα(x) · |s|θα , for a.e. x ∈ Ω and |s| ≥ sα, (7.46)

where the functions γα, |α| < m, will be specified below.
Indeed, from (7.12) it follows that for any α with |α| < m,

Gα(x, s) > 0, for a.e. x ∈ Ω and |s| ≥ sα. (7.47)

Then, for a.e. x ∈ Ω and τ ≥ sα, from (7.12), we have

θα

τ
≤ gα(x, τ)
Gα(x, τ)

.

Integrating from sα to s ≥ sα, it follows that

sθα

sθα
α

≤ Gα(x, s)
Gα(x, sα)

,

which implies

Gα(x, s) ≥ Gα(x, sα) · s
θα

sθα
α

, for a.e. x ∈ Ω and s ≥ sα, (7.48)

for any α with |α| < m. On the other hand, for a.e. x ∈ Ω and τ ≤ −sα, from
(7.12) and (7.47), we have

θα

τ
≥ gα(x, τ)
Gα(x, τ)

.

Integrating from s ≤ −sα to −sα, it follows that

sθα
α

|s|θα
≥ Gα(x,−sα)

Gα(x, s)
,

which implies

Gα(x, s) ≥ Gα(x,−sα) · |s|
θα

sθα
α

, for a.e. x ∈ Ω and s ≤ −sα, (7.49)
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for any α with |α| < m. Setting

γα(x) =

{
Gα(x,sα)

sθα
α

if s ≥ sα

Gα(x,−sα)

sθα
α

if s ≤ −sα,

from (7.48) and (7.49), we obtain (7.46).
For λ ≥ 1, |α| < m and u ∈Wm

0 EA(Ω), we define

Ωα
λ(u) = {x ∈ Ω | λ|Dαu(x)| ≥ sα}.

We choose a function u ∈ Wm
0 EA(Ω) such that |Dαu(x)| > 0, for a.e. x ∈ Ω, and

vol
(
Ωα

1 (u)
)
> 0, |α| < m. It is clear that Ωα

1 (u) ⊂ Ωα
λ(u) and hence vol

(
Ωα

1 (u)
)
≤

vol
(
Ωα

λ(u)
)
, for all λ ≥ 1.

We shall show that F (λu) → −∞ as λ → ∞. For a fixed α with |α| < m and
λ ≥ 1, we have∫

Ω

Gα (x, λDαu(x)) dx =
∫

Ωα
λ(u)

Gα (x, λDαu(x)) dx

+
∫

Ω\Ωα
λ(u)

Gα (x, λDαu(x)) dx.

Using (7.46), we obtain∫
Ωα

λ(u)

Gα (x, λDαu(x)) dx ≥ λθα

∫
Ωα

λ(u)

γα(x)|Dαu(x)|θα dx = λθαKα(Dα),

≥ λθα

∫
Ωα

1 (u)

γα(x)|Dαu(x)|θα dx = λθαKα(Dα),

with

Kα(Dα) =
∫

Ωα
1 (u)

γα(x)|Dαu(x)|θα dx > 0.

On the other hand, if x ∈ Ω \ Ωα
λ(u), then λDαu(x) < sα and by virtue of (7.15),

we have ∫
Ω\Ωα

λ(u)

|Gα (x, λDαu(x)) | dx ≤ (cαsα + 2dαMα(sα)) volΩ = K ′
α;

therefore ∫
Ω\Ωα

λ(u)

Gα (x, λDαu(x)) dx ≥ −K ′
α.

Consequently,

F (λu) ≤ A (λ‖u‖m,A)−
∑
|α|<m

λθαKα(Dα) +
∑
|α|<m

K ′
α.

From (7.3), it follows that for ‖u‖m,A > 1, we have

A (λ‖u‖m,A) ≤ A(1)λp∗‖u‖p∗

m,A −
∑
|α|<m

λθαKα(Dα) +
∑
|α|<m

K ′
α.

Since θα > p∗ for any α with |α| < m, it follows that F (λu) → −∞ as λ → ∞.
Consequently, for large λ , say λ ≥ λ0, F (λu) < 0. Then, setting e = λ0u, we
have F (λ0u) < 0 for some λ0 > 1 and the second hypothesis of the mountain pass
theorem satisfied. �
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Lemma 7.7. Under the hypotheses of Theorem 7.4, the functional F given by
(7.13) has the following property: any sequence (un)n ⊂ Wm

0 EA(Ω) for which
(F (un))n is bounded and F ′(un) → 0 as n→∞, is bounded.

Proof. Let (un)n ⊂ Wm
0 EA(Ω) be a sequence such that (F (un))n is bounded and

F ′(un) → 0 as n → ∞. We shall show that the sequence (un)n is bounded in
Wm

0 EA(Ω). Indeed, let us put

θ = min
|α|<m

θα.

Since F = Φ − Ψ with Φ and Ψ given by (7.16) and (7.17) respectively and F ′ =
Φ′ −Ψ′ with Φ′ and Ψ′ given by (7.18) and (7.23) respectively, we have

F (un)− 1
θ
F ′(un)(un)

= A(‖un‖m,A)− 1
θ
‖un‖m,Aa(‖un‖m,A)

+
∑
|α|<m

∫
Ω

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx.

(7.50)

Since (F (un))n is bounded, it follows that

F (un)− 1
θ
F ′(un)(un) ≤M +

εn

θ
‖un‖m,A, (7.51)

with εn = ‖F ′(un)‖ → 0 as n→∞. Now, we shall give an estimation for∑
|α|<m

∫
Ω

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx,

occurring in (7.50).
Let n be fixed. For any α with |α| < m, define Ωα,n = {x ∈ Ω | |Dαun(x)| > sα},

and Ω
′

α,n = Ω\Ωα,n. Clearly∑
|α|<m

∫
Ω

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx

=
∑
|α|<m

∫
Ωα,n

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx

+
∑
|α|<m

∫
Ω′

α,n

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx.

(7.52)

Taking into account (H4),∫
Ωα,n

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx ≥ 0. (7.53)

Taking into account (7.15), one has∣∣ ∫
Ω′

α,n

Gα (x,Dαun(x)) dx
∣∣ ≤ ∫

Ω′
α,n

[cα|Dαun(x)|+ 2dαMα (|Dαun(x)|)] dx

≤ [cαsα + 2dαMα (sα)] vol(Ω) = K
′

α.

(7.54)
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On the other hand, from (7.10), it follows that∣∣ ∫
Ω′

α,n

gα (x,Dαun(x))Dαun(x) dx
∣∣

≤
∫

Ω′
α,n

[
cα|Dαun(x)|+ dαM

−1

α Mα (Dαun(x)) |Dαun(x)|
]
dx

≤
[
cαsα + dαsαM

−1

α Mα (sα)
]
vol(Ω) = Kα.

(7.55)

Thus ∣∣ ∫
Ω′

α,n

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx
∣∣

≤ Kα

θ
+K ′

α = Cα.

(7.56)

From (7.53), (7.56) and (7.52), we infer that∑
|α|<m

∫
Ω

[1
θ
gα (x,Dαun(x))Dαun(x)−Gα (x,Dαun(x))

]
dx ≥ −

∑
|α|<m

Cα.

Consequently (see (7.50)),

F (un)− 1
θ
F ′(un)(un) ≥ A

(
‖un‖m,A

)
−−1

θ
‖un‖m,Aa

(
‖un‖m,A

)
−
∑
|α|<m

Cα. (7.57)

Comparing (7.57) and (7.51), one obtains

A
(
‖un‖m,A

)
− 1
θ
‖un‖m,Aa

(
‖un‖m,A

)
−
∑
|α|<m

Cα ≤M +
εn

θ
‖un‖m,A. (7.58)

By definition of p∗, one has

‖un‖m,Aa(‖un‖m,A) ≤ p∗A(‖un‖m,A). (7.59)

Finally, comparing (7.59) and (7.58), one obtains

(1− p∗

θ
)A(‖un‖m,A) ≤M1 +

εn

θ
‖un‖m,A, (7.60)

with M1 = M +
∑
|α|<m Cα, for any n.

The last inequalities imply the boundedness of (un)n. In the contrary case,
passing to a subsequence, we may assume that ‖un‖m,A →∞, as n→∞. Dividing
by ‖un‖m,A in (7.60) and making n to tend to infinity, one obtains a contradiction:
A(‖un‖m,A)
‖un‖m,A

→∞ as n→∞ while M1
‖un‖m,A

+ εn → 0 as n→∞. �

Proof of Theorem 7.4. From Lemma 7.6, it follows that the functional F satisfies
the hypotheses of the Mountain Pass Theorem. Consequently, there exists a se-
quence (un)n in Wm

0 EA(Ω) such that

F (un) → c as n→∞, (7.61)

F ′(un) → 0 as n→∞. (7.62)

By Lemma 7.7, (un)n is bounded. Consequently, passing to a subsequence, we may
assume that un ⇀ u ∈Wm

0 EA(Ω) as n→∞ (where “⇀” denotes the convergence
in the weak topology).
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Now, we shall show that

Ψ(un) → Ψ(u) as n→∞, (7.63)

Ψ′(un) → Ψ′(u) as n→∞. (7.64)

To do this, put (for any α with |α| < m)

Ψα(v) =
∫

Ω

Gα(x, v(x)) dx, ∀v ∈ EA(Ω). (7.65)

According to Theorem 5.4, Ψα ∈ C1. Since un ⇀ u in Wm
0 EA(Ω) as n→∞ and the

imbedding of Wm
0 EA(Ω) into Wm−1

0 EA(Ω) is compact (Theorem 2.13), we deduce
that

Dαun → Dαu as n→∞, in EA(Ω),
for |α| < m. Consequently

Ψ(un) =
∑
|α|<m

Ψα(Dαun) →
∑
|α|<m

Ψα(Dαu) = Ψ(u),

as n→∞. Moreover, for any h ∈Wm
0 EA(Ω) one has (by Theorem 5.4 again)

|〈Ψ′(un)−Ψ′(u), h〉| ≤
∑
|α|<m

|〈Ψ′
α(Dαun)−Ψ′

α(Dαu), Dαh〉|

≤
∑
|α|<m

‖Ψ′
α(Dαun)−Ψ′

α(Dαu)‖‖Dαh‖(A)

≤ 2‖h‖W m
0 EA(Ω)

∑
|α|<m

‖Ψ′
α(Dαun)−Ψ′

α(Dαu)‖,

which implies

‖Ψ′(un)−Ψ′(u)‖ ≤
∑
|α|<m

‖Ψ′
α(Dαun)−Ψ′

α(Dαu)‖ → 0 as n→∞,

since Dαun → Dαu as n→∞, |α| < m and Ψα ∈ C1.
Since F ′(un) = Φ′(un)−Ψ′(un) → 0 as n→∞ and Ψ′(un) → Ψ′(u) as n→∞,

it follows that
Φ′(un) → Ψ′(u) as n→∞.

By convexity,

Φ(un)− Φ(u) ≤ Φ′(un) (un − u) = 〈Φ′(un)−Ψ′(u), un − u〉+ 〈Ψ′(u), un − u〉,
which implies

lim sup
n→∞

Φ(un) ≤ Φ(u).

On the other hand, being continuous and convex, Φ is weakly lower semicontinuous;
therefore

Φ(u) ≤ lim inf
n→∞

Φ(un).

Thus
Φ(u) = lim

n→∞
Φ(un) (7.66)

and, consequently,
lim

n→∞
F (un) = F (u) = c.

We will show that F ′(u) = 0. Again by convexity of Φ, one has

〈Φ′(un)− Φ′(v), un − v〉 ≥ 0, ∀n,∀v ∈Wm
0 EA(Ω).
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Setting n→∞, we obtain

〈Ψ′(u)− Φ′(v), u− v〉 ≥ 0, ∀v ∈Wm
0 EA(Ω).

Setting v = u− th, t > 0, the above inequality gives

〈Ψ′(u)− Φ′(u− th), h〉 ≥ 0, ∀h ∈Wm
0 EA(Ω).

By letting t→ 0, one has

〈Ψ′(u)− Φ′(u), h〉 ≥ 0, ∀h ∈Wm
0 EA(Ω).

Thus F ′(u) = Φ′(u)−Ψ′(u) = 0. �

8. Examples

In this section, some examples illustrating the above existence results are given.
To do this, some prerequisites are needed.

Lemma 8.1. Let A : R → R+, A(t) =
∫ |t|
0
a(s) ds, be an N -function and A, the

complementary N -function of A.
(i) Suppose that

p∗ = sup
t>0

ta(t)
A(t)

<∞ and p0 = inf
t>0

ta(t)
A(t)

> 1.

Then both A and A satisfy the ∆2-condition.
(ii) Suppose, in addition, that p∗ < N and there are constants 0 < γ < N and

δ > 0 such that

A(t) ≥ Ctγ , ∀t ∈ (0, A−1(δ)). (8.1)

Then A∗, the Sobolev conjugate of A, can be defined.

Proof. (i) Since p∗ < ∞, A satisfies the ∆2-condition. (see [22, Theorem 4.1]).
Since p0 > 1, A satisfies the ∆2-condition (see [22, Theorem 4.3]).

(ii) It is sufficient to prove that conditions (2.8) and (2.9) are satisfied (see
Theorem 2.12). Indeed, it follows from (8.1) that

A−1(τ) ≤ c1 · τ1/γ , τ ∈ (0, δ),

with C1 = C−1/γ . Consequently,∫ δ

t

A−1(τ)
τ (N+1)/N

dτ ≤ c1 ·
Nγ

N − γ

(
δ

N−γ
Nγ − t

N−γ
Nγ

)
.

Without loss of generality, we may assume that 0 < δ < 1 and then

lim
t→0

∫ 1

t

A−1(τ)
τ (N+1)/N

dτ = lim
t→0

(∫ δ

t

A−1(τ)
τ (N+1)/N

dτ +
∫ 1

δ

A−1(τ)
τ (N+1)/N

dτ
)

≤ c1 ·
Nγ

N − γ
δ

N−γ
Nγ +

∫ 1

δ

A−1(τ)
τ (N+1)/N

dτ <∞.

Thus (2.8) is satisfied.
To prove that (2.9) is also satisfied, we first remark that, from (7.1), one has

A(t) ≤ tp∗

(A−1(1))p∗ , for any t > A−1(1). It follows that A−1(τ) ≥ c′ · τ1/p∗ , for any

τ > 1, with c′ = A−1(1). Consequently, for any t > 1,∫ t

1

A−1(τ)
τ (N+1)/N

dτ ≥ c′ · Np∗

N − p∗

(
t

N−p∗
Np∗ − 1

)
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and, since p∗ < N ,

lim
t→∞

∫ t

1

A−1(τ)
τ (N+1)/N

dτ = ∞,

thus (2.9) is also satisfied. �

The next lemma summarizes some arguments used in [8, p. 55].

Lemma 8.2. Let A : R → R+, A(t) =
∫ |t|
0
a(s) ds, be an N -function, which

satisfies the conditions (2.7) and (2.8). If limt→∞
ta(t)
A(t) = l <∞, then

lim
t→∞

tA′∗(t)
A∗(t)

=
Nl

N − l
.

Example 8.3. Consider the problem (1.2), (1.3), under the following hypotheses:
(i) the function a : R → R is defined by a(t) =

∑n
i=1 ai|t|pi−2t, where ai > 0,

1 ≤ i ≤ n, pi+1 > pi > 1, 1 ≤ i ≤ n− 1, pn < N ;
(ii) The Carathéodory functions gα : Ω×R → R, |α| < m, satisfy the following

conditions:

lim sup
s→0

gα(x, s)
a(s)

<
a1λα

2p1N0
, (8.2)

uniformly for almost all x ∈ Ω, where λα are given by (7.6) and N0 =∑
|α|<m 1;

(iii) pn < N and there exist qα, 1 < qα <
Npn

N−pn
, |α| < m, such that

|gα(x, s)| ≤ cα + dα|s|qα−1, x ∈ Ω, s ∈ R; (8.3)

(iv) there exist sα > 0 and θα > pn such that

0 < θαGα(x, s) ≤ sgα(x, s), for a.e. x ∈ Ω (8.4)

and all s with |s| ≥ sα.
Under these conditions, the problem (1.2), (1.3) has a nontrivial weak solution.

Proof. Before giving the proof, we underline that the function a given by hypothesis
(i) appears in [17], in the following context (see [17, example 3.1]: if a is given by
(i) and

f(s) =
m∑

j=1

βj |s|δj−1s,

with βj > 0, for j = 1, . . . ,m, and δj+1 > δj > 1, for j = 1, . . . ,m − 1, satisfying
N > pn and

pn − 1 < δm <
N(pn − 1) + pn

N − pn
,

then, the problem

−
(
rN−1a(u′)

)′
= rN−1f(u) in (0, R)

u′(0) = 0 = u(R)

has a positive solution and therefore the problem

−div
(a(|Du|)
|Du|

Du
)

= f(u) in Ω = BRN (0, R)

u = 0 on ∂Ω
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has a positive radial solution of class C1.
The idea of the proof is as follows: The preceding assumptions entail that the

hypotheses of Theorem 7.4 are fulfilled. To do this, first we compute the numerical
characteristics p0, p∗ and p∗, given by (7.8). Let h : (0,∞) → R, defined by
h(t) = ta(t)

A(t) , with

A(t) =
n∑

i=1

ai

pi
|t|pi . (8.5)

By direct calculus, we obtain limt→0 h(t) = p1 and p1 < h(t), for all t > 0. Thus
p0 = p1 > 1. Analogously, limt→∞ h(t) = pn and h(t) < pn, for all t > 0. Thus
p∗ = pn < N .

Clearly, from (8.5), it follows that

A(t) ≥ a1

p1
tp1 ,∀t > 0. (8.6)

Since p∗ = pn < N and (8.6) holds, we deduce (Lemma 8.1, (ii)) that A∗ exists.
Consequently, according to Lemma 8.2, we can compute p∗ and we obtain

p∗ = lim inf
t→∞

tA′∗(t)
A∗(t)

=
Npn

N − pn
.

Since p0 > 1 and p∗ < N , it follows (Lemma 8.1, (i)) that A and A satisfy the
∆2-condition.

Now, we are in position to properly show that the above hypotheses entail the
fulfillment of those of Theorem 7.4. Indeed, since p1 = p0, (8.6) says that (H1)
in Theorem 7.4 is satisfied. The hypothesis (H2) in Theorem 7.4 is satisfied with
Mα(s) = |s|qα

qα
, |α| < m. Clearly, Mα satisfies the ∆2 -condition. In order to prove

that Mα, |α| < m, increase essentially more slowly than A∗ near infinity, it follows
that [1, p. 231]),

lim
t→∞

A−1
∗ (t)

M−1
α (t)

= 0.

Indeed, using l’Hôspital rule,

lim
t→∞

A−1
∗ (t)

M−1
α (t)

= lim
t→∞

cα
A−1(t)

t
1

qα
+ 1

N

= lim
s→∞

cα
s

(A(s))
1

qα
+ 1

N

= 0, cα = q(qα−1)/qα
α , (8.7)

since from (ii), the degree of denominator is pn( 1
qα

+ 1
N ) > 1. To conclude that

(H2) in Theorem 7.4 is also satisfied, we have to prove that inequalities (7.10) hold.

Indeed, since Mα(s) = |s|q
′
α

q′α
, 1

qα
+ 1

q′α
= 1 (see Remark 2.5), then

|s|qα−1 = (qα − 1)
1

q′α M
−1

α (Mα(s)) .

Consequently, (8.3) rewrites as

|gα(x, s)| ≤ cα + dα (qα − 1)
1

q′α M
−1

α (Mα(s)) , x ∈ Ω, s ∈ R, |α| < m, (8.8)

showing that (H2) is satisfied. Hypotheses (H3) and (H4) in Theorem 7.4 are
fulfilled by virtue of (8.2) and (8.4) respectively; since p∗ = pn, (8.4) implies the
fulfillment of (H4); finally, since p0 = p1 < pn < Npn

N−pn
= p∗, (H5) is satisfied

too. �

Example 8.4. Consider the problem (1.2), (1.3), under the following hypotheses:
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(i) the function a : R → R is defined by a(t) =
∑n

i=1 ai|t|pi−2t, where ai > 0,
1 ≤ i ≤ n, pi+1 > pi > 1, 1 ≤ i ≤ n− 1, p1 ≥ 2, pn < N ;

(ii) there exist qα, 1 < qα < p1, |α| < m, such that the growth conditions (8.3)
hold.

Under these conditions, the problem (1.2), (1.3) has a solution. Moreover, the
solution set of problem (1.2), (1.3) is compact in Wm

0 EA(Ω).

Proof. The idea of the proof is as follows: The preceding assumptions entail that
the hypotheses of Theorem 6.4 are fulfilled.

Indeed, A satisfies the ∆2-condition inasmuch as p∗ = pn < N (see Lemma 8.1,
(i)). Conditions (2.8) and (2.9) are satisfied (the arguments are those used in the
case of Example 8.3). Since pi > 2, 2 ≤ i ≤ n, it easily follows that a(t)

t is strictly
increasing for t > 0. As Mα functions, which increase essentially more slowly than
A∗ near infinity and satisfy the ∆2-condition as well as the growth conditions (6.3),
we shall take Mα(s) = |s|qα

qα
, |α| < m (the arguments are those used for Example

8.3). Finally, the last condition in Theorem 6.4 is satisfied since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m

and, by hypothesis (ii), qα < p1 = p0. �

Remark 8.5. Comparing the existence results provided by Examples 8.3 and 8.4,
it can be seen that the results obtained in Example 8.3 are stronger than those
obtained in Example 8.4.

Indeed, under the hypotheses from Example 8.3, we obtain (via the mountain
pass theorem) the existence of a nontrivial solution for the problem (1.2), (1.3),
while Example 8.4 states only the existence of a solution without specifying if it is
nontrivial.

Comparing the hypotheses of these two examples it can be seen that:
• the hypotheses about a in Example 8.4 are stronger than those formulated

in Example 8.3;
• one part of the hypotheses about the functions gα (referring to growth

conditions (8.3)) are common to both examples;
• in Example 8.3 are formulated other supplementary conditions about the

functions gα (see (8.2) and (8.4)).
These supplementary conditions have as consequence the fact that functional F
(defined by (7.13)) has a mountain pass type geometry.

Example 8.6. Consider the problem (1.2), (1.3), under the following hypotheses:
(i) the function a : R → R is defined by a(t) = |t|p−2t

√
t2 + 1, 1 < p < N − 1;

(ii) The Carathéodory functions gα : Ω×R → R, |α| < m, satisfy the following
conditions:

lim sup
s→0

gα(x, s)
a(s)

<
λα

2pN0
, (8.9)

uniformly for almost all x ∈ Ω, where λα are given by (7.6) and N0 =∑
|α|<m 1;

(iii) there exist qα, 1 < qα < Np
N−p , |α| < m, such that the growth conditions

(8.3) hold;
(iv) there exist sα > 0 and θα > p+ 1 such that the conditions (8.4) hold.
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Under these conditions, the problem (1.2), (1.3) has a nontrivial weak solution.

Proof. The idea of the proof is that used for Example 8.3, namely, we shall show
that the preceding assumptions entail the fulfillment of those of Theorem 7.4. To
do this, first we compute the numerical characteristics p0, p∗ and p∗, given by (7.8).
Let h : (0,∞) → R, defined by h(t) = ta(t)

A(t) , with

A(t) =
tp

p

√
t2 + 1− 1

p

∫ t

0

τp

√
τ2 + 1

dτ, t > 0. (8.10)

First, by direct calculus, we obtain limt→0 h(t) = p and, since

h(t) = p+
pI(t)

tp
√
t2 + 1− I(t)

, I(t) =
∫ t

0

τp

√
τ2 + 1

dτ, (8.11)

one has p < h(t), for all t > 0. Consequently p0 = p > 1.
Secondly, one has

pI(t)
tp
√
t2 + 1− I(t)

< 1, ∀t > 0. (8.12)

Indeed, let f(t) = (p + 1)I(t) − tp
√
t2 + 1. Since f(0) = 0 and f ′(t) < 0, for all

t > 0, inequality (8.12) follows. From (8.11) and (8.12), we infer that h(t) < p+ 1,
for all t > 0 and, since limt→∞ h(t) = p+ 1, we conclude that p∗ = p+ 1 < N .

To compute p∗, first we prove the existence of A∗. Indeed, since a(t) ≥ tp−1, for
all t ≥ 0, we obtain that

A(t) ≥ 1
p
tp, ∀t ≥ 0. (8.13)

Condition p+1 < N being also satisfied (by hypothesis), the existence of A∗ follows
by Lemma 8.1, (ii). According to Lemma 8.2,

p∗ = lim inf
t→∞

tA′∗(t)
A∗(t)

=
N(p+)

N − p− 1
.

Since p0 > 1 and p∗ < N , it follows (Lemma 8.1, (i)) that A and A satisfy the
∆2-condition.

Now, we are in position to properly show that the above hypotheses entail the
fulfillment of those of Theorem 7.4. Indeed, since p = p0, (8.13) says that (H1)
in Theorem 7.4 is satisfied. The hypothesis (H2) in Theorem 7.4 is satisfied with
Mα(s) = |s|qα

qα
, |α| < m, which, obviously, satisfy the ∆2-condition. Since a(t) ≥ tp,

for all t ≥ 0, it follows that A(t) ≥ tp+1

p+1 , for all t ≥ 0; therefore

lim
s→∞

s(
A(s)

) 1
qα

+ 1
N

≤ lim
s→∞

s

(p+)
1

qα
+ 1

N s

(
1

qα
+ 1

N

)
(p+1)

= 0.

Consequently, from (8.7), one obtains limt→∞
A−1
∗ (t)

M−1
α (t)

= 0, that is, Mα, |α| < m,
increase essentially more slowly than A∗ near infinity.

As in Example 8.3, (8.8) shows that (H2) is satisfied. Hypotheses (H3) and (H4)
in Theorem 7.4 are fulfilled by virtue of (8.9), (8.13) and (8.4) respectively; since
p∗ = p + 1, (8.4) implies the fulfillment of (H4); finally, since p0 = p < p + 1 <
N(p+1)
N−p−1 = p∗, (H5) is satisfied too. �

Example 8.7. Consider the problem (1.2), (1.3), under the following hypotheses:
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(i) the function a : R → R is defined by a(t) = |t|p−2t
√
t2 + 1, 2 ≤ p < N − 1;

(ii) there exist qα, 1 < qα < p, |α| < m, such that the growth conditions (8.3)
hold.

Under these conditions, problem (1.2), (1.3) has a solution. Moreover, the solution
set of (1.2), (1.3) is compact in Wm

0 EA(Ω).

Proof. The idea of the proof is as follows: the preceding assumptions entail that
the hypotheses of Theorem 6.4 are fulfilled.

Indeed, A satisfies the ∆2-condition inasmuch as p∗ = p + 1 < N (see Lemma
8.1, (i)). Conditions (2.8) and (2.9) are satisfied (the arguments are those used
for Example 8.6). Since p ≥ 2, it easily follows that a(t)

t is strictly increasing
on (0,∞). As Mα functions, which increase essentially more slowly than A∗ near
infinity and satisfy the ∆2-condition as well as the growth conditions (6.3), we
shall take Mα(s) = |s|qα

qα
, |α| < m (the arguments are those used for Example 8.6).

Finally, the last condition in Theorem 6.4 is satisfied since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m

and, by hypothesis (ii), qα < p = p0. �

Example 8.8. Consider problem (1.2), (1.3), under the following hypotheses:
(i) the function a : R → R is defined by a(t) = |t|p−2t ln(1+|t|), 2 ≤ p > N−1;
(ii) there exist qα, 1 < qα < p, |α| < m, such that the growth conditions (8.3)

hold.
Under these conditions, the problem (1.2), (1.3) has a solution. Moreover, the
solution set of problem (1.2), (1.3) is compact in Wm

0 EA(Ω).

Proof. Before giving the proof, we underline that the function a given by hypothesis
(i) appears in [8], in the following context (see [8], example 1 in the introduction):
if a is given by (i) and

1 < p < N − 1 and p < δ <
N(p− 1) + p

N − p
,

then, the problem

−div
(
a(|∇u|) ∇u

|∇u|
)

= |u|δ−1u in Ω

u = 0 on ∂Ω

has a nontrivial nonnegative weak solution in W 1
0EA(Ω).

The idea of the proof is as follows: the preceding assumptions entail that the
hypotheses of Theorem 6.4 are fulfilled. To do it, first we compute the numerical
characteristics p0 and p∗, given by (7.8). Let h : (0,∞) → R, defined by h(t) = ta(t)

A(t) ,
with

A(t) =
tp

p
ln(1 + t)− 1

p

∫ t

0

τp

1 + τ
dτ, t > 0. (8.14)

By direct calculus, we obtain limt→0 h(t) = p+ 1 and, since

h(t) = p+
pI(t)

tp ln(1 + t)− I(t)
, I(t) =

∫ t

0

τp

1 + τ
dτ, (8.15)
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one has p < h(t), for all t > 0. Consequently p0 = p > 1. To compute p∗, we shall
show that

pI(t)
tp ln(1 + t)− I(t)

< 1, ∀t > 0. (8.16)

Indeed, let f(t) = f(t) = (p+)I(t) − tp ln(1 + t). Since f(0) = 0 and f ′(t) < 0,
for all t > 0, inequality (8.16) follows. From (8.15) and (8.16), we infer that
h(t) < p + 1, for all t > 0 and, since limt→0 h(t) = p + 1, we conclude that p∗ =
p+1 < N . Therefore, A satisfies the ∆2-condition inasmuch as p∗ = p+1 < N (see
Lemma 8.1(i)). On the other hand, by a direct calculus, one has limt→0

A(t)
tp+1 = 1

p+1 ;
therefore, for ε = 1

p+1 there exists δ = A−1(δ) such that

A(t) >
2

p+ 1
tp+1, ∀t ∈ (0, δ = A−1 (δ)). (8.17)

Since p∗ = p+1 < N and (8.17) holds, we deduce (Lemma 8.1, (ii)) that conditions
(2.8) and (2.9) are satisfied. Since p ≥ 2, it easily follows that a(t)

t is strictly
increasing on (0,∞). As Mα functions, which increase essentially more slowly than
A∗ near infinity and satisfy the ∆2-condition as well as the growth conditions (6.3),
we shall take Mα(s) = |s|qα

qα
, |α| < m. Indeed, from Lemma 6.5, a), it follows that

A(t) ≥ A(1)tp, t > 1, therefore

lim
s→∞

s

(A(s))
1

qα
+ 1

N

≤ lim
s→∞

s

(A(1))
1

qα
+ 1

N s

(
1

qα
+ 1

N

)
p

= 0.

Consequently (see Example 8.6), the arguments continue. Finally, the last condition
in Theorem 6.4 is satisfied since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m

and, by hypothesis (ii), qα < p = p0. �

Remark 8.9. We will show that, under the hypotheses adopted for Example 8.8,
Theorem 7.4 cannot be applied. Thus, the hypothesis (H1) of Theorem 7.4 is never
verified. Indeed, if f(t) = A(t) − Ctp, then, it is easy to see that, for t ∈ (0, t0),
t0 = eCp − 1, we have always f(t) < 0.

Example 8.10. Consider the problem (1.2), (1.3), under the following hypotheses:
(i) the function a : R → R is defined by a(t) = |t|p−2t ln (1 + α+ |t|), 1 < p ≤

N − 1, α > 0;
(i) The Carathéodory functions gα : Ω×R → R, |α| < m, satisfy the following

conditions:

lim sup
s→0

gα(x, s)
a(s)

<
ln(1 + α) · λα

2pN0
, (8.18)

uniformly for almost all x ∈ Ω, where λα are given by (7.6) and N0 =∑
|α|<m 1;

(iii) there exist qα, 1 < qα < Np
N−p , |α| < m, such that the growth conditions

(8.3) hold;
(iv) there exist sα > 0 and θα ≥ p+ 1 such that conditions (8.4) hold.

Under these conditions, the problem (1.2), (1.3) has a nontrivial weak solution.
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Proof. The idea of the proof is as follows: the preceding assumptions entail that the
hypotheses of Theorem 7.4 are fulfilled. To do this, first we compute the numerical
characteristics p0, p∗ and p∗, given by (7.8). Let h : (0,∞) → R, defined by
h(t) = ta(t)

A(t) , with

A(t) =
tp

p
ln (1 + α+ t)− 1

p

∫ t

0

τp

1 + α+ τ
dτ, t > 0. (8.19)

By direct calculus, we obtain limt→0 h(t) = p and, since

h(t) = p+
pI(t)

tp ln (1 + α+ t)− I(t)
, I(t) =

∫ t

0

τp

1 + α+ τ
dτ , (8.20)

one has p < h(t), for all t > 0. Consequently, p0 = p > 1. To estimate p∗, we shall
prove the existence of a constant 0 < C0 < 1, such that

p∗ = sup
t>0

h(t) ≤ p+ C0.

Indeed, the system
t− C(1 + α+ t) ln(1 + α+ t) = 0

1− C − C ln(1 + α+ t) = 0
(8.21)

admits a unique solution (t0, C0). Clearly

0 < C0 =
1

1 + ln(1 + α+ t0)
< 1,

where t0 − (1 + α) ln(1 + α + t0) = 0. Moreover h(t) ≤ p + C0, for all t > 0. This
is true, since

pI(t)
tp ln (1 + α+ t)− I(t)

≤ C0,∀t > 0. (8.22)

Indeed, let f(t) = (p+ C0) I(t) − tp ln (1 + α+ t), for all t ≥ 0. One has f ′(t) =
ptp−1

1+α+tg(t) with g(t) = t − C0(1 + α + t) ln(1 + α + t), t ≥ 0. Since (t0, C0) is the
unique solution of (8.21), it may easily show that t0 > 0, g′(t) = 0 and g(t0) =
0 = maxt≥0 g(t). Consequently, g(t) ≤ 0, t ≥ 0, which implies f ′(t) ≤ 0, for all
t ≥ 0. Since f(0) = 0, it follows that f(t) ≤ 0, for all t ≥ 0, which is equivalent
with (8.22). This calculus explicit the claim concerning inequality (6.19) in [8].

Clearly, since a(t) ≥ ln(1 + α) · tp−1, for all t ≥ 0, it follows that

A(t) ≥ ln(1 + α)
p

tp, ∀t ≥ 0. (8.23)

Since p∗ < p+1 ≤ N and (8.23) holds, we deduce (Lemma 8.1, (ii)) that A∗ exists.
Consequently, according to Lemma 8.2, we can compute p∗ and we obtain

p∗ = lim inf
t→∞

tA′∗(t)
A∗(t)

=
Np

N − p
.

Since p0 > 1 and p∗ < N , it follows (Lemma 8.1, (i)) that A and A satisfy the
∆2-condition.

Now, we are in position to properly show that the above hypotheses entail the
fulfillment of those of Theorem 7.4. Indeed, since p = p0, (8.23) says that (H1)
in Theorem 7.4 is satisfied. The hypothesis (H2) in Theorem 7.4 is satisfied with
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Mα(s) = |s|qα

qα
, |α| < m, which, obviously satisfy the ∆2-condition. From (8.23) it

follows that

lim
s→∞

s

(A(s))
1

qα
+ 1

N

≤ lim
s→∞

s( ln(1+α
p

) 1
qα

+ 1
N · s

(
1

qα
+ 1

N

)
p

= 0.

Consequently, from (8.7), one obtains limt→∞
A−1
∗ (t)

M−1
α (t)

= 0; that is, Mα, |α| < m,
increase essentially more slowly than A∗ near infinity.

As in Example 8.3, (8.8) shows that (H2) is satisfied. Hypotheses (H3) and (H4)
in Theorem 7.4 are fulfilled by virtue of (8.18), (8.13) and (8.4) respectively; since
p∗ = p + 1, (8.4) implies the fulfillment of (H4); finally, since p0 = p < Np

N−p = p∗,
(H5) is satisfied too. �
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