
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 98, pp. 1–8.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS AND CONTINUOUS BRANCHES FOR
BOUNDARY-VALUE PROBLEMS OF DIFFERENTIAL

INCLUSIONS

NGUYEN THI HOAI, NGUYEN VAN LOI

Abstract. In this paper, we consider second order differential inclusions with

periodic boundary conditions. We obtain the existence of positive solutions

and of continuous branches of positive solutions.

1. Introduction

Consider the boundary-value problem
Lu ∈ λF (t, u), 0 < t < 1 ,

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,
(1.1)

where Lu = −(ru′)′ + qu, r ∈ C1[0, 1], q ∈ C[0, 1] with r > 0, q ≥ 0 on [0, 1],
α, β, γ, δ ≥ 0 with αδ+αγ + βγ > 0, F : [0, 1]× [0,+∞) → P ([0,+∞)), and λ
is a positive parameter.

When F is a continuous map, the existence of positive solutions of (1.1) was
studied in [5]. In this paper, the results in [5, 12] will be used to prove the existence
of positive solutions of (1.1).

First, we recall the following notion (see, e.g. [4, 8]). Let X,Y be two Ba-
nach spaces. Let P (Y ), K(Y ), Kv(Y ), C(Y ), Cv(Y ) denote the collections of
all nonempty, nonempty compact, nonempty convex compact, nonempty closed,
nonempty convex closed subsets of Y , respectively.

A multimap F : X → P (Y ) is said to be upper semicontinuous (u.s.c.) [lower
semicontinuous (l.s.c.)] if the set F−1

+ (V ) = {x ∈ X : F (x) ⊂ V } is open [respec-
tively, closed] for every open [respectively, closed] subset V ⊂ Y . F is said to be
compact if the set F (X) is relatively compact in Y .

Let A ⊂ K(Y ) and the max-normal and min-normal be

‖A‖ = max{‖x‖ : x ∈ A} and ‖A‖0 = min{‖z‖ : z ∈ A}.
Let C+[0, 1] (L1

+[0, 1]) denote the cone of all positive continuous (respectively, in-
tegrable) functions on [0, 1]. We will consider the cone C+[0, 1] (L1

+[0, 1]) as sub-
space of the space C[0, 1] (respectively, L1[0, 1]) with induced topology.
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The nonempty subset M ⊂ L1
+[0, 1] is said to be decomposable provided for

every f, g ∈M and each Lebesgue measurable subset m ⊂ [0, 1],

fχm + gχ[0,1]\m ∈M,

where χm is the characteristic function of the set m.

2. Existence of positive solutions

Let G(t, s) be the Green’s function for (1.1). Then u is a solution of (1.1) if and
only if

u(t) ∈ λ
∫ 1

0

G(t, s)F (s, u(s))ds.

Recall that

G(t, s) =

{
c−1φ(t)ψ(s) if t ≤ s

c−1φ(s)ψ(t) if s ≤ t,

where φ and ψ satisfy

Lφ = 0, φ(0) = β, φ′(0) = α,

Lψ = 0, ψ(1) = δ, ψ′(1) = −γ

and c = r(t)(φ′(t)ψ(t) − ψ′(t)φ(t)) > 0. Note that φ′ > 0 on (0, 1] and ψ′ < 0
on [0, 1). Let G = max{G(t, s) : 0 ≤ t, s ≤ 1}. We shall make the following
assumptions:

(H1) For every x ∈ [0,+∞) the multifunction F (·, x) : [0, 1] → Kv([0,+∞)) has
a measurable selection, i.e., there exists a measurable function f such that
f(t) ∈ F (t, x) for a.e. t ∈ [0, 1];

(H2) For a.e. t ∈ [0, 1] the multimap F (t, ·) : [0,+∞) → Kv([0,+∞)) is u.s.c.;
(H3) There exists a positive function ω ∈ L1[0, 1] such that

‖F (t, x)‖ ≤ ω(s)(1 + x),

for all x ∈ [0,+∞) and a.e. t ∈ [0, 1];
(H4) The multioperator F : [0, 1]× [0,+∞) → K([0,∞)) is almost lower semi-

continuous; i.e., there exists a sequence of disjoint compact sets {Im}, Im ⊂
[0, 1] such that:
(i) meas([0, 1] \

⋃
m Im) = 0;

(ii) the restriction of F on each set Jm = Im × [0,∞) is l.s.c.;
We will use the method in [12] to prove the following results.

Theorem 2.1. Let (H1)–(H3) hold. If (1.1) has no zero solution, then for each
0 < λ < 1

G
R 1
0 ω(s)ds

, (1.1) has a positive solution.

Theorem 2.2. Let (H3)-(H4) hold. If (1.1) has no zero solution, then for each
0 < λ < 1

G
R 1
0 ω(s)ds

, (1.1) has a positive solution.

Proof of Theorem 2.1. From (H1)–(H3) it follows easily that the multioperator su-
perposition

℘F : C+[0, 1] → Cv(L1
+[0, 1]),

℘F (u) = {f ∈ L1
+[0, 1] : f(s) ∈ F (s, u(s)) for a.e. s ∈ [0, 1]}.
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is defined and closed (see, e.g. [4]). Consider a completely continuous operator

Qλ : L1
+[0, 1] → C+[0, 1], Qλ(f)(t) = λ

∫ 1

0

G(t, s)f(s)ds,

Let Γλ = Qλ ◦ ℘F . From [4, Theorem 1.5.30] it follows that the multioperator Γλ

is closed. We can easily prove that for every bounded subset U ⊂ C+[0, 1], the set
Γλ(U) is relatively compact in C+[0, 1]. Hence applying [4, Theorem 1.2.48], we
have that the Hammerstein’s multioperator

Γλ : C+[0, 1] → Kv(C+[0, 1]),

Γλ(u) = λ

∫ 1

0

G(t, s)F (s, u(s))ds.

is upper semicontinuous. Let T+ = {u ∈ C+[0, 1] : ‖u‖C ≤ ρ, where ρ > 0} For u
in T+ we have∥∥Γλ(u)

∥∥
C

= max
{∥∥λ ∫ 1

0

G(t, s)f(s)ds
∥∥

C
: f ∈ ℘F (u)

}
,

where ∥∥∫ 1

0

G(t, s)f(s)ds
∥∥

C
= sup

t∈[0,1]

{ ∫ 1

0

G(t, s)f(s)ds
}
.

Since f(s) ∈ F (s, u(s)) for a.e. s ∈ [0, 1] and (H3), for a.e. s ∈ [0, 1] we have

f(s) ≤ ‖F (s, u(s))‖ ≤ ω(s)(1 + u(s)) ≤ ω(s)(1 + ‖u‖C) ≤ ω(s)(1 + ρ).

Therefore, ∫ 1

0

G(t, s)f(s)ds ≤ G(1 + ρ)
∫ 1

0

ω(s)ds,

and hence ∥∥∫ 1

0

G(t, s)f(s)ds
∥∥

C
≤ G(1 + ρ)

∫ 1

0

ω(s)ds.

Because the last inequality holds for all f ∈ ℘F (u),

‖Γλ(u)‖C ≤ λG(1 + ρ)
∫ 1

0

ω(s)ds.

Choose ρ ≥ λG
R 1
0 ω(s)ds

1−λG
R 1
0 ω(s)ds

then ‖Γλ(u)‖C ≤ ρ, i.e., Γλ maps the set T+ in to itself.

The existence of positive solution of the problem (1.1) can be easily follow from the
Bohnenblust-Karlin fixed point theorem �

For the proof of Theorem 2.2 we need the following result proved in [6, 7].

Lemma 2.3. Let X be a separable metric space; E be a Banach space. Then every
l.s.c. multimap F̃ : X → P (L1([0, 1], E)) with closed decomposable values has a
continuous selection.

Proof of theorem 2.2. From conditions (H3)–(H4) it follows that

℘F : C+[0, 1] → C(L1
+[0, 1])

is a l.s.c. multioperator with closed decomposable values (see, e.g. [4, 8]).
Consider again the Hammerstein’s multioperator Γλ = Qλ ◦℘F . By Lemma 2.3,

the multioperator superposition ℘F has a continuous selection

` : C+[0, 1] → L1
+[0, 1], `(u) ∈ ℘F (u).
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Hence the operator

γλ : C+[0, 1] → C+[0, 1], γλ(u)(t) = λ

∫ 1

0

G(t, s)`(u)(s)ds,

is a completely continuous selection of the multioperator Γλ. As shown above, for
each 0 < λ < 1

G
R 1
0 ω(s)ds

, we can choose ρ > 0 such that the multioperator Γλ maps
the set T+ in to itself. From the Schauder fixed theorem it follows that the operator
γλ has a fixed point in T+, i.e., (1.1) has a positive solution �

Now we use the result in [5] to prove the existence and multiplicity of positive
solutions for (1.1), when F is lower semicontinuous. Assume that

(F1) F : (0, 1)× [0,+∞) → Kv([0,+∞)) is l.s.c.;
(F2) For each M > 0, there exists a continuous function gM on (0, 1) such that

‖F (t, x)‖ ≤ gM (t) for t ∈ (0, 1), x ∈ [0,M ], and∫ 1

0

G(s, s)gM (s)ds <∞.

(F3) There exist an interval I ⊂ (0, 1) and a non-zero function m ∈ L1(I) with
m ≥ 0 such that for every b > 0, there exists rb > 0 such that

‖F (t, x)‖0 ≥ bm(t)x for t ∈ I, x ∈ (0, rb);

(F4) There exist an interval I1 ⊂ (0, 1) and a non-zero function m1 ∈ L1(I1)
with m1 ≥ 0 such that for every c > 0, there exists Rc > 0 such that

‖F (t, x)‖0 ≥ cm1(t)x for t ∈ I1, x ≥ Rc;

Theorem 2.4. Let (F1)–(F3) hold. Then there exists λ0 > 0 such that (1.1) has
a positive solution for 0 < λ < λ0. If, in addition, (F4) holds, then (1.1) has at
least two positive solutions for 0 < λ < λ0

For the proof of this we need the following result (see, e.g. [4, 11]).

Lemma 2.5. Let X be a metric space; Y be a Banach space. Then every l.s.c.
multi-map W : X → Cv(Y ) has a continuous selection.

Proof of Theorem 2.4. Let f : (0, 1)× [0,+∞) → [0,+∞) be a continuous selection
of F , i.e.,

f(t, x) ∈ F (t, x) for all (t, x) ∈ (0, 1)× [0,+∞).

It is easy to see that for all (t, x) ∈ (0, 1)× [0,+∞) the following inequality holds

‖F (t, x)‖0 ≤ f(t, x) ≤ ‖F (t, x)‖.

Consider now the problem

Lu = λf(t, u), 0 < t < 1, (2.1)

with the conditions in (1.1). By (F1)–(F4) we have
(f1) The map f : (0, 1)× [0,+∞) → [0,+∞) is continuous;
(f2) For each M > 0, there exists a continuous function gM on (0, 1) such that

f(t, x) ≤ gM (t) for t ∈ (0, 1), 0 ≤ x ≤M and∫ 1

0

G(s, s)gM (s)ds <∞.
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(f3) There exist an interval I ⊂ (0, 1) and a non-zero function m ∈ L1(I) with
m ≥ 0 such that for every b > 0, there exists rb > 0 such that

f(t, x) ≥ bm(t)x, for t ∈ I, x ∈ (0, rb);

If (F4) holds then we have
(f4) There exist an interval I1 ⊂ (0, 1) and a non-zero function m1 ∈ L1(I1)

with m1 ≥ 0 such that for every c > 0, there exists Rc > 0 such that

f(t, x) ≥ cm1(t)x, for t ∈ I1, x ≥ Rc;

From [5, Theorem 1.1] it follows that if (f1)–(f3) hold then there exists λ0 > 0
such that (2.1) has a positive solution for 0 < λ < λ0. If, in addition, (f4) holds
then (2.1) has at least two positive solutions for 0 < λ < λ0. Hence we obtain our
result �

3. Continuous branch of positive solutions

A sphere and a ball with center at the point 0 (the zero function) and radius r
in the cone C+[0, 1] will be denoted respectively by

S+(0, r) = {u ∈ C+[0, 1] : ‖u‖C = r},
T+(0, r) = {u ∈ C+[0, 1] : ‖u‖C ≤ r}.

Recall the following notion (see, [1, 2, 10]).
Definition A set V of positive solutions of (1.1) is said to form a continuous branch
connecting the spheres S+(0, r) and S+(0, R), with 0 ≤ r < R ≤ ∞, if for every
nonempty open bounded subset

∆ ⊂ C+[0, 1] : T+(0, r′) ⊂ ∆ ⊂ T+(0, R′), r < r′ < R′ < R

the set V ∩ ∂∆ is nonempty, where ∂∆ is a boundary of ∆. If, in addition, r = 0
and R = ∞ then the set V is said to be a continuous branch with infinite length.

Let E be a Banach space; K ⊂ E be a cone.
Definition An operator A : E → E is said to be positive, if AK ⊂ K.

Lemma 3.1 ([1, 9]). Let A be a positive completely continuous operator on the
cone K. Assume that on the border ∂ΞK of every bounded subset ΞK 3 0 of the
cone K the following inequality holds

inf
x∈∂ΞK

‖Ax‖ > 0.

Then the positive solutions of the equation

Ax = µx, x ∈ K \ {0}
form a continuous branch with infinite length.

Let a be a positive constant. Consider now the problem (1.1) with the multimap

F : [0, 1]× [0,+∞) → K([a,+∞))

satisfying the following assumptions:
(A1) F is almost lower semicontinuous;
(A2) For every nonempty bounded subset Ω ⊂ [0,+∞) there exists a function

ϑΩ ∈ L1
+[0, 1] such that

‖F (t, x)‖ ≤ ϑΩ(t),

for all x ∈ Ω and a.e. t ∈ [0, 1];
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(A3) There exists q > 0 such that the Green’s function satisfies G(t, s) ≥ q, for
all 0 ≤ t, s ≤ 1;

Theorem 3.2. Let (A1)–(A3) hold. Then the positive solutions of (1.1) form a
continuous branch with infinite length.

Proof. Note that the condition (H3) is special case of the condition (A2). As is
shown above, from (A1)–(A2) the multioperator Γλ has a completely continuous
selection γλ on the cone C+[0, 1]. Let Ξ 3 0 be an open bounded subset of C+[0, 1].
For all u ∈ Ξ, since `(u)(s) ∈ F (s, u(s)) for a.e. s ∈ [0, 1] we have

γλ(u)(t) = λ

∫ 1

0

G(t, s)`(u)(s)ds ≥ λaq > 0.

Hence
inf

u∈∂Ξ
‖l(u)‖C ≥ aq > 0, where l =

γλ

λ
.

On the cone C+[0, 1] consider the equation

l(u) =
1
λ
u (3.1)

By Lemma 3.1, the positive solutions of (3.1) form a continuous branch with infinite
length. And hence we obtain our result �

4. Examples

Example 4.1. Let D ⊂ [0, 1] be a nonmeasurable set;

F : [0, 1]× [0,+∞) → Kv([0,+∞))

be the multimap

F (t, x) =


[0, x+ 1] if x = t and t ∈ [0, 1] \D
[0, x+ 1] if x = t+ 1 and t ∈ D
x+ 1 otherwise.

Consider the differential inclusion
−u′′(t) ∈ λF (t, u(t)), λ > 0, 0 < t < 1,

u(0) = u(1) = 0.
(4.1)

It is easy to see that

G(t, s) =

{
t(1− s) if 0 ≤ t ≤ s ≤ 1
s(1− t) if 0 ≤ s ≤ t ≤ 1

is a Green’s function for the operator Lu = −u′′. Note that max{G(t, s) : 0 ≤ t, s ≤
1} = 1. Choose a function ω ≡ 1 then the conditions (H1)-(H3) hold. Zero function
is not a solution of (4.1). From Theorem 2.1 it follows that for each 0 < λ < 1 the
inclusion (4.1) has a positive solution

Example 4.2. Let ε ∈ (0, 1) and F : (0, 1)× [0,+∞) → Kv([0,+∞)) be the mul-
timap

F (t, x) =


t(x2 + 1

1+x ) if 0 < t ≤ ε and 0 ≤ x ≤ 1
(t+ 1)(x2 + 1

x+ε ) if 0 < t ≤ ε and 2 ≤ x ≤ 3
[t(x2 + 1

1+x ), (t+ 1)(x2 + 1
x+ε )] otherwise.
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It is clear that the multimap F is lower semicontinuous. Consider the inclusion

(−e
−t2
2 u′)′ + e

−t2
2 u ∈ λF (t, u), 0 < λ, 0 < t < 1,

u(0) = u(1) = 0.
(4.2)

Let Lu = (−et2/2u′)′ + e−t2/2u. Then

G(t, s) =


et2/2R 1

0 e−τ2/2dτ

∫ 1

s
e−τ2/2dτ

∫ t

0
e−τ2/2dτ, if 0 ≤ t ≤ s

et2/2R 1
0 e−τ2/2dτ

∫ s

0
e−τ2/2dτ

∫ 1

t
e−τ2/2dτ, if s ≤ t ≤ 1

is a Green’s function for the operator L (see, e.g. [3]).
For each M > 0, let gM (t) = (M2 + 1

ε )(t+ 1). We have

‖F (t, x)‖ ≤ (t+ 1)(x2 +
1

x+ ε
) ≤ gM (t),

for 0 < t < 1, 0 ≤ x ≤M and∫ 1

0

G(s, s)gM (s)ds < +∞.

Hence the condition (F2) holds. Let I = (0, ε),m(t) = t. Then for every b > 0

‖F (t, x)‖0 = t(x2 +
1

1 + x
) ≥ bm(t)x for t ∈ I, x ∈ (0, rb),

where rb = min{−b+(b2+4b)1/2

2b , 1}. The condition (F3) holds. For every c > 0

‖F (t, x)‖0 ≥ t(x2 +
1

1 + x
) ≥ cm(t)x, for t ∈ I, x ≥ c.

The condition (F4) holds. By Theorem 2.4, there exists λ0 > 0 such that (4.2) has
at least two positive solutions for 0 < λ < λ0

Example 4.3. Let F : [0, 1]× [0,+∞) → K([1,+∞)) be the multimap

F (t, x) =


(t2 + 2)(x2 + 1

x+1 ) if 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
(t+ 2)(x2 + 1

x+1 ) if 0 ≤ t ≤ 1, 2 ≤ x ≤ 3
[(t2 + 2)(x2 + 1

1+x ), (t+ 2)(x2 + 1
x+1 )] otherwise.

Consider the problem

−(1 + et)u′′ − etu′ ∈ λF (t, u), 0 < t < 1, 0 < λ,

u(0)− 2u′(0) = 0, u′(1) = 0.
(4.3)

It is clear that F is lower semicontinuous. Hence the condition (A1) holds.

G(t, s) =

{
x− ln(1 + ex) + 1 + ln 2 if 0 ≤ t ≤ s

s− ln(1 + es) + 1 + ln 2 if 0 ≤ s ≤ t

is a Green’s function for operator Lu = −(1 + et)u′′ − etu′ (see, [3]) and

G(t, s) ≥ 1, for all t, s ∈ [0, 1].

The condition (A3) holds.
For every bounded subset Ω ⊂ [0,+∞), let ϑΩ(t) = (t+ 2)(1 + ‖Ω‖2). We have

‖F (t, x)‖ ≤ (t+ 2)(x2 +
1

1 + x
) ≤ ϑΩ,
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for all x ∈ Ω and all t ∈ [0, 1]. Therefore the condition (A2) holds. From Theorem
3.2 it follows easily that the set of positive solutions of (4.3) forms a continuous
branch with infinite length

References

[1] I. A. Bakhtin, Positive Solutions of Nonlinear Equations About an Older Point of Bifurcation,
Voronezh, Edition VSPU, 1983. 76 pp. (Russian)

[2] I. A. Bakhtin, Topological Method in Theory of Nonlinear Equations With Positive

parameter-Dependent Operators, Voronezh, VSPU, 1986. 80 pp.
[3] A. K. Boyarchuk, H. P. Holovach, Differential Equations as Examples and Problems, Moscow,

URSS, 2001. 384 pp. (Russian)

[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskii, Introduction to
the Theory of Multimap and Differential Inclusions, Moscow: KomKnhiga, 2005, 216 pp.

(Russian)

[5] Dang Dinh Hai, Positive Solutions For a Class of Singular Boundary-Valued Problem, Elec-
tron. J. of Diff. Eqns. Vol 2005(2005), No. 13, pp. 1-6.

[6] K. Deimling, Multivalued differential equations. Walter de Gruyter, Berlin-New York, 1992.

[7] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Theory. Kluwer, Dor-
drecht, 1997.

[8] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear
Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin-New York, 2001.

[9] M. A. Krasnoselskii, Topological Methods in Theory of Nonlinear Integral Equations, Moscow:

State Publishing House, 1956. (Russian)
[10] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen (1964).

[11] E. Michael, Continuous Selections, I. Ann. Math. 63(1956), No.2, 361-381.

[12] N. Van Loi, On The Existence of Solutions For Some Classes of Hammerstein Type of
Integral Inclusions, Vesnhik VSU, No. 2, 2006. (Russian)

Nguyen Thi Hoai

Faculty of mathematics, Voronezh State Pedagogical University, Russia
E-mail address: nthoai0682@yahoo.com

Nguyen Van Loi

Faculty of mathematics, Voronezh State Pedagogical University, Russia
E-mail address: loitroc@yahoo.com


	1. Introduction
	2.  Existence of positive solutions
	3. Continuous branch of positive solutions
	4. Examples
	References

