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WELL-POSEDNESS FOR SOME PERTURBATIONS OF THE
KDV EQUATION WITH LOW REGULARITY DATA

XAVIER CARVAJAL, MAHENDRA PANTHEE

Abstract. We study some well-posedness issues of the initial value problem

associated with the equation

ut + uxxx + ηLu + uux = 0, x ∈ R, t ≥ 0,

where η > 0, cLu(ξ) = −Φ(ξ)û(ξ) and Φ ∈ R is bounded above. Using the
theory developed by Bourgain and Kenig, Ponce and Vega, we prove that the

initial value problem is locally well-posed for given data in Sobolev spaces

Hs(R) with regularity below L2. Examples of this model are the Ostrovsky-
Stepanyams-Tsimring equation for Φ(ξ) = |ξ|−|ξ|3, the derivative Korteweg-de

Vries-Kuramoto-Sivashinsky equation for Φ(ξ) = ξ2−ξ4, and the Korteweg-de

Vries-Burguers equation for Φ(ξ) = −ξ2.

1. Introduction

In this paper we consider the initial value problem (IVP)
ut + uxxx + ηLu+ uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.1)

where η > 0 is a constant and the linear operator L is defined via the Fourier
transform by L̂u(ξ) = −Φ(ξ)û(ξ). The Fourier symbol

Φ(ξ) =
n∑

j=0

2m∑
i=0

ci,jξ
i|ξ|j , ci,j ∈ R, c2m,n = −1. (1.2)

is a real valued function which is bounded above; i.e., there is a constant C such
that Φ(ξ) < C. Without loss of generality, we suppose that Φ(ξ) < 1. For this, let
us perform the following scale change

v(x, t) =
1
λ2
u
(x
λ
,
t

λ3

)
.

Then v satisfies the equation

λ3vt + λ3vxxx + ηTv + λ3vvx = 0, (1.3)
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where
T̂ v(ξ) = Φ(λξ)v̂(ξ).

If we take λ3 = C, where C is as earlier, then the Fourier symbol of the new operator
T in (1.3) is bounded above by 1. Finally, inverting the scale change, we obtain
well-posedness result for the original IVP (1.1) from that of (1.3). So, throughout
this work we consider the IVP (1.1) with Φ(ξ) in (1.2) satisfying Φ(ξ) < 1.

Our interest here is to obtain well-posedness results for (1.1) with given data
u0 in the Sobolev spaces Hs(R) with regularity below L2. The L2-based Sobolev
space Hs(R) is defined by

Hs(R) := {f ∈ S ′(R) : ‖f‖Hs <∞},

where

‖f‖2
Hs =

∫
R
(1 + |ξ|2)s|f̂(ξ)|2dξ,

and f̂(ξ) is the usual Fourier transform given by

f̂(ξ) ≡ F(f)(ξ) =
1√
2π

∫
R
e−ixξf(x) dx.

However, from here onwards, we will neglect the factor 2π in the definition of the
Fourier transform because it does not alter our analysis.

Also, we consider the homogeneous Sobolev space Ḣs(R) defined via the norm

‖f‖2
Ḣs =

∫
R
|ξ|2s|f̂(ξ)|2dξ.

Before stating the main results of this work, we give some examples that belong
to the class considered in (1.1).

The first example of this type is the generalized Ostrovsky-Stepanyams-Tsimring
(OST) equation.

ut + uxxx − η(Hux +Huxxx) + ukux = 0, x ∈ R, t ≥ 0, k ∈ Z+,

u(x, 0) = u0(x),
(1.4)

where H denotes the Hilbert transform:

Hg(x) = P.V.
1
π

∫
g(x− ξ)

ξ
dξ,

u = u(x, t) is a real-valued function and η > 0 is a constant.
Equation (1.4) with k = 1 was derived by Ostrovsky et al. in [17] to describe the

radiational instability of long waves in a stratified shear flow. Recently, Carvajal
and Scialom in [6] considered the IVP (1.4) and proved the local well-posedness
results for given data in Hs, s ≥ 0 when k = 1, 2, 3. They also obtained the global
well-posedness result for data in L2 when k = 1. The earlier well-posedness results
for (1.4) with k = 1 can be found in [1], where for given data in Hs(R), local result
when s > 1/2 and global result when s ≥ 1 have been obtained.

Another model that fits in the class (1.1) is the derivative Korteweg-de Vries-
Kuramoto Sivashinsky equation

ut + uxxx + η(uxx + uxxxx) + uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.5)

where u = u(x, t) is a real-valued function and η > 0 is a constant.
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This equation arises as a model for long waves in a viscous fluid flowing down an
inclined plane and also describes drift waves in a plasma (see [8, 18]). The equation
(1.5) is a particular case of Benney-Lin equation [2, 18]; i.e.,

ut + uxxx + η(uxx + uxxxx) + βuxxxxx + uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.6)

when β = 0.
The IVP associated to (1.5) was studied by Biagioni, Bona, Iorio and Scialom

in [3]. They also determined the limiting behavior of solutions as the dissipation
tends to zero. Biagioni and Linares proved global well-posedness for the IVP (1.6)
for initial data in L2 in [4].

Another example is the Korteweg-de Vries-Burgers equation
ut + uxxx − ηuxx + uux = 0, x ∈ R, t ≥ 0, η > 0,

u(x, 0) = u0(x),
(1.7)

Recently, Molinet and Ribaud considered the IVP (1.7) in [15] and proved that
it is locally well-posed for given data in Hs, s > −1. The equation (1.7) is also
known as the parabolic regularization of the KdV equation with η > 0. Some years
ago, when the interest was to obtain local results for given data in larger Sobolev
spaces, this regularization was used to obtain well-posedness results for η > 0 and
then pass the limit η ↓ 0. However, this limit is a delicate matter.

Now, we state the main results of this work. The first result deals with the local
well-posedness for given data in the Sobolev spaces of negative index.

Theorem 1.1. The IVP (1.1) with η > 0 and Φ(ξ) given by (1.2) is locally well-
posed for any data u0 ∈ Hs(R), s > −3/4.

To prove this theorem we follow the theory developed by Bourgain [5] and Kenig,
Ponce and Vega [11]. The main ingredients in the proof are estimates in the integral
equation associated to an extended IVP that is defined for all t ∈ R (see IVP
(1.12) below). The proof we presented here does not use the Bourgain type space
associated to the linear part of the IVP (1.1); instead it uses the usual Bourgain
space associated to the KdV equation. To carry out this scheme, the Proposition
2.2 plays a fundamental role which permits us to use a bilinear estimate for ∂x(u2)
(see [11]), that is a central part of our arguments.

The result of the Theorem 1.1 improves the known local well-posedness results for
the IVP (1.4) and (1.5) described above. Note that, the value s > −3/4, in the case
of the Korteweg-de Vries (KdV) equation, is sharp in the sense that for s < −3/4,
the IVP associated to the KdV equation is ill-posed. We should mention that, the
lack of conserved quantities in the spaces with regularity below L2, prevents us to
get global solution using the usual technique.

The second result is concerned with the particular case of the IVP (1.1) for
given data in the homogeneous Sobolev space when the Fourier symbol is of the
form Φ(ξ) = |ξ|k − |ξ|k+2, k ∈ Z+.

Theorem 1.2. The IVP (1.1) with η > 0 and Φ(ξ) = |ξ|k − |ξ|k+2, k ∈ Z+, is
locally well-posed for any data u0 ∈ Ḣs(R), s > −1/2.

Although this theorem does not improve the result obtained in Theorem 1.1, it
is interesting on its own because the proof we present here uses different tools, that
are simpler than the ones used in the proof of Theorem 1.1. The main ingredients
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in the proof are the refined local smoothing effect (see (3.4) in Corollary 3.3 below),
and a Strichartz type estimate (see Proposition 4.1 below). Using these estimates
we are able to apply fixed point argument to obtain a local well-posedness result
in the homogeneous Sobolev spaces of negative order without the use of Bourgain
type spaces.

Now we introduce function spaces that will be used for proving Theorem 1.1.
We consider the following IVP associated to the Linear KdV equation

ut + uxxx = 0, x, t ∈ R,
u(0) = u0.

(1.8)

The solution to (1.8) is given by u(x, t) = U(t)u0(x), where the unitary group U(t)
is defined as

Û(t)u0(ξ) = eitξ3
û0(ξ). (1.9)

For s, b ∈ R, we define the space Xs,b as the completion of the Schwartz space
S(R2) with respect to the norm

‖u‖Xs,b
≡ ‖U(−t)u‖Hs,b

:= ‖〈τ〉b〈ξ〉sÛ(−t)u(ξ, τ)‖L2
τ L2

ξ

= ‖〈τ − ξ3〉b〈ξ〉sû(ξ, τ)‖L2
τ L2

ξ,

(1.10)

where û(ξ, τ) is the Fourier transform of u in both space and time variables. The
space Xs,b is the usual Bourgain space for the KdV equation (see [5]).

Note that (1.1) is defined only for t ≥ 0. To use Bourgain’s type space, we should
be able to write the IVP (1.1) for all t ∈ R. For this, we define

η(t) ≡ η sgn(t) =

{
η if t ≥ 0,
−η if t < 0

(1.11)

and write (1.1) in the form

ut + uxxx + η(t)Lu+ uux = 0, x, t ∈ R,
u(0) = u0.

(1.12)

Now we consider the IVP associated to the linear part of (1.12),

ut + uxxx + η(t)Lu = 0, x, t ∈ R,
u(0) = u0.

(1.13)

The solution to (1.13) is given by u(x, t) = V (t)u0(x) where the semigroup V (t) is
defined as

V̂ (t)u0(ξ) = eitξ3+η|t|Φ(ξ)û0(ξ). (1.14)

Observe that, defining Ũ(t) by ̂̃
U(t)u0(ξ) = eη|t|Φ(ξ)û0(ξ), the semigroup V (t)

can be written as V (t) = U(t)Ũ(t) where U(t) is the unitary group associated to
the KdV equation (see (1.9)).

This paper is organized as follows: In Section 2, we prove Theorem 1.1. In
Section 3, we present a refined local smoothing effect when Φ(ξ) = |ξ|k − |ξ|k+2,
k ∈ Z+, in (1.2). In Section 4, we to obtain some Strichartz type estimates. In
Section 5, we prove Theorem 1.2.
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2. Local Well-posedness in Hs for s > −3/4

This section is devoted to supply the proof of the Theorem 1.1. We start by
proving some preliminary results.

2.1. Preliminary estimates.

Proposition 2.1. Let s > −3/4. There exist b′ ∈ (− 1
2 , 0) and εs > 0 such that for

any b ∈ ( 1
2 , b

′ + 1] with 1− b+ b′ ≤ εs, and u, v ∈ Xs,b

‖(uv)x‖Xs,b′ ≤ c‖u‖Xs,b
‖v‖Xs,b

.

The proof of the above proposition can be found in [11].
We consider a cut-off function ψ ∈ C∞(R), such that 0 ≤ ψ(t) ≤ 1,

ψ(t) =

{
1 if |t| ≤ 1,
0 if |t| ≥ 2.

(2.1)

Let us define ψT (t) ≡ ψ( t
T ) and ψ̃T (t) = sgn(t)ψT (t).

The following Proposition plays a central role in the proof of our first main result,
Theorem 1.1. This Proposition allows us to work in the usual Xs,b space associated
to the KdV equation instead of the Bourgain space associated to the IVP (1.12).

Proposition 2.2. Let −1/2 < b′ ≤ 0, T ∈ [0, 1]. Then we have

‖ψ(t)V (t)u0‖Xs,b
≤ c‖u0‖s. (2.2)

If 1/2 < b ≤ b′/3 + 2/3, s ∈ R then

‖ψT (t)
∫ t

0

V (t− t′)(uux)(t′)dt′‖Xs,b
≤ cT 1+b′/2−3b/2‖uux‖Xs,b′ , (2.3)

where c is a constant.

Before proving this proposition, we record the following results.

Lemma 2.3. Let 0 < T ≤ 1, 1/2 < b < 1 and a < 1. Then we have

‖ψT (t)‖Hb
t
≤ c(T 1/2 + T 1/2−b), (2.4)

‖ψT (t) ea|t|‖Hb
t
≤ T 1/2〈 1

T b
〉. (2.5)

|F(|t|ψT (t) ea|t|)(τ)| ≤ cT 2

1 + (τ2 + a2)T 2
, (2.6)

|F(|t| ψ̃T (t) ea|t|)(τ)| ≤ cT 2

1 + (τ2 + a2)T 2
, (2.7)

where c is a constant independent of T and a.

Proof. Using the definition of the space Hb, we have

‖ψT (t)‖Hb
t
≤ c‖ψT ‖L2 + c‖Db

tψT ‖L2 = cT 1/2‖ψ‖L2 + cT 1/2−b‖Db
tψ‖L2 ,

where we used the fact that ĥ(t/T )(τ) = T ĥ(T τ). To prove (2.5), we exploit the
compact support of ψT to get

‖ψT (t) ea|t|‖Hb
t
≤ cT 1/2‖h‖L2 + c‖Db

t (ψT (t) ea|t|)‖L2 ≤ c(T 1/2 + T 1/2−b‖Db
th‖L2),
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where h(t) = ψ(t)eaT |t|. Integrating by parts twice we obtain

|ĥ(τ)| ≤ c

〈τ〉2
,

where, in the case when a < 0, we have used the fact that |x|ex ≤ e, ∀x ≤ 1, in
particular for x = aT . This proves inequality (2.5).

To prove inequality (2.6) we have

F(|t|ψT (t) ea|t|)(τ) = T 2p̂(Tτ) (2.8)

where p(t) = |t|ψ(t)eaT |t|. Integrating by parts, we obtain

|p̂(τ)| ≤ c

|τ − iaT |k
, k = 0, 1, 2.

Therefore,

|p̂(τ)| ≤ c

1 + τ2 + a2T 2
. (2.9)

Combining (2.8) and (2.9) yields the desired inequality (2.6). The proof of (2.7) is
similar. �

Remark. It’s not possible to obtain similar inequalities as (2.4) and (2.5) for ψ̃T (t)
because of the discontinuity.

In the following estimates, without loss of generality, we suppose that η = 1.

Lemma 2.4. Let −1/2 < b′ ≤ 0, 1/2 < b ≤ b′/3 + 2/3, T ∈ (0, 1], a < 1. Then

‖ψT (t)
∫ t

0

e|t−t′|af(t′)dt′‖Hb
t
≤ c T 1+b′/2−3b/2‖f‖Hb′ , (2.10)

where c is a constant independent of a, f and T .

Proof. It is sufficient to prove Lemma 2.4 when |a| ≤ 1. In fact, let us suppose that
Lemma 2.4 has been established in the case |a| ≤ 1. Then when a < −1, we use
the change of variable t′a ≡ t′, to obtain

ψT (t)Ia(t) := ψT (t)
∫ t

0

e|t−t′|af(t′)dt′ =
1
a
ψaT (at)

∫ at

0

e|at−t′|fa(t′)dt′ =
1
a
J(at).

(2.11)

where fa(t′) = f(t′/a) and J(t) = ψaT (t)
∫ t

0
e|t−t′|fa(t′)dt′. Note that for a < −1,

‖J(t)‖Hb ≤ c|aT |1+b′/2−3b/2‖fa‖Hb′ ≤ c|a|3/2−b′/2−3b/2T 1+b′/2−3b/2‖f‖Hb′ .
(2.12)

Since b′ + b > 0 and |a| > 1, from (2.11) and (2.12) we obtain

‖ψT (t)Ia(t)‖Hb =
1
|a|
‖J(at)‖Hb

≤ c
〈a〉b

|a|3/2
‖J(t)‖Hb

≤ c

|a|(b′+b)/2
T 1+b′/2−3b/2‖f‖Hb′ .

Hence, we arrived at (2.10) in this case too.
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From here onwards, we consider |a| ≤ 1. Now let b > 1/2, then we have

Ia(t) :=
∫ t

0

e|t−t′|af(t′)dt′ =
∫ t

0

e(t−t′) sgn(t)af(t′)dt′

= ea|t|
∫ t

0

e− sgn(t)at′
∫

R
eit′τ f̂(τ)dτdt′

= ea|t|
∫

R
f̂(τ)

∫ t

0

e(iτ−sgn(t)a)t′dt′dτ

= ea|t|
∫

R
f̂(τ)

e(iτ−sgn(t)a)t − 1
iτ − sgn(t)a

dτ

=
∫

R
f̂(τ)

eiτt − ea|t|

iτ − sgn(t)a
dτ.

We have
1

sgn(t)a− iτ
= sgn(t)

a

a2 + τ2
+ i

τ

a2 + τ2
.

If we define

pa(t) =
a

a2 + t2
, qa(t) =

t

a2 + t2

and replace τ by t′ we obtain

Ia(t) = sgn(t)
∫

R
pa(t′)

[
ea|t| − eit′t

]
f̂(t′)dt′ + ic

∫
R
qa(t′)

[
ea|t| − eit′t

]
f̂(t′)dt′

:= Ia,1(t) + Ia,2(t).
(2.13)

Estimate for Ia,1. We consider two cases.
Case 1: |t′| > 1/T . Let f̂(t′) ≡ f̂(t′)χ{|t′|>1/T}. From the definition of Ia,1 we
have

ψT (t)Ia,1(t) = a sgn(t)ψT (t)
∫

R

f̂(t′)
a2 + t′2

[
ea|t| − eitt′

]
dt′ = ah

( t

T

)
, (2.14)

where h(t) = sgn(t)ψ(t)
∫

R{f̂(t′)/(a2 + t′
2)}

[
eaT |t| − eiT tt′

]
dt′. We have

ĥ(t)(τ) =
∫

R

f̂(t′)
a2 + t′2

K(a, T, τ, t′)dt′, (2.15)

where

K(a, T, τ, t′) =
∫

R
sgn(t)ψ(t)

[
eaT |t| − eiT tt′

]
e−itτdt.

Integrating by parts,

|K(a, T, τ, t′)| ≤ c
〈t′〉
〈τ〉

, and |K(a, T, τ, t′)| ≤ c
〈t′〉
〈τ〉2

+ c
〈t′〉2

〈τ〉2
≤ c

〈t′〉2

〈τ〉2
.

Hence

|K(a, T, τ, t′)| ≤ c
〈t′〉2b

〈τ〉2b
.
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Therefore, from (2.15) we obtain

|ĥ(t)|(τ) ≤ c

〈τ〉2b

∫
|t′|>1/T

|f̂(t′)|
a2 + t′2

〈t′〉2bdt′ ≤ c
T 3/2+b′−2b

〈τ〉2b
‖f‖Hb′ .

Now, using (2.14) we have

‖ψT (t)Ia(t)‖Hb = |a| ‖h
( t

T

)
‖Hb ≤ |a|T 1/2−b‖h(t)‖Hb ≤ cT 3/2+b′−2bT 1/2−b‖f‖Hb′ .

Hence

‖ψT (t)Ia(t)‖Hb ≤ cT 2+b′−3b‖f‖Hb′ ≤ cT 1+b′/2−3b/2‖f‖Hb′ .

Case 2: |t′| ≤ 1/T . Let f̂(t′) ≡ f̂(t′)χ{|t′|≤1/T} and as earlier ψ̃T (t) =
sgn(t)ψT (t). We have

F(ψT (t)Ia,1(t))(τ) =
∫

R
e−itτ ψ̃T (t)

∫
R
pa(t′)

[
ea|t| − eit′t

]
f̂(t′)dt′dt

=
∫

R
pa(t′)f̂(t′)

∫
R
ψ̃T (t)e−itτ

[
ea|t| − eit′t

]
dtdt′

=
∫

R
pa(t′)f̂(t′){F

(
ψ̃T (t) ea|t|)(τ)−F

(
ψ̃T (t)

)
(τ − t′)}dt′

=
∫

R
pa(t′)f̂(t′){F

(
ψ̃T (t) ea|t|)(τ)−F

(
ψ̃T (t) ea|t|)(τ − t′)}dt′

+
∫

R
pa(t′)f̂(t′){F

(
ψ̃T (t) ea|t|)(τ − t′)−F

(
ψ̃T (t)

)
(τ − t′)}dt′

:= Ia,11(τ) + Ia,12(τ).

Since |pa(t′)| ≤ 1/|t′|, we can estimate the term Ia,11(τ) as in [9]. Therefore we will
estimate only the term Ia,12(τ).

Let us define h(t′, τ) := F
(
ψ̃T (t)[ea|t| − 1]

)
(τ − t′), then we have

h(t′, τ) =
∫ a

0

F
(
|t| ψ̃T (t) es|t|)(τ − t′)ds. (2.16)

From (2.7) we have that

|F
(
|t| ψ̃T (t) es|t|)(τ − t′)| ≤ cT 2

(1 + (|τ − t′|+ |s|)T )2
, (2.17)

where c is independent of s, τ , t′ and T .
Observe that 0 ≤ s ≤ a if a ≥ 0 and a ≤ s ≤ 0 if a ≤ 0. Thus we obtain

|h(t′, τ)| ≤cT 2

∫ |a|

0

1
(1 + (|τ − t′|+ |s|)T )2

ds

= cT 2 |a|
(1 + |τ − t′|T )(1 + |τ − t′|T + |a|T )

.

As |Tt′| ≤ 1, we have
1

1 + |τ − t′|T
≤ 2

1 + |τ |T
.

Hence

|h(t′, τ)| ≤ cT 2 |a|
(1 + |τ |T )2

.
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Using the Hölder’s inequality we obtain

|Ia,12(τ)| = |
∫

R
pa(t′)f̂(t′)h(t′, τ)dt′|

≤ ‖f‖Hb′

( ∫
|t′|≤1/T

〈t′〉−2b′ |h(t′, τ)|2

(a2 + t′2)2
dt′

)1/2

≤ cT 2

(1 + |τ |T )2
‖f‖Hb′

( ∫
|t′|≤1/T

(1 + |t′|−2b′)dt′
)1/2

≤ cT 3/2+b′

(1 + |τ |T )2
‖f‖Hb′ .

(2.18)

Finally, we arrive at( ∫
R
(1 + |τ |)2b|Ia,12(τ)|2 dτ

)1/2

≤ cT 3/2+b′ ‖f‖Hb′

( ∫
R

1 + |τ |2b

(1 + |τ |T )4
dτ

)1/2

≤ cT 3/2+b′ ‖f‖Hb′

( 1
T 1/2

+
1

T b+1/2

)
≤ cT 1−b+b′ ‖f‖Hb′ .

Therefore, in this case we have

‖ψT Ia,1‖Hb ≤ cT 1−b+b′ ‖f‖Hb′ .

Estimate for Ia,2. The estimate for Ia,2 is similar to that of Ia,1, exchanging pa

by qa and ψ̃T (t) by ψT (t). So, we omit its calculation. �

In the following remark we present improvement of the estimate obtained in the
Lemma 2.4 in some particular cases. Although, this improvement does not help to
improve our main result, it will be of interest on its own.

Remark. (1) The proof in the case |t′| ≤ 1/T is valid for all a < 1.
(2) We know that

Ĥg(η) = −i sgn(η) ĝ(η) and q̂a(t) = −i sgn(t) ea|t|.

Thus

Ia,2(t) = −ψ̃T (t)q̂a(t)
∫

R
qa(t′)f̂(t′)dt′ +

√
2πψ̃T (t)F−1H(qaf̂ )(t)

= ψ̃T (t)F−1(qa)(t)
∫

R
qa(t′)f̂(t′)dt′ +

√
2πψ̃T (t)F−1H(qaf̂ )(t),

where ψ̃T (t) = sgn(t)ψT (t). Consequently,

Îa,2(τ) = ̂̃
ψT ? qa(τ)

∫
R
qa(t′)f̂(t′)dt′ +

√
2π ̂̃
ψT ?H(qaf̂ )(τ)

= ̂̃
ψT ? qa(τ)

∫
R
qa(t′)f̂(t′)dt′ +

√
2πH(̂̃

ψT ) ? (qaf̂ )(τ).

Similarly,

Îa,1(τ) =
1
i
ψ̂T ? qa(τ)

∫
R
qa(t′)f̂(t′)dt′ +

√
2π
i

H(ψ̂T ) ? (qaf̂ )(τ).

(3) If 1/2 < b < b′/3 + 2/3, then 1− b+ b′ > 3/4 + b′/2− b > 1 + b′/2− 3b/2 > 0.
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(4) If |a| > 1, then |qa(t′)| ≤ c/〈t′〉, hence∫
R
|qa(t′)f̂(t′)|dt′ ≤ c

∫
R

|f̂(t′)| 〈t′〉1−b

〈t′〉 〈t′〉1−b
dt′ ≤ c‖f‖Hb−1

∥∥∥ 1
〈t′〉b

∥∥∥
L2
,

and therefore we obtain a more refined estimate than (2.19).
(5) In the case |t′| > 1/T we can to obtain a better estimate for Ia,2 because ψT is
regular (using the inequalities (2.4) and (2.5)). In fact, let f̂(t′) ≡ f̂(t′)χ{|t′|>1/T}.
We have that

‖ψT (t)Ia,2(t)‖Hb
t
≤ ‖ψT (t)e|t|a‖Hb

t

∣∣∣ ∫
R
qa(t′)f̂(t′)dt′

∣∣∣+‖ψT (t)‖Hb
t
‖F−1(qaf̂ )(t)‖Hb

t
.

Since |t′| > 1/T implies |t′| ' 〈t′〉, using the Cauchy-Schwartz inequality we obtain

∫
R
|qa(t′)f̂(t′)|dt′ ≤

∫
|t′|>1/T

|f̂(t′)|
|t′|

dt′

.
∫
|t′|>1/T

|f̂(t′)| | t′|−b′

| t′| | t′|−b′
dt′

≤ ‖f‖Hb′

( ∫
|t′|>1/T

dt′

|t′|2(1+b′)

)1/2

. T 1/2+b′ ‖f‖Hb′ .

(2.19)

Similarly,∫
R
|qa(t′)f̂(t′)|dt′ ≤ c‖f‖Hb′

( ∫
|t′|>1/T

dt′

|t′|2b′(a2 + t′2)

)1/2

≤ c
1

|a|1/2+b′

( ∫
R

dt′

|t′|2b′(1 + t′2)

)1/2

‖f‖Hb′

≤ c
1

|a|1/2+b′
‖f‖Hb′ .

(2.20)

Hence from (2.19) and (2.20) we obtain∫
R
|qa(t′)f̂(t′)|dt′ ≤ c

( T

|a|

)1/4+b′/2

‖f‖Hb′ , (2.21)

and

‖F−1(qaf̂ )(t)‖2
Hb

t
.

∫
|t′|>1/T

|f̂(t′)|2

〈t′〉2(1−b)
dt′

.
∫
|t′|>1/T

|f̂(t′)|2

〈t′〉−2b′ |t′|2(1−b+b′)
dt′

≤ T 2(1−b+b′)‖f‖2
Hb′ .

So from inequality (2.4) we have

‖ψT (t)‖Hb
t
‖F−1(qaf̂ )(t)‖Hb

t
≤ cT 1/2−b T (1−b+b′)‖f‖Hb′ ≤ cT 3/2−2b+b′‖f‖Hb′ .
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On the other hand, if a < −1 from inequalities (2.5) and (2.21) we obtain

‖ψT (t) ea|t|‖Hb
t

∫
R
|qa(t′)f̂(t′)|dt′

≤ c
( T

|a|

)1/2(
1 +

1
T b

)
(1 + |a|b)

( T

|a|

)1/4+b′/2

‖f‖Hb′

≤ c
( T

|a|

)3/4+b′/2(
1 +

1
T b

)
(1 + |a|b)‖f‖Hb′

≤ cT 3/4+b′/2−b
(
1 +

1
|a|3/4+b′/2−b

)
‖f‖Hb′

≤ cT 3/4+b′/2−b‖f‖Hb′ .

Now if |a| < 1 using the inequality (2.5) we obtain:

‖ψT (t) ea|t|‖Hb
t

∫
R
|qa(t′)f̂(t′)|dt′ ≤ cT 1/2+b′‖f‖Hb′T 1/2

(
1 +

1
|T |b

)
≤ cT 1/2+b′ T 1/2−b‖f‖Hb′

≤ cT 1−b+b′‖f‖Hb′

≤ cT 3/4+b′/2−b‖f‖Hb′ .

Therefore, in this case

‖ψT (t)Ia(t)‖Hb
t
≤ cT 3/4+b′/2−b ‖f‖Hb′ ,

where c is a constant independent of a, f and T .

Now we prove Proposition 2.2 which plays a crucial role in the proof of the first
main result of this work.

Proof of Proposition 2.2. To prove (2.2), we use the estimate (2.5) with T = 1 and
a = Φ(ξ) < 1, to obtain

‖ψ(t) eηΦ(ξ)|t|‖2
Hb

t
≤ c(η),

where c(η) is a constant. Therefore,

‖ψT (t)V (t)u0‖Xs,b
≤ c(η)

( ∫
R
〈ξ〉2s|û0(ξ)|2dξ

)1/2

≤ c(η)‖u0‖Hs.

Now, we move to prove (2.3). From definition (1.10) of the Xs,b norm, we have

‖ψT (t)
∫ t

0

V (t− t′)(uux)(t′)dt′‖Xs,b

= ‖U(−t)ψT (t)
∫ t

0

V (t− t′)(uux)(t′)dt′‖Hs,b

= ‖〈τ〉b〈ξ〉sFξτ

[
ψT (t)

∫ t

0

U(−t′)Ũ(t− t′)(uux)(t′)dt′
]
‖L2

τ L2
ξ

= ‖〈ξ〉s‖ψT (t)
∫ t

0

e−it′ξ3
e|t−t′|Φ(ξ)ûux(t′, ξ)dt′‖Hb

t
‖L2

ξ
.

(2.22)

If we fix the variable ξ and suppose fξ(t′) = e−it′ξ3
ûux(t′, ξ) the estimate (2.3)

follows from (2.22) using (2.10). �
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2.2. Proof of the Theorem 1.1.

Proof. As discussed in the introduction, we will use Bourgain’s space associated to
the KdV group to prove well-posedness of (1.1); therefore we need to consider that
(1.12) is defined for all t. Now consider (1.12) in its equivalent integral form

u(t) = V (t)u0 −
∫ t

0

V (t− t′)(uux)(t′)dt′, (2.23)

where V (t) is the semigroup associated with the linear part given by (1.14). Note
that, if for all t ∈ R, u(t) satisfies

u(t) = ψ(t)V (t)u0 − ψT (t)
∫ t

0

V (t− t′)(uux)(t′)dt′,

then u(t) satisfies (2.23) in [−T, T ]. We define an application

Ψ(u)(t) = ψ(t)V (t)u0 − ψT (t)
∫ t

0

V (t− t′)(uux)(t′)dt′.

Let s > −3/4, and u0 ∈ Hs. Let b and b′ be two numbers given by Proposition 2.1,
such that θ ≡ min{1 + b′/2− 3b/2, 3/4 + s/3− b} > 0. For M > 0, let us define a
ball

XM
s,b = {u ∈ Xs,b : ‖u‖Xs,b

≤M}.

We will prove that there exists M such that the application Ψ maps XM
s,b into XM

s,b

and is a contraction. Let u ∈ XM
s,b. Then using Propositions 2.1, 2.2 and the

definition of XM
s,b we obtain

‖Ψ(u)‖Xs,b
≤ c‖u0‖s + cT θ‖(uux)‖Xs,b′ ≤

M

4
+ cT θM2 ≤ M

2
,

where we have chosen M = 4c‖u0‖Hs and 0 < T < 1 such that cT θM = 1/4.
Therefore, Ψ maps XM

s,b into itself. With a similar argument we can prove that Ψ
is a contraction. Hence Ψ has a unique fixed point u which is a solution to (1.1)
such that u ∈ C([−T, T ],Hs).

The rest of the proof follows in an analogous way to [11], so we omit the details.
�

3. A refined local smoothing effect

In this section we prove the following local smoothing effect for the semigroup
Vk(t) defined by (1.14) with Φ(ξ) = |ξ|k−|ξ|k+2. Similar results can also be obtained
for more general Φ as in (1.2). Our proof follows the ideas of [6].

Theorem 3.1. Let T > 0, u0 ∈ Lq, 0 ≤ s < (k + 3 − p)/p + 1/p1 and p ≥ 2,
p1 ≥ 2, then

‖Ds
xVk(t)u0‖Lp

T L
p1
x
≤ c(η)

(k + 3− p(s+ 1) + p/p1)1/p
(T 1/pe2ηT + T ε) ‖u0‖Lq , (3.1)

where ε = ε(p, k, s, p1) = (k+3−p(s+1))/(k+2)+p/((k+1)p1) and 1/p+1/q = 1.

Corollary 3.2. Let u0 ∈ Lq, T > 0, 2 ≤ p < k + 3, and 0 ≤ s < (k + 3 − p)/p,
then

‖Ds
xVk(t)u0‖Lp

T L∞x
≤ c(η)

(k + 3− p(s+ 1))1/p
(T 1/pe2ηT + T ε0) ‖u0‖Lq , (3.2)
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where ε0 = ε(p, k, s) = (k + 3− p(s+ 1))/(k + 2) and 1/p+ 1/q = 1.

In particular, the case when p = 2 is interesting, which is stated as follows.

Corollary 3.3. (1) If u0 ∈ L2, p1 ≥ 2, 0 ≤ s < 1 + (k − 1)/2 + 1/p1, 0 < T < 1
and γ = min{1/2, ε(2, k, s, p1)} then

‖Ds
xVk(t)u0‖L2

T L
p1
x
≤ c(η)T γ

(1 + (k − 1)/2 + 1/p1 − s)1/2
‖u0‖L2 . (3.3)

(2) If u0 ∈ Ḣs, −k/2 < s ≤ 0, 0 < T < 1 and γ = min{1/2, ε(2, k, 1− s, p1)} then

‖DxVk(t)u0‖L2
T L

p1
x
≤ c(η)T γ

((k − 1)/2 + 1/p1 + s)1/2
‖Dsu0‖L2, (3.4)

in the following cases:
(i) when −(k − 1)/2 ≤ s ≤ 0 and 2 ≤ p1.
(ii) when −k/2 < s < −(k − 1)/2 and 2 ≤ p1 ≤ (−s− (k − 1)/2)−1.

In the proof of Theorem 3.1 we will use the following result.

Proposition 3.4. Let p ≥ 2, and 1/p+ 1/q = 1, then

‖û‖Lp ≤ c‖u‖Lq , (3.5)

The proof of the above corollary can be found in [13, Corollary 1.43].

Proof of Theorem 3.1. We can assume that u0 ∈ S(R). We consider a cut-off func-
tion ϕ ∈ C(R \ {0}), 0 ≤ ϕ ≤ 1 defined by

ϕ(t) =

{
1 if 0 ≤ t ≤ 1,
0 if t < 0 or t ≥ 2.

(3.6)

Let us define ϕT (t) ≡ ϕ( t
T ), then

‖Ds
xVk(t)u0(x)‖Lp

T L
p1
x
≤ ‖ϕT (t)Ds

xVk(t)u0(x)‖Lp
t L

p1
x
.

Let 1/p1 +1/q1 = 1, using duality it is enough to prove for u0 in Lq and g in Lq
tL

q1
x

J ≡
∣∣∣ ∫

R2
ϕT (t)Ds

xVk(t)u0(x)g(x, t)dx dt
∣∣∣ ≤ c‖u0‖Lq‖g‖Lq

t L
q1
x
.

Using (1.14), we have

Ds
xVk(t)u0(x) = i

∫
R
|ξ|s eitξ3+ηtΦ(ξ)+ixξû0(ξ)dξ.

Therefore, by Fubini’s theorem, Proposition 3.4 and Hölder’s inequality we obtain

J ≤ c‖u0‖Lq‖Lg‖Lq ,

where Lg(ξ) is defined by

Lg(ξ) ≡ |ξ|s
∣∣ ∫

R2
ϕT (t)g(x, t)eitξ3+ηtΦ(ξ)+ixξdx dt

∣∣
and

|Lg(ξ)| ≤ |ξ|s
∫

R
ϕT (t)eηtΦ(ξ)|F−1(g(·, t))(ξ)|dt. (3.7)

We have

‖Lg(ξ)‖Lq(R) ≤ ‖Lg(ξ)‖Lq(|ξ|≤2) + ‖Lg(ξ)‖Lq(|ξ|>2) ≡ J1 + J2. (3.8)
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In J1 by (3.7), Minkowski and Hölder’s inequalities and Proposition (3.4) we obtain

J1 ≤c
∫

R
ϕT (t)‖eηtΦ(ξ)‖Lr1 (|ξ|≤2)‖F−1(g(·, t))(ξ)‖Lp1 (|ξ|≤2)dt

≤ce2ηT ‖ϕT ‖Lp ‖g‖Lq
t L

q1
x
≤ ce2ηTT 1/p ‖g‖Lq

t L
q1
x
,

(3.9)

where c is a constant, 1/q = 1/r1 + 1/p1 and 1/p1 + 1/q1 = 1. Similarly for J2 we
have

J2 ≤
∫

R
ϕT (t)‖ ξs eηtΦ(ξ)‖Lr1 (|ξ|>2)‖g(·, t)‖L

q1
x
dt.

For t > 0, we have

‖ |ξ|se−ηt|ξ|k+2/2‖Lr1 (|ξ|>2) ≤
c(η)

ts/(k+2)+1/((k+2)r1)
.

Therefore, for 0 ≤ s < (k + 3− p)/p+ 1/p1 we obtain

J2 ≤ c(η)
∥∥∥ ϕT (t)
ts/(k+2)+1/((k+2)r1)

∥∥∥
Lp
‖g‖Lq

t L
q1
x
≤ c(η)T ε ‖g‖Lq

t L
q1
x
, (3.10)

where ε = (k + 3− p(s+ 1))/(k + 2) + p/((k + 1)p1). From (3.8), (3.9) and (3.10)
we obtain

‖Lg‖Lq ≤ c(η)
(k + 3− p(s+ 1) + p/p1)1/p

(T 1/pe2ηT + T ε) ‖g‖Lq
t L

q1
x
.

�

4. Some Strichartz type estimates

Proposition 4.1. Let 2 ≤ p, k ≥ 1, cp,k = p−2
2p(k+2) , 0 < T < 1, s ≤ 0 and

1
r

+
s

(k + 2)
− cp,k > 0 .

Then

‖Vk(t)u0‖Lr
T Lp

x
≤ c(η, sqr0)T

{ 1
r + s

(k+2)−cp,k}‖u0‖Hs,

where 1/q + 1/p = 1, r0 = 2/(2− q).

Proof. Let Φ(ξ) = |ξ|k − |ξ|k+2. By (3.5) we have

‖Vk(t)u0‖Lr
T Lp

x
≤ c ‖V̂k(t)u0‖Lr

T Lq
ξ

≤ c ‖eηtΦ(ξ)û0‖Lr
T Lq

ξ(|ξ|≤2) + c‖eηtΦ(ξ)û0‖Lr
T Lq

ξ(|ξ|>2)

≡ J1 + J2.

In J1, using Hölder’s inequality we have

J1 ≤ c3−seηTT 1/r.
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To estimate J2, by Hölder’s inequality we obtain∫
|ξ|>2

eqηtΦ(ξ)|û0(ξ)|qdξ

≤
∫
|ξ|>2

e−qηt|ξ|k+2/2(1 + |ξ|)−sq(1 + |ξ|)sq|û0(ξ)|qdξ

≤ ‖e−qηt|ξ|(k+2)/2(1 + |ξ|)−sq‖Lr0 (|ξ|>2)‖u0‖q
Hs

≤ c(η)
[ 1
t1/((k+2)r0)

+
1

t1/((k+2)r0)−sq/(k+2)

( ∫
R
e−|y|

(k+2)
|y|−sqr0dy

)1/r0
]
‖u0‖q

Hs ,

where r0 = 2/(2− q). Therefore

J2 ≤ c(η, sqr0)
∥∥ 1
t1/((k+2)r0q)−s/(k+2)

∥∥
Lr

T

‖u0‖Hs ≤ c(η, sqr0)T
1
r + s

(k+2)−cp,k‖u0‖Hs ,

where cp,k = p−2
2p(k+2) . �

Corollary 4.2. Let 0 < T < 1, s ≤ 0, 1 < r < 2(k + 2)/(1− 2s). Then

‖Vk(t)u0‖Lr
T L∞x ≤ c(η, s)T 1/r−(1−2s)/(2(k+2))‖u0‖Hs .

Proposition 4.3. Let u0 ∈ L2. Then

‖Vk(t)u0‖L∞T L2
x
≤ eηT ‖u0‖L2 .

Proof. Using Plancherel identity

‖Vk(t)u0‖L2
x

= ‖eηt(|ξ|k−|ξ|k+2)û0(ξ)‖L2
ξ
≤ eηT ‖u0‖L2 ,

where we used the estimate eηt(|ξ|k−|ξ|k+2) ≤ eηT . �

In the following section we give an application of the above results.

5. Proof of Theorem 1.2

This section is devoted to give proof of the local well-posedness result for given
data in homogeneous Sobolev space with regularity below L2. We consider the IVP

∂tu+ ∂3
xu+ ηLk(u) + u∂xu = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(5.1)

which is a special case of (1.1) with Fourier symbol Φ(ξ) = |ξ|k − |ξ|k+2.
To prove Theorem 1.2, we need the following proposition.

Proposition 5.1. Let 0 ≤ −s < 1/2. If u ∈ L2/(1−2s), then

‖Ds
x(u)‖L2 ≤ c‖u‖L2/(1−2s) . (5.2)

If u ∈ L1 ∩ L2, then

‖Ds
x(u)‖L2 ≤ c(‖u‖L1 + ‖u‖L2). (5.3)

Proof. The inequality (5.2) follows using the Hardy, Sobolev, Littlewood inequality
and

̂( 1
|ξ|1+s

)
(η) =

1
|η|−s

.
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The inequality (5.3) follows from

‖Ds
x(u)‖2

L2 =
∫
|η|<1

|û(η)|2

|η|−2s
dη +

∫
|η|≥1

|û(η)|2

|η|−2s
dη.

�

Now we are in position to supply proof of our second main result.

Proof of Theorem 1.2. Now let u0 ∈ Ḣs, with 0 ≤ −s < 1/2. For 0 < T < 1, define
a ball

Za,T = {w ∈ C([0, T ], Ḣs); |||w|||T ≤ a},

where

|||w|||T = ‖w‖Ḣs + ‖wx‖L2
T L

p1
x

+ T
{ q1−2

2q1(k+2)−
1
2−

s
k+2}‖w‖L2

T L
q1
x
,

−1/s ≤ p1 <∞, q1 ≥ 2, 1/p1 + 1/q1 = (1− 2s)/2 and p1 is chosen as in inequality
(3.4) of Corollary 3.3. Using Corollary 3.3 and Proposition 4.1 we obtain

|||Vk(t)u0|||T ≤ c‖Ds
x(u0)‖L2 . (5.4)

Also, using the inequality (5.2) we obtain∫ T

0

‖Ds
x(vvx)‖L2

x
≤ c

∫ T

0

‖vvx‖L
2/(1−2s)
x

≤ c‖vx‖L2
T L

p1
x
‖v‖L2

T L
q1
x

≤ cT
{
− q1−2

2q1(k+2)+
1
2+ s

k+2

}
a2.

(5.5)

Now, define an application

Ψ(v)(t) = Vk(t)u0 −
∫ t

0

Vk(t− τ)vvx(τ)dτ,

where Vk(t) is the evolution operator defined in (1.14) with Φ(ξ) = |ξ|k − |ξ|k+2.
With the help of the inequalities (5.4) and (5.5), it can be shown that the appli-
cation Ψ maps Za,T into Za,T and is a contraction considering a = 2c‖Ds

x(u0)‖L2 ,

and cT

{
− q1−2

2q1(k+2)+
1
2+ s

k+2

}
a < 1/2. The rest of the proof follows from a standard

argument. �

Remark. If we use the inequality (5.3) we can also take the following space in the
proof of the Theorem 1.2

Za,T = {w ∈ C([0, T ], Ḣs); |||w|||T ≤ a},

where

|||w|||T = ‖w‖Ḣs + ‖wx‖L2
T L

p1
x

+ ‖wx‖L2
T L2

x
+ T

{ q1−2
2q1(k+2)−

1
2−

s
k+2}‖w‖L2

T L
q1
x

+ T {−
1
2−

s
k+2}‖w‖L2

T L2
x
,

−1/s < p1 < ∞, q1 ≥ 2, 1/p1 + 1/q1 = 1/2 and p1 is chosen as in Corollary 3.3
inequality (3.4). By Corollary 3.3 and Proposition 4.1 we obtain

|||Vk(t)u0|||T ≤ c‖Ds
x(u0)‖L2 .
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Then using (5.3),∫ T

0

‖Ds
x(vvx)‖L2

x
≤c

∫ T

0

(‖vvx‖L1
x

+ ‖vvx‖L2
x
)

≤ c‖vx‖L2
T L2

x
‖v‖L2

T L2
x

+ c‖vx‖L2
T L

p1
x
‖v‖L2

T L
q1
x

≤ c T
{

1
2+ s

k+2

}
a2 + cT

{
− q1−2

2q1(k+2)+
1
2+ s

k+2

}
a2

≤ cT
{
− q1−2

2q1(k+2)+
1
2+ s

k+2

}
a2.
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Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia Cidade
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