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INTEGRAL REPRESENTATION OF A SOLUTION OF HEUN’S
GENERAL EQUATION

FRANÇOIS BATOLA, JOMO BATOLA

Abstract. We establish an integral representation for the Frobenius solution

with an exponent zero at z = 0 of the general Heun equation. First we present

an extension of Mellin’s lemma which provides a powerful method that takes
into account differential equations which are not of the form studied by Mellin.

That is the case for equations of Heun’s type. It is that aspect which makes our

work different from Valent’s work. The method is powerful because it allows
obtaining directly the nucleus equation of the representation. The integral

representation formula obtained with this method leads quickly and naturally

to already known results in the case of hypergeometric functions. The gener-
alisation of this method gives a type of differential equations which form is a

novelty and deserves to be studied further.

1. Introduction

This problem already was studied by Sleeman in [9] and by Valent in [10]. Slee-
man first sought to solve the three-termed recurrence relation associated to the
Heun equation using the Laplace transform method. This resolution allowed him
to obtain a Barnes type integral representation similar to the well-known Gauss
hypergeometric one.

Valents approach is different from Sleeman’s one; ours as well. Although we
use the relation LxK = MtK ([5] and [1]) as does G. Valent, however our work
is completely different. To establish our integral representation we preferred to
develop an extension of Mellin lemma to take into account the differential equations
that respond to a form satisfied by equations of Heun type.

Thus, after extension, the Mellin method easily gives us the nucleus equation
K(xt) occurring in the integral representation.

2. Reminder of some Heun equation’s properties

The canonical form of the general Heun equation is [8]:

d2y

dz2
+

(γ

z
+

δ

z − 1
+

ε

z − a

)dy

dz
+

αβz − q

z(z − 1)(z − a)
y = 0. (2.1)

Where
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• y(z) is a function of the complex variable z;
• (α, β, γ, δ, q, a) are complex or real parameters with a 6= 0, 1;
• q is an accessory parameter that allows to characterise Heun’s equation

solutions.
The five parameters are linked with the relation

γ + δ + ε = α + β + 1 (2.2)

Heun equation is of the Fushsian type, with four regular singularities (0, 1, a,∞)
of which three (0, 1, a) are at finite distance. The four singularities’ exponents are
the following:

{0, 1− γ}; {0, 1− δ}; {0, 1− ε}; {α, β} (2.3)

Equation (2.2) has a Riemann scheme with a P-symbol in the form

P

 0 1 a ∞
0 0 0 α z q

1− γ 1− δ 1− ε β

 (2.4)

This equation noted (0, 4, 0) in the Klein-Blôcher-Ince classification, was developed
by Heun [4] in 1889 to generalise the Gauss hypergeometric equation.

Our aim is to find an integral representation of the Heun function being a Frobe-
nius’ solution of the Heun equation given in another form as follows [8]:

z(z − 1)(z − a)y′′(z) + [γ(z − 1)(z − a) + δz(z − a) + εz(z − 1)] y′(z)

+ (αβz − q)y(z) = 0
(2.5)

The Frobenius’ solution, noted Hl(a, q;α, β, γ, δ; z) is the entire solution defined for
the exponent zero at the point z = 0. It admits the power series expansion

Hl(a, q;α, β, γ, δ; z) ≡
∞∑

n=0

cnzn |z| < 1 (2.6)

with
c0 = 1 c1 =

q

γa
γ 6= 0,−1,−2, . . . (2.7)

and
a(n + 2)(n + 1 + γ)cn+2

=
[
q + (n + 1)(α + β − δ + (γ + δ − 1)a) + (n + 1)2(a + 1)

]
cn+1

− (n + α)(n + β)cn n ≥ 0 .

(2.8)

The function Hl(a, q;α, β, γ, δ; z) is normalised with the relation

Hl(a, q;α, β, γ, δ; 0) = 1 . (2.9)

It admits the following important particular cases ([8], p9, formula (1.3.9)):

Hl(1, αβ;α, β, γ, δ; z) =2F1(α, β, γ; z) ∀δ ∈ C
Hl(0, 0;α, β, γ, δ; z) =2F1(α, β, α + β − δ + 1; z) ∀γ ∈ C

Hl(a, aαβ;α, β, γ, α + β − γ + 1; z) =2F1(α, β, γ; z),
(2.10)

where 2F1(α, β, γ; z) is the usual notation of the Gauss hypergeometric function,
also noted F (α, β, γ; z).
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On another hand we know that ([7, p.258, sec.9.8]) and [2, p.68, theorem 2.2.5]:
(Euler)

2F1(α, β, γ; z) = (1− z)γ−α−β
2F1(γ − α, γ − β, γ; z) with | arg(1− z)| < π

2F1(α, β, β; z) = (1− z)−α with | arg(1− z)| < π ∀β ∈ C .

Hence

Hl(1, αβ;α, β, β, δ; z) = (1− z)−α with | arg(1− z)| < π; ∀β, δ ∈ C,

Hl(a, aαβ;α, β, β, α + 1; z) = (1− z)−α with | arg(1− z)| < π ∀β ∈ C

3. Integral representation for Hl(a, q;α, β, γ, δ; z) function

To find an integral representation of the Heun function Hl(a, q;α, β, γ, δ; z) solu-
tion of equation (2.5), let’s consider the second order differential operator Lx. The
representation of the function of interest y(x) is taken as

y(x) =
∫

C

K(x, t) v(t)dt . (3.1)

To verify the differential equation

Lx(y) = 0, (3.2)

the researched representation will derive from the following lemma that we consider
as lemma of general principle [5].

Lemma 3.1 (Lemma of General Principle).
• If it is possible to verify that the nucleus K(x, t) satisfies the partial differ-

ential equation in the form

Lx(K) = Mt(K), (3.3)

where Mt is a differential operator involving only t and ∂
∂t .

• If v(t) is a solution of the differential equation

Mt(v) = 0, (3.4)

where Mtis the operator adjoint to Mt.
• And if t1 and t2 are two extremities of the curve C so that

[Kv]t2t1 = 0 (3.5)

then we have Lx(y) = 0. This means the function y(x) represented by (3.1) is
indeed a solution of the differential equation (3.2).

Proof. We consider y(x) given by (3.1). Let us apply the operator Lx; we formally
have

Lx(y) =
∫

C

Lx(K) v(t)dt . (3.6)

If the nucleus K(xt) verifies the relation (3.3) then we get

Lx(y) =
∫

C

Lx(K)v(t)dt =
∫

C

Mt(K)v(t)dt . (3.7)

Using the Lagrange’s Identity, which has the form [5]

v(t)Mt{K(xt)} −K(xt)Mt{v(t)} =
∂

∂t
{Kv}, (3.8)
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we obtain

Lx(y) =
∫

C

K(xt)Mt{v(t)}dt + [Kv]C (3.9)

And if Mt{v(t)} = 0 and [Kv]t2t1 = 0 then we get the expected result,

Lx(y) = 0. (3.10)

The lemma 3.1 is proved. �

To establish our principal theorem, we need few lemmas, particularly Mellin’s
lemma as presented in Ince [5, p.195, sect.8.4].

Lemma 3.2 (Mellin’s Lemma). Consider a differential equation in the form

Lx(y) ≡ xnF
(
x

d

dx

)
y + G

(
x

d

dx

)
y = 0 (3.11)

Let H be any one-variable polynomial and K(z) any solution of the ordinary dif-
ferential equation

znF
(
z

d

dz

)
−H

(
z

d

dz

)
K = 0 (3.12)

Then K(xt) satisfies the partial differential equation

{xnF
(
x

d

dx

)
+ G

(
x

d

dx

)
}K = {G

(
t
d

dt

)
+ t−nH

(
t
d

dt

)
}K, (3.13)

or
Lx(K) = Lt(K). (3.14)

Thus the integral

y(x) =
∫

C

K(xt)v(t)dt (3.15)

is a solution of (3.11), provided that v(t) is solution of the ordinary differential
equation

Mt(v) = 0, (3.16)

where Mt is the operator adjoint to Mt and provided that the extremities (t1, t2) on
the curve C are appropriately selected.

For the proof of the above lemma, we refer the reader to Ince [5], Mellin [6] and
Bateman [1, p.184].

The Mellin’s lemma as establised here does apply only to the differential equation
in the form (3.11), which excludes equations of Heun’s type, which have a different
form. Therefore we will adapt it so that equations of Heun type are taken into
account. For that purpose we need the following lemma.

Lemma 3.3 (Our Extension of Mellin’s Lemma). Consider a differential equation
in the form

Lx(y) ≡ x2F
(
x

d

dx

)
y + xG

(
x

d

dx

)
y + G̃

(
x

d

dx

)
y = 0 . (3.17)

Let H be any one-variable polynomial and K(z) any solution of the ordinary dif-
ferential equation{

z2F
(
z

d

dz

)
+ zG

(
z

d

dz

)}
K(z)−H

(
z

d

dz

)
K(z) = 0 . (3.18)
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Then K(xt) satisfies the partial differential equation{
x2F

(
x

d

dx

)
+ xG

(
x

d

dx

)
+ G̃

(
x

d

dx

)}
K =

{
G̃

(
t
d

dt

)
+ t−1H

(
t
d

dt

)}
K, (3.19)

or
Lx(K) = Mt(K). (3.20)

Thus the integral

y(x) =
∫

C

K(xt) v(t)dt (3.21)

is a solution of (3.17) provided that v(t) is solution of the ordinary differential
equation

Mt(v) = 0, (3.22)

where Mt is the operator adjoint to Mt and provided the end-points (t1, t2) on the
curve C are appropriately selected.

Proof. First, let us note [1, p.184] that if w = K(xt) = K(Z) then F (x d
dx )w =

F (t d
dt )w = F (z d

dz )w.
Let us consider the partial differential equation{

x2F
(
x

d

dx

)
+ xG

(
x

d

dx

)
+ G̃

(
x

d

dx

)}
w =

{
G̃

(
t
d

dt

)
+ t−1H

(
t
d

dt

)}
w (3.23)

which also can be expressed as{
x
{
xF

(
x

d

dx

)
+ xG

(
x

d

dx

)
}+ G̃

(
x

d

dx

)}
w =

{
G̃

(
t
d

dt

)
+ t−1H

(
t
d

dt

)}
w (3.24)

By posing

F1

(
x,

d

dx

)
= xF

(
x

d

dx

)
+ G

(
x

d

dx

)
, (3.25)

Equation (3.24) becomes{
xF1

(
x,

d

dx

)
+ G̃

(
x

d

dx

)}
w =

{
G̃

(
t
d

dt

)
+ t−1H

(
t
d

dt

)}
w . (3.26)

Let us consider first the second member of (3.25), to which we apply Mellin’s lemma;
this leads to consider the partial differential equation{

xF
(
x

d

dx

)
+ G

(
x

d

dx

)}
w =

{
G

(
t
d

dt

)
+ t−1H0

(
t
d

dt

)}
w (3.27)

It is satisfied by w = K(xt) = K(z) if we have

{zF
(
z

d

dz

)
−H0

(
z

d

dz

)
}K(z) = 0 . (3.28)

Which gives

xF
(
x

d

dx

)
= H0

(
x

d

dx

)
. (3.29)

By reporting this result into (3.25) we get

F1

(
x,

d

dx

)
= H0

(
x

d

dx

)
+ G

(
x

d

dx

)
. (3.30)

Then reporting this result into (3.26) we get

{x{H0

(
x

d

dx

)
+ G

(
x

d

dx

)
}+ G̃

(
x

d

dx

)
}w = {G̃

(
t
d

dt

)
+ t−1H

(
t
d

dt

)
}w . (3.31)
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Which is an equation of Mellin’s type. It is satisfied by w = K(xt) = K(z) if we
have [

z{H0

(
z

d

dz

)
+ G

(
z

d

dz

)
}
]
K(z)−H

(
z

d

dz

)
K(z) = 0 (3.32)

However, from (3.28) we have H0(z d
dz )K(z) = zF (z d

dz )K(z). Thus, by reporting
this result into (3.32) we obtain[

z{zF
(
z

d

dz

)
+ G

(
z

d

dz

)
}
]
K(z)−H

(
z

d

dz

)
K(z) = 0 . (3.33)

Finally we get the following equation verified by the nucleus of the searched integral
representation [

z2F
(
z

d

dz

)
+ zF

(
z

d

dz

)
−H

(
z

d

dz

)]
K(z) = 0 (3.34)

Thus the first part of our lemma is established. The second part of our lemma
derives directly from lemma 1, so called “lemma of general principle”. With both
of these parts our lemma is proved. �

Lemma 3.4. The Heun equation (2.5) satisfies the form (3.17) in the lemma 3.3.

Proof. Consider equation (2.5), which after multiplication by x and sign change,
can be written as

Lx(y) ≡ x2F (x
d

dx
)y + xG(x

d

dx
)y + G̃(x

d

dx
)y (3.35)

F
(
x

d

dx

)
= −{

(
x

d

dx

)2 + (γ + δ + ε)
(
x

d

dx

)
+ αβ} (3.36)

G
(
x

d

dx

)
= {(a + 1)

(
x

d

dx

)2 +
[
(a + 1)γ + aδ + ε

](
x

d

dx

)
+ q} (3.37)

G̃
(
x

d

dx

)
= −a{

(
x

d

dx

)2 + γ
(
x

d

dx

)
} (3.38)

This indeed is the form (3.17) of the lemma 3.3. �

Prior to discuss applications, let us determine the operator Mt to be associated
with the operator Lx so that lemma 3.3 applies.

4. Determination of operator Mt

Consider the operator

M̂t = t(t− 1)
d

dt
+ {σ − (ρ + σ)t} . (4.1)

It corresponds to the solution

v(t) = tσ(1− t)ρ . (4.2)

Thus, taking the adjoint to M̂t, which is notated M̂t, gives

M̂t = − d

dt
[(t2 − t)v] + {σ − (ρ + σ)t}v

= −(t2 − t)
dv

dt
− (2t− 1)v + {σ − (ρ + σ)t}v,

(4.3)

M̂t = t(1− t)
dv

dt
+ {(σ + 1)− (ρ + σ + 2)t}v . (4.4)
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To apply lemma 3.3, the operator M̂tDt is defined as follows ([5, p.195, sec.8.41],
[1, p184]):

M̂tDt = t(1− t)
d2

dt2
+ {(σ + 1)− (ρ + σ + 2)t} d

dt
with Dt =

d

dt
. (4.5)

Decomposing the operator M̂tDt and regrouping gives

M̂tDt = −
[(

t
d

dt

)2 + (ρ + σ + 2)
(
t
d

dt

)]
+ t−1

[(
t
d

dt

)2 + (σ + 1)
(
t
d

dt

)]
. (4.6)

Multiplying M̂tDt by a 6= 0, the operator Mt necessary to apply lemma 3.3 is
defined as

Mt = aM̂tDt

= −a
[(

t
d

dt

)2 + (ρ + σ + 2)
(
t
d

dt

)]
+ t−1{a

[(
t
d

dt

)2 + (σ + 1)
(
t
d

dt

)]
} .

(4.7)

Comparing the expression G̃(x d
dx ) in (3.38) with the corresponding expression

of Mt in (4.7) provides the important relation

−γ + (ρ + σ + 2) = 0 . (4.8)

Hence
ρ = γ − σ − 2 . (4.9)

And if one takes
σ = c− 1, (4.10)

then
ρ = γ − (c− 1)− 2 = γ − c + 1− 2 = γ − c− 1 . (4.11)

So that
σ = c− 1 ⇒ ρ = γ − c− 1 . (4.12)

In this case,
v(t) = tc−1(1− t)γ−c−1 . (4.13)

5. Differential Equation verified by nucleus K(xt)

From (4.7) the polynomial H(z d
dz ) involved in the definition of the nucleus is

given by the coefficient of t−1 as follows:

H
(
t
d

dt

)
= a

[(
t
d

dt

)2 + (σ + 1)
(
t
d

dt

)]
. (5.1)

Since σ is defined by σ = c− 1, hence

H
(
z

d

dz

)
= a

[(
z

d

dz

)2 + c
(
z

d

dz

)]
(5.2)

The nucleus equation as given by lemma 3.3 therefore can be written

z2F
(
z

d

dz

)
K(z) + zG

(
z

d

dz

)
K(z)−H

(
z

d

dz

)
K(z) = 0 . (5.3)

When taking into account (5.2), it gives

{z2F
(
z

d

dz

)
+ zG

(
z

d

dz

)
}K(z)− a{

(
z

d

dz

)2 + c
(
z

d

dz

)
}K(z) = 0 . (5.4)
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Let us explicit equation (5.4); for that purpose refer to (3.36) and (3.37) for a
definition of F (z d

dz ) and G(z d
dz ); thus

z2
{
−

[(
z

d

dz

)2 + (γ + δ + ε)
(
z

d

dz

)
+ αβ

]}
K(z)

+ z
{
(a + 1)

(
z

d

dz

)2 + [(a + 1)γ + aδ + ε]
(
z

d

dz

)
+ q

}
K(z)

− a
{(

z
d

dz

)2 + c
(
z

d

dz

)}
K(z) = 0

(5.5)

Comparing this equation with (3.35), (3.36), (3.37) and (3.38) shows that it will
be of Heun’s type by taking γ = c everywhere in (5.5); then simplifying by z and
changing sign gives if setting u = K(z)

z(z− 1)(z− a)
d2u

dz2
+ [c(z − 1)(z − a) + δz(z − a) + εz(z − 1)]

du

dz
+ (αβz− q)u = 0

(5.6)
This is the equation verified by the nucleus K(xt) of the representation.

Hence the solution of this equation of Frobenius’ type of exponent 0 at point
z = 0 is

Hl(a, q;α, β, c, δ;xt) . (5.7)

6. Integral relation obtained

The following relation can be formally established from the previous section,

y(x) =
∫

c

Hl(a, q;α, β, c, δ;xt)tc−1(1− t)γ−c−1dt with <γ > <c > 0 . (6.1)

On the curve C the following extremities are selected for the integration t1 = 0 and
t2 = 1. With that choice of extremities and the one of function v(t) = tc−1(1 −
t)γ−c−1, conditions (3.4) and (3.5) of lemma 3.1 are verified, hence y(x) is a solution
of equation (2.5) and satisfies the form (3.17) of lemma 3.3. Now let us examine
the initial conditions at the origin to determine the unique solution. Thus

y(0) =
∫ 1

0

tc−1(1− t)γ−c−1dt =
Γ(c)Γ(γ − c)

Γ(γ)
, (6.2)

y′(0) =
q

ac

∫ 1

0

tc(1− t)γ−c−1dt =
q

ac

Γ(c + 1)Γ(γ − c)
Γ(γ + 1)

=
q

ac

cΓ(c)Γ(γ − c)
γΓ(γ)

=
q

aγ

Γ(c)Γ(γ − c)
Γ(γ)

(6.3)

These two initial conditions determine the unique solution

Γ(c)Γ(γ − c)
Γ(γ)

Hl(a, q;α, β, γ, δ;x) (6.4)

Consequently (6.1) becomes

Γ(c)Γ(γ − c)
Γ(γ)

Hl(a, q;α, β, γ, δ;x) =
∫ 1

0

Hl(a, q;α, β, c, δ;xt)tc−1(1− t)γ−c−1dt

(6.5)
with <γ > <c > 0 and |x| < min(|a|, 1). The representation obtained is therefore
given by the following theorem.
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Theorem 6.1. The Heun function Hl(a, q;α, β, γ, δ;x) has the integral represen-
tation

Hl(a, q;α, β, γ, δ;x) =
Γ(γ)

Γ(c)Γ(γ − c)

∫ 1

0

Hl(a, q;α, β, c, δ;xt)tc−1(1− t)γ−c−1dt

(6.6)
with <γ > <c > 0 and |x| < min(|a|, 1).

Corollary 6.2. The Heun function Hl(a, q;α, β, γ, δ;x) also admits the represen-
tation

Hl(a, q;α, β, γ + 1, δ;x) = γ

∫ 1

0

Hl(a, q;α, β, γ, δ;xt)tγ−1dt (6.7)

with <γ > 0 and |x| < min(|a|, 1).

Proof. In (6.7), first replace γ by γ +1. Then replace c by γ and get the announced
result. �

7. Analytic continuation

Consider the Heun function Hl(a, q;α, β, γ, δ;x) defined in (6.6) by the integral
representation and let find its analytic continuation [7], [2], [11] and [3, p.62, The-
orem 9]. For that purpose let us show that it is an analytic function for each of
their variables α, β, γ, δ;x. To start with, let us define a function Q(t) as follows:

tc−1(1− c)γ−c−1Hl(a, q;α, β, c, δ;xt) = tσ−1(1− t)τ−1Q(t) (7.1)

where
Q(t) = tc−σ(1− c)γ−c−τHl(a, q;α, β, c, δ;xt).

Let us also define the following closed domain

Sr ≡
{

0 ≤ t ≤ 1;σ ≤ <c ≤ N ; τ ≤ <(γ − c) ≤ N ; |β| ≤ N ;

|δ| ≤ N ; |q| ≤ N ; |x| ≤ N ; |r| ≤ N ; | arg(r − σ − x)| ≤ π − σ|
}

,
(7.2)

where
N > 0 and N is arbitrarily large

σ > 0 and τ > 0 are arbitrarily small

r > 0 with r = min(|a|, 1)
(7.3)

Hence, function Q(t) is continuous for all its variables in the closed domain Sr.
Therefore, it will be bounded in that domain; thus

|tc−σ(1− c)γ−c−τHl(a, q;α, β, c, δ;xt)| ≤ C (7.4)

where C is a constant.
It results that in the domain under study,

|tc−1(1− c)γ−c−1Hl(a, q;α, β, c, δ;xt)| ≤ C tσ−1(1− c)τ−1 (7.5)

Since the integral
∫ 1

0
tσ−1(1−t)τ−1dt is convergent, integral (6.6) defining the Heun

function Hl(a, q;α, β, γ, δ;x) is uniformly convergent in the domain of interest and
therefore represents an analytic function for each of its variables.

Since constants σ, τ and N are arbitrary, the Heun function Hl(a, q;α, β, γ, δ;x)
is an analytic function for each of their variables in the domain <γ > <c > 0 and
| arg(r−x)| < π in the plane of variable x cut along the real axis for <x ≥ 1 . Thus
the following result has been obtained.
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Theorem 7.1. The Heun function Hl(a, q;α, β, γ, δ;x) has the analytic continua-
tion

Hl(a, q;α, β, γ, δ;x) =
Γ(γ)

Γ(c)Γ(γ − c)

∫ 1

0

Hl(a, q;α, β, c, δ;xt)tc−1(1− t)γ−c−1dt

(7.6)
with <γ > <c > 0 and | arg(r − x)| < π with r = min(|a|, 1)

Corollary 7.2. The Heun function Hl(a, q;α, β, γ, δ;x) also admits the analytical
continuation

Hl(a, q;α, β, γ + 1, δ;x) = γ

∫ 1

0

Hl(a, q;α, β, γ, δ;xt)tγ−1dt (7.7)

with <γ > 0 and | arg(r − x)| < π with r = min(|a|, 1).

The proof of the above corollary is identical to the one for corollary 6.2.

8. Important particular cases

Particularising parameters a and q gives, using the theorem 7.1 and corollary
7.2, the following results.

Theorem 8.1. The hypergeometric function F (α, β, γ;x) admits the analytical con-
tinuation

F (α, β, γ;x) =
Γ(γ)

Γ(c)Γ(γ − c)

∫ 1

0

F (α, β, c;xt)tc−1(1− t)γ−c−1dt (8.1)

with <γ > <c > 0 and | arg(1− x)| < π.

Proof. Taking a = 1 and q = αβ in theorem 7.1 and referring to point (2.10),
results of the announced results is obtained. �

Corollary 8.2. The hypergeometric function F (α, β, γ;x) admits the analytical
continuation

F (α, β, γ + 1;x) = γ

∫ 1

0

F (α, β, γ;xt)tγ−1dt (8.2)

with <γ > 0 and | arg(1− x)| < π.

Proof. Taking a = 1 and q = αβ in theorem 7.1 and referring to point 2.10, results
of the announced results is obtained. �

Theorem 8.1 and corollary 8.2, which are particular cases of our theorem7.1
and our corollary 7.2 are exactly identical to formulas given by Lebedev [7, p.277,
exercise 6] and [2, p.68, theorem 2.2.4].

9. Conclusions

With our extension of Mellin’s lemma we have obtained an integral representa-
tion of a power series solution of the general Heun equation, thus showing the full
strength of Mellin’s lemma itself. We think the method could give also an integral
representation of the power series solutions of differential equations satisfying the
following novel general form

Lx(y) ≡
n∑

i=1

xiFi

(
x

d

dx

)
y + G̃

(
x

d

dx

)
y = 0 (9.1)
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Equation of Heun’s type are those which are obtained when n = 2; and when n = 1,
the equations satisfying the form (3.11) of the equations studied by Mellin ; in that
class are the hypergeometric equations. Case n ≥ 3 remained to be studied.

One can notice that the integral representation obtained for the Frobenius solu-
tion of exponent zero at the origin leads exactly, as a particular case, to an integral
representation formula that is well-known for the hypergeometric functions.
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