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PROBLEMS WITHOUT INITIAL CONDITIONS FOR
DEGENERATE IMPLICIT EVOLUTION EQUATIONS

MYKOLA BOKALO, YURIY DMYTRYSHYN

Abstract. We study some sufficient conditions for the existence and unique-

ness of a solution to a problem without initial conditions for degenerate implicit

evolution equations. We also establish a condition of Bohr’s and Stepanov’s
almost periodicity of solutions for this problem.

1. Introduction

Problems for an implicit evolution equation of the form(
Bu(t)

)′ +A
(
t, u(t)

)
= f(t), t ∈ S, (1.1)

where A(t, ·) and B are operators from a Banach space V to its dual V ′, S is
an interval in R, sometimes known as Sobolev equation (see, e.g., [1, 11]), has
been studied extensively by many authors. See, for example, [1]-[14] and references
therein. Note that in the case where B is linear and A is linear or nonlinear, the
monographs by Showalter [12, 14] give many sufficient conditions to existence and
uniqueness of solutions of the Cauchy problem for equation (1.1).

More recently in the papers [6, 7] the Cauchy problem for the inclusion of the
form (1.1) was considered as A may be set-valued. The existence of almost periodic
solutions of abstract differential equations of the type (1.1) (when B = I) has been
studied in several works; see for example [5, 8, 10, 15]. A problem without initial
conditions for the equation of the form (1.1) (when B = I and A is almost linear)
was investigated in [13, 14] in the class of integrable functions on (−∞, T ), T ∈ R.
In [2] the similar problem was considered (when B = I and A is nonlinear) in the
class of locally integrable functions on (−∞, T ].

In this paper, we generalize the results of [2] and [10] for the case of degenerate
implicit equation (1.1), that is, when B may vanish on non-zero vectors. We obtain
sufficient conditions to existence (Theorems 3.3, 3.5) and uniqueness (Theorem 3.1)
of solutions of a problem without initial conditions for (1.1) independent of an
additional assumption on the behavior of the solution and data-in at −∞. We also
establish the existence of periodic (Theorem 3.8) and almost periodic by Bohr and
Stepanov (Theorem 3.13) solutions of (1.1).
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We shall introduce here some of the notions that we shall use hereafter. We
denote by ‖ · ‖X the norm (seminorm) of the norm (seminorm) space X and by
(·, ·)Y the scalar product in the Hilbert space Y . By X ′ we denote the dual space
of X. The duality pairing between X and X ′ is denoted by 〈·, ·〉X . By Lq

loc(S;X),
where q ∈ [1,+∞) and S is an unbounded connected subset of R, we denote the
space of (equivalence classes of) measurable functions in S, with values in X such
that its restrictions on any compact K ⊂ S belong to Lq(K;X). We denote by
D ′(S;X) the space of Xw valued distributions on intS, which we regard extended
on all S by zero. It is known that the space Lq

loc(S;X) can be identified with some
subspace of D ′(S;X). For v ∈ Lq

loc(S;X), we denote by v′ the derivative in the
sense of D ′(S;X) [4]. Throughout the paper the symbol ↪→ means a continuous
imbedding.

Our paper is organized as follows. Section 2 is devoted to some preliminary facts
needed in the sequel. In Section 3 we state a problem and formulate main results.
We prove our main results in Section 4. The last section is devoted to a simple
example of applications of our results.

2. Preliminary results

Let V be a separable reflexive Banach space. Assume that B : V → V ′ is a linear,
continuous, symmetric (i.e., 〈Bv1, v2〉V = 〈Bv2, v1〉V ∀ v1, v2 ∈ V ) and monotone
(i.e., 〈Bv, v〉V > 0 ∀ v ∈ V ) operator. Then 〈B·, ·〉V is a semiscalar product and
‖ · ‖VB := 〈B·, ·〉1/2

V is a seminorm on V . We denote the completion of the seminorm
space {V , ‖ · ‖VB} by VB and the dual Hilbert space by V ′B. Note that V ↪→ VB
is dense. By restriction of functionals we have V ′B ↪→ V ′. The operator B has a
unique continuous linear extension B : VB → V ′B. The scalar product on V ′B satisfies

(w,Bv)V ′
B

= 〈w, v〉V , w ∈ V ′B, v ∈ V.

Hence, taking w = Bv,

‖Bv‖V ′
B

= ‖v‖VB , v ∈ VB. (2.1)

We define the norm on the range of B : V → V ′ by

‖w‖W := inf{‖v‖V : v ∈ V, Bv = w}, w ∈ RgB.

The normed linear space W = {RgB, ‖ · ‖W } is a reflexive Banach space. Note
that W ↪→ V ′B. These results are due to the books by Showalter [12, 14].

Throughout the rest of this paper S := R or S := (−∞, T ], where T < +∞,
unless the contrary is explicitly stated.

Lemma 2.1. Let v ∈ Lp
loc(S;V ), (Bv)′ ∈ Lp′

loc(S;V ′), where p ∈ [2;+∞) and
p′ = p/(p−1). Then v ∈ C(S;VB) and the function ‖v(·)‖VB is absolutely continuous
on each closed subinterval of S. Furthermore,

1
2
d

dt
‖v(t)‖2

VB =
〈(
Bv(t)

)′
, v(t)

〉
V

for a.e. t ∈ S. (2.2)

Proof. Let t1, t2 ∈ S be any numbers such that t1 < t2. In view of the assumptions
we have v ∈ Lp(t1, t2;V ) and (Bv)′ ∈ Lp′(t1, t2;V ′). With the same proof as that of
[14, Proposition 1.2, p. 106] we obtain v ∈ C

(
[t1, t2];VB

)
, the function t 7→ ‖v(t)‖VB

is absolutely continuous on [t1, t2] and (2.2) holds for a.e. t ∈ [t1, t2]. Since t1, t2 ∈ S
are arbitrary, the conclusion of Lemma 2.1 follows. �
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Lemma 2.2. Let 1 < p < +∞. Assume that the inclusion V ↪→ VB is compact
and define

Up := {u ∈ Lp
loc(S;V ) : (Bv)′ ∈ Lp′

loc(S;V ′)}.
Then the imbedding Up ↪→ Lp

loc(S;VB) is compact.

Proof. Let us first prove that W ↪→ V ′B is compact. To do this, assume that{
wn

}+∞
n=1

⊂W is any bounded sequence. The definition of the space W implies for
each n ∈ N the existence of vn ∈ V such that wn = Bvn and ‖vn‖V < ‖wn‖W + 1.
Since

{
wn

}+∞
n=1

is bounded in W , it follows that
{
vn

}+∞
n=1

is bounded in V . Then,
the compactness of the imbedding V ↪→ VB implies the existence of a subsequence{
vnk

}+∞
k=1

of
{
vn

}+∞
n=1

which is strongly convergent in the space VB. Since the oper-

ator B : VB → V ′B is continuous, it follows that
{
Bvnk

}+∞
k=1

is strongly convergent in

V ′B. But wnk
= Bvnk

, k ∈ N. Thus the sequence
{
wnk

}+∞
k=1

is strongly convergent
in V ′B. Hence the imbedding W ↪→ V ′B is compact.

Now we show the compactness of the imbedding Up ↪→ Lp
loc(S;VB). Let

{
un

}+∞
n=1

be any bounded sequence in Up; that is, for every t1, t2 ∈ S, t1 < t2, the se-
quences of restrictions to (t1, t2) of the elements of

{
un

}+∞
n=1

and
{
(Bun)′

}+∞
n=1

are
bounded sequences in Lp(t1, t2;V ) and Lp′(t1, t2;V ′) respectively. Let t1, t2 ∈ S
with t1 < t2. Since the operator B : V → W is linear and continuous, we have
that B : Lp(t1, t2;V ) → Lp(t1, t2;W ) is also linear and continuous (see, e.g., [14]).
Thereby, the sequence

{
Bun

}+∞
n=1

is bounded in Lp(t1, t2;W ). The compactness of
the imbedding W ↪→ V ′B, and Lions-Aubin’s theorem (see, e.g., [9] or [14, p. 106]),
imply the existence of a subsequence

{
Bunk

}+∞
k=1

of
{
Bun

}+∞
n=1

, which is strongly

convergent in Lp(t1, t2;V ′B). From (2.1) it follows that
{
unk

}+∞
k=1

is strongly con-
vergent in Lp(t1, t2;VB). Thus Lemma 2.2 is proved. �

Lemma 2.3 ([2, Lemma 1.1]). Let z be a nonnegative absolutely continuous func-
tion on each closed subinterval of S and

z′(t) + β(t)χ
(
z(t)

)
6 0 for a.e. t ∈ S,

where β ∈ L1
loc(S), β(t) > 0 for a.e. t ∈ S,

∫
−∞ β(t) dt = +∞, χ ∈ C

(
[0,+∞)

)
,

χ(0) = 0, χ(τ) > 0 for τ > 0 and
∫ +∞ dτ

χ(τ) < +∞. Then z(·) ≡ 0.

Lemma 2.4 ([3], p. 60). Let y ∈ C(S), z ∈ L1
loc(S) be such that

y(t2)− y(t1) +
∫ t2

t1

z(t) dt 6 0

for any t1, t2 ∈ S. Then

y(t2)θ(t2)− y(t1)θ(t1)−
∫ t2

t1

y(t)θ′(t) dt+
∫ t2

t1

z(t)θ(t) dt 6 0

for any θ ∈ C1(S) and t1, t2 ∈ S.

3. Statement of the problem and main results

Throughout this section S, V , VB and B are the same as in Section 2 and p ∈
(1,+∞). Assume that a family of operators A(t, ·) : V → V ′, t ∈ S, is given such
that
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(i) for each measurable function v : S → V the function w(·) = A
(
·, v(·)

)
is

measurable on S;
(ii) A

(
·, v(·)

)
∈ Lp′

loc(S;V ′) whenever v ∈ Lp
loc(S;V ), where p′ = p/(p− 1).

Consider the problem: for every f ∈ Lp′

loc(S;V ′), find a function u in Lp
loc(S;V ) ∩

C(S;VB) such that (
Bu(t)

)′ +A
(
t, u(t)

)
= f(t) in D ′(S;V ′). (3.1)

We call this problem a Problem without initial conditions for degenerate implicit
evolution equation (3.1) or Problem (3.1) for short.

Theorem 3.1 (Uniqueness). Assume that p > 2 and

(iii) for a.e. t ∈ S and each v, w ∈ V , v 6= w,

〈A(t, v)−A(t, w), v − w〉V > γ(t)ϕ
(
‖v − w‖2

VB

)
,

where γ ∈ L1
loc(S), γ(t) > 0 for a.e. t ∈ S,

∫ a

−∞ γ(τ) dτ = +∞ for some

a ∈ S, ϕ ∈ C
(
[0,+∞)

)
, ϕ(0) = 0, ϕ(τ) > 0 for τ > 0 and

∫ +∞
1

dτ
ϕ(τ) < +∞.

Then there is at most one solution of Problem (3.1).

Remark 3.2. Clearly, conditions of Theorem 3.1 are satisfied by the functions
γ(t) ≡ γ0, t ∈ S, and ϕ(τ) = τµ, τ > 0, where γ0 > 0 and µ > 1 are some
constants.

Theorem 3.3 (Existence). Let p > 2 and suppose the embedding V ↪→ VB is
compact. Assume that

(iv) there exist α1 ∈ L∞loc(S) and α2 ∈ Lp′

loc(S), p′ = p/(p− 1), such that

‖A(t, v)‖V ′ 6 α1(t)‖v‖p−1
V + α2(t), v ∈ V, a.e. t ∈ S;

(v) 〈A(t, v1)−A(t, v2), v1 − v2〉V > 0 for all v1, v2 ∈ V , a.e. t ∈ S;
(vi) there exist β1 ∈ L∞loc(S), ess inft∈[a,b] β1(t) > 0 for any [a, b] ⊂ S, and

β2 ∈ L1
loc(S) such that

〈A(t, v), v〉V > β1(t)‖v‖p
V − β2(t), v ∈ V, a.e. t ∈ S;

(vii) for almost every t ∈ S and every vectors v1, v2 ∈ V the real-valued function
s 7→ 〈A(t, v1 + sv2), v2〉V is continuous on R.

Then Problem (3.1) has at least one solution and each its solution for any numbers
t1, t2 ∈ S (t1 < t2), δ > 0, satisfies the estimate

max
t∈[t1,t2]

‖u(t)‖2
VB + β(t1 − δ, t2)

∫ t2

t1

‖u(t)‖p
V dt

6 C1

(
δ · β(t1 − δ, t2)

) 2
2−p + C2

(
β(t1 − δ, t2)

) 1
1−p

∫ t2

t1−δ

‖f(t)‖p′

V ′ dt

+ 2
∫ t2

t1−δ

β2(t) dt,

(3.2)

where β(t1 − δ, t2) = ess inft∈[t1−δ,t2] β1(t), C1, C2 are positive constants depending
only on B and p.
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Remark 3.4. The family of operators A(t, ·) satisfies condition (i) in the context
of conditions (v) and (vii) if we assume that the function w(·) = A

(
·, v

)
is weakly

measurable on S for each v ∈ V (see, e.g., [4, 14]). Condition (ii) is an immediate
consequence of conditions (i) and (iv).

Theorem 3.5 (Existence and uniqueness). Assume that p > 2 and the family of
operators A(t, ·) : V → V ′, t ∈ S, satisfies conditions (iv), (vi), (vii) and

(viii) there exists K1 > 0 such that for each v, w ∈ V , v 6= w,

〈A(t, v)−A(t, w), v − w〉V > K1‖v − w‖q
VB
, a.e. t ∈ S,

where q ∈ (2; p] is some number.
Then there exists a unique solution of Problem (3.1). Moreover, if u is a solution
of Problem (3.1), then for any numbers t1, t2 ∈ S (t1 < t2) and δ > 0 we have the
estimate

max
t∈[t1,t2]

‖u(t)‖2
VB +

∫ t2

t1

β1(t)‖u(t)‖p
V dt

6 C3

(
δ ·K1

) 2
2−q + C4

∫ t2

t1−δ

β
1

1−p

1 (t)
(
‖f(t)‖p′

V ′ + ‖A(t, 0)‖p′

V ′

)
dt

+ 2
∫ t2

t1−δ

β2(t) dt,

(3.3)

where C3, C4 are some positive constants depending only on B and p.

Remark 3.6. Clearly condition (viii) is satisfied in the context of the condition
(ix) there exists K2 > 0 such that for every v, w ∈ V ,

〈A(t, v)−A(t, w), v − w〉V > K2‖v − w‖p
V , a.e. t ∈ S.

Corollary 3.7. Let S = R. Suppose that the hypotheses of Theorem 3.5 hold and
there exists a constant C5 > 0 such that

sup
τ∈R

∫ τ+1

τ

(
β

1
1−p

1 (t)
(
‖f(t)‖p′

V ′ + ‖A(t, 0)‖p′

V ′

)
+ β2(t)

)
dt 6 C5.

Then the solution u for Problem (3.1) satisfies

sup
τ∈R

‖u(τ)‖VB + sup
τ∈R

∫ τ+1

τ

β1(t)‖u(t)‖p
V dt 6 C6, (3.4)

where C6 > 0 is a constant depending only on p, q, K1 and C5.

Theorem 3.8. Let S = R and the assumptions of Theorem 3.5 hold. Suppose that
there exists a number σ > 0 such that A(t+ σ, v) = A(t, v) and f(t+ σ) = f(t) for
any v ∈ V and a.e. t ∈ R. Then Problem (3.1) has a unique solution. Moreover,
this solution is σ-periodic (that is, u(t+ σ) = u(t) for a.e. t ∈ R) and satisfies the
estimate

max
t∈[0,σ]

‖u(t)‖2
VB +

∫ σ

0

‖u(t)‖p
V dt

6 C7 max
{∫ σ

0

(
‖f(t)‖p′

V ′ + β2(t)
)
dt,

(∫ σ

0

(
‖f(t)‖p′

V ′ + β2(t)
)
dt

)2/p}
,

(3.5)

where C7 is some positive constant depending only on p, σ, B and ess inft∈[0,σ] β1(t).

Following [8] and [10] we recall some definitions.
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Definition 3.9. A subset Q ⊂ R is called relatively dense if there exists l > 0 such
that [a, a+ l] ∩Q 6= ∅ for all a ∈ R.

Let X be a complete seminorm space with the seminorm ‖ · ‖X or a complete
metric space with the metric dX(·, ·). By BC(R;X) we denote the space of all
bounded continuous functions g : R → X. For any g ∈ C(R;X) and ε > 0 define

Fε(g) :=
{
σ ∈ R : sup

t∈R
‖g(t+ σ)− g(t)‖X < ε

}
if X is the seminorm space, and

Fε(g) :=
{
σ ∈ R : sup

t∈R
dX

(
g(t+ σ), g(t)

)
< ε

}
if X is the metric space.

Definition 3.10. A function g ∈ C(R;X) is said to be Bohr almost periodic if for
any ε > 0 the set Fε(g) is relatively dense in R.

Denote by CAP (R;X) the set of all Bohr almost periodic functions R → X.
Note that CAP (R;X) ⊂ BC(R;X).

Let {Y, ‖ · ‖Y } be a Banach space and q ∈ [1,+∞). The Banach space of
Stepanov bounded on R functions, with the exponent q, is the space BSq(R;Y )
which consists of all functions g ∈ Lq

loc(R;Y ) having finite norm

‖g‖q
Sq := sup

τ∈R

∫ τ+1

τ

‖g(t)‖q
Y dt.

Definition 3.11. The Bochner transform gb(t, s), t ∈ R, s ∈ [0, 1], of a function
g(t), t ∈ R, with values in Y , is defined by

gb(t, s) := g(t+ s).

Definition 3.12. A function g ∈ Lq
loc(R;Y ) is called a Stepanov almost periodic

function, with the exponent q, if gb ∈ CAP
(
R;Lq(0, 1;Y )

)
.

The space of all Stepanov almost periodic functions with values in Y is denoted
by Sq(R;Y ). Clearly the following inclusion holds Sq(R;Y ) ⊂ BSq(R;Y ).

Denote by Yp,V the space of all operators A : V → V ′ such that

‖A(v)‖V ′ 6 CA(‖v‖p−1
V + 1) ∀ v ∈ V,

where CA > 0 is some constant depending on A. The space Yp,V is a complete
metric space with respect to the metric

dp,V (A1, A2) := sup
v∈V

‖A1(v)−A2(v)‖V ′

‖v‖p−1
V + 1

, A1, A2 ∈ Yp,V .

Theorem 3.13. Let S = R and p > 2. Assume that the family of operators
A(t, ·) : V → V ′, t ∈ R, belongs to the space CAP (R;Yp,V ), satisfies conditions
(iv), (vii), (ix) and f ∈ Sp′(R;V ′). Then Problem (3.1) has a unique solution and
this solution belongs to the space CAP (R;VB) ∩ Sp(R;V ).
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4. Proof main results

We now turn to the proof of Theorems 3.1-3.13 and Corollary 3.7.

Proof of Theorem 3.1. Suppose that u1 and u2 are two solutions of Problem (3.1),
and write w := u1−u2. By taking the difference between (3.1) for u = u1 and (3.1)
for u = u2 we get(

Bw(t)
)′ +A

(
t, u1(t)

)
−A

(
t, u2(t)

)
= 0 in D ′(S;V ′). (4.1)

This and condition (ii) give us (Bw)′ ∈ Lp′

loc(S;V ′), so using Lemma 2.1 we obtain

1
2
d

dt
‖w(t)‖2

VB =
〈(
Bw(t)

)′
, w(t)

〉
V

for a.e. t ∈ S. (4.2)

Multiplying (4.1) by w we get〈(
Bw(t)

)′
, w(t)

〉
V

+
〈
A

(
t, u1(t)

)
−A

(
t, u2(t)

)
, u1(t)− u2(t)

〉
V

= 0 (4.3)

for a.e. t ∈ S. From (4.2) and (4.3) we obtain

1
2
d

dt
‖w(t)‖2

VB
+

〈
A

(
t, u1(t)

)
−A

(
t, u2(t)

)
, u1(t)− u2(t)

〉
V

= 0 a.e. on S. (4.4)

From (4.4) and (iii) we have

1
2
dy(t)
dt

+ γ(t)ϕ
(
y(t)

)
6 0 for a.e. t ∈ S, (4.5)

where y(t) = ‖u1(t) − u2(t)‖2
VB

. Further, from (4.5) we obtain y ≡ 0 on S by
Lemma 2.3. This and (4.4) imply〈

A
(
t, u1(t)

)
−A

(
t, u2(t)

)
, u1(t)− u2(t)

〉
V

= 0 a.e. on S. (4.6)

From (4.6) and (iii) we get u1(t) = u2(t) for a.e. t ∈ S. Theorem 3.1 is proved. �

Proof of Theorem 3.3. First we obtain a priori estimate (3.2) for any solution of
Problem (3.1). Let u be a solution of Problem (3.1). Hence, using Lemma 2.1, we
get

1
2
d

dt
‖u(t)‖2

VB =
〈(
Bu(t)

)′
, u(t)

〉
V

(4.7)

for a.e. t ∈ S. Take θ1 ∈ C1(R) with the following properties: θ1(t) = 0 if
t ∈ (−∞,−1], θ1(t) = exp( t2

t2−1 ) if t ∈ (−1, 0), θ1(t) = 1 if t ∈ [0,+∞). It is clear
that

sup
t∈(−1,+∞)

θ′1(t)
θν
1 (t)

< C8(ν), (4.8)

where 0 < ν < 1, C8(ν) > 0 is a constant depending only on ν.
Let t1, t2 ∈ S (t1 < t2), δ > 0 be any numbers. We define the function θ(t) :=

θ1( t−t1
δ ) for each t ∈ S. It is clear that θu ∈ Lp

loc(S;V ). Multiply equation (3.1)
by θu and integrate from t1 − δ to τ ∈ [t1, t2] with respect to t:∫ τ

t1−δ

{
θ(t)

〈(
Bu(t)

)′
, u(t)

〉
V

+ θ(t)
〈
A

(
t, u(t)

)
, u(t)

〉
V

}
dt

=
∫ τ

t1−δ

θ(t)〈f(t), u(t)〉V dt.
(4.9)
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Substituting (4.7) into (4.9) yields∫ τ

t1−δ

θ(t)
d

dt
‖u(t)‖2

VB dt+ 2
∫ τ

t1−δ

θ(t)
〈
A

(
t, u(t)

)
, u(t)

〉
V
dt

= 2
∫ τ

t1−δ

θ(t)〈f(t), u(t)〉V dt.
(4.10)

Integrating by parts the first term of the left hand side of equality (4.10) we obtain

‖u(τ)‖2
VB + 2

∫ τ

t1−δ

θ(t)
〈
A

(
t, u(t)

)
, u(t)

〉
V
dt

=
∫ τ

t1−δ

θ′(t)‖u(t)‖2
VB dt+ 2

∫ τ

t1−δ

θ(t)〈f(t), u(t)〉V dt.
(4.11)

Let us estimate the first term of the right hand side of (4.11) using (4.8), the
continuity of the imbedding V in VB and Young’s inequality:∫ τ

t1−δ

θ′(t)‖u(t)‖2
VB dt 6 C9

∫ τ

t1−δ

θ′(t)‖u(t)‖2
V dt

6 C9

∫ τ

t1−δ

θ′(t)
θ2/p(t)

θ2/p(t)‖u(t)‖2
V dt

6 ε

∫ τ

t1−δ

θ(t)‖u(t)‖p
V dt

+ C10ε
− p

p−2

∫ t2

t1−δ

(
θ′(t)θ−2/p(t)

) p
p−2 dt

6 ε

∫ τ

t1−δ

θ(t)‖u(t)‖p
V dt+ C11(δ · ε)−

p
p−2 ,

(4.12)

where ε > 0 is any number, C9, C10 C11 are positive constants depending only on
p and B.

Now we estimate the second term of the right hand side of (4.11) using Young’s
inequality

2
∫ τ

t1−δ

θ(t)〈f(t), u(t)〉V dt

6 η

∫ τ

t1−δ

θ(t)‖u(t)‖p
V dt+ C12η

1
1−p

∫ τ

t1−δ

θ(t)‖f(t)‖p′

V ′ dt,

(4.13)

where η > 0 is any number and C12 > 0 is a constant depending only on p. Next
let us estimate the second term of the left hand side of (4.11) using (vi)

2
∫ τ

t1−δ

θ(t)
〈
A

(
t, u(t)

)
, u(t)

〉
V
dt > 2

∫ τ

t1−δ

θ(t)β1(t)‖u(t)‖p
V dt− 2

∫ τ

t1−δ

θ(t)β2(t) dt

> 2β(t1 − δ, τ)
∫ τ

t1−δ

θ(t)‖u(t)‖p
V dt (4.14)

− 2
∫ τ

t1−δ

θ(t)β2(t) dt.
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From (4.11), using (4.12)-(4.14) and taking ε = η = 1
2β(t1 − δ, τ), we get

‖u(τ)‖2
VB + β(t1 − δ, τ)

∫ τ

t1−δ

θ(t)‖u(t)‖p
V dt

6 C13

(
δ · β(t1 − δ, τ)

) 2
2−p + C14

(
β(t1 − δ, τ)

) 1
1−p

∫ τ

t1−δ

θ(t)‖f(t)‖p′

V ′ dt

+ 2
∫ τ

t1−δ

θ(t)β2(t) dt,

(4.15)

where δ > 0 is any number, C13 and C14 are some positive constants depending
only on B and p. Since τ ∈ [t1, t2] is arbitrary, we see that (4.15) implies (3.2).

Second, we construct a sequence of functions approximating a solution for Prob-
lem (3.1). We assume without loss of generality that T > 0 if S = (−∞, T ]. Define
Sk := S ∩ {t ∈ R : t > −k}, k ∈ N. Let us for each k ∈ N consider the problem of
finding ûk ∈ Lp

loc(Sk;V ), Bûk ∈ C(Sk;V ′B) such that(
Bûk(t)

)′ +A
(
t, ûk(t)

)
= f(t) in D ′(Sk;V ′) (4.16a)

lim
t→−k

Bûk(t) = 0 in V ′B. (4.16b)

The existence and uniqueness of a solution ûk of problem (4.16) follow from results
of [14, Corollary III.6.3]. Let us extend ûk to (−∞,−k] by zero and denote this
extension by uk. It is clear that uk is a solution of the problem without initial
conditions (

Buk(t)
)′ +A

(
t, uk(t)

)
= fk(t) in D ′(S;V ′), (4.17)

where fk(t) = f(t) on Sk and fk(t) = A(t, 0) on (−∞,−k].
For each k ∈ N the solution of problem (4.17) satisfies estimate (3.2), where f is

replaced by fk. Thus from this estimate and the definition of fk we get∫ t2

t1

‖uk(t)‖p
V dt 6 C15(t1, t2) (4.18)

for any numbers t1, t2 ∈ S, where C15(t1, t2) > 0 is a constant dependent on t1 and
t2 but independent on k. From this estimate and (iv) we obtain∫ t2

t1

∥∥A(
t, uk(t)

)∥∥p′

V ′ dt 6 C16(t1, t2), (4.19)

where C16(t1, t2) > 0 is a constant independent on k. From estimates (4.18) and
(4.19) (see, e.g., [9, 14]) the existence of the subsequence of

{
uk

}+∞
k=1

follows, which

we hereafter denote by
{
uk

}+∞
k=1

, such that

uk(·) k→+∞−→ u(·) weakly in Lp
loc(S;V ), (4.20)

A
(
·, uk(·)

) k→+∞−→ χ(·) weakly in Lp′

loc(S;V ′). (4.21)

Since the operator B : V → V ′ is linear and continuous, it follows that its realiza-
tion B : Lp

loc(S;V ) → Lp
loc(S;V ′) is also linear and continuous, and hence weakly

continuous. From this and (4.20) we have

Buk(·) k→+∞−→ Bu(·) weakly in Lp
loc(S;V ′). (4.22)
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Finally we show that u is a solution for Problem (3.1). To see this, let us pass
to the limit as k → +∞ in (4.17) and use (4.21), (4.22):(

Bu(t)
)′ + χ(t) = f(t) in D ′(S;V ′). (4.23)

From (4.23) we have (Bu)′ ∈ Lp′

loc(S;V ′), so by Lemma 2.1 we get u ∈ C(S;VB). It
remains to prove only that

χ(t) = A
(
t, u(t)

)
in V ′ for a.e. t ∈ S. (4.24)

We will establish (4.24) using the monotonicity method of Browder and Minty.
Let us define

Ek =
∫

S

ψ(t)
〈
A

(
t, uk(t)

)
−A

(
t, v(t)

)
, uk(t)− v(t)

〉
V
dt, k ∈ N,

for any ψ > 0 from D(S) and v from Lp
loc(S;V ). From (v) it follows that Ek > 0.

Multiplying (4.17) by ψuk, k ∈ N, and integrating over S with respect to t, we
obtain ∫

S

{
ψ(t)

〈(
Buk(t)

)′
, uk(t)

〉
V

+ ψ(t)
〈
A

(
t, uk(t)

)
, uk(t)

〉
V

}
dt

=
∫

S

ψ(t)〈fk(t), uk(t)〉V dt.
(4.25)

Then from (4.25), using (4.7) where u is replaced by uk and the definition of fk,
after integrating by parts, we have∫

S

ψ(t)
〈
A

(
t, uk(t)

)
, uk(t)

〉
V
dt

=
1
2

∫
S

ψ′(t)‖uk(t)‖2
VB dt+

∫
S

ψ(t)〈f(t), uk(t)〉V dt.
(4.26)

Let t1, t2 be any real numbers such that suppψ′ ⊂ [t1, t2] ⊂ S. From (4.20) we
obtain

uk(·) k→+∞−→ u(·) weakly in Lp(t1, t2;V ).

Hence, using the compactness of the imbedding V ↪→ VB and Lemma 2.2, by
dropping to a subsequence and reindexing, we get

uk(·) k→+∞−→ u(·) strongly in Lp(t1, t2;VB).

This and p > 2 imply

uk(·) k→+∞−→ u(·) strongly in L2(t1, t2;VB). (4.27)

From (4.27) we have∫
S

ψ′(t)‖uk(t)‖2
VB dt

k→+∞−→
∫

S

ψ′(t)‖u(t)‖2
VB dt. (4.28)

Passing to the limit as k → +∞ in (4.26) and using (4.20), (4.28), we obtain∫
S

ψ(t)
〈
A

(
t, uk(t)

)
, uk(t)

〉
V
dt

k→+∞−→ 1
2

∫
S

ψ′(t)‖u(t)‖2
VB dt+

∫
S

ψ(t)〈f(t), u(t)〉V dt.
(4.29)
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Now multiply equality (4.23) by ψuk and integrate over S with respect to t. We
get ∫

S

ψ(t)〈χ(t), u(t)〉V =
1
2

∫
S

ψ′(t)‖u(t)‖2
VB dt+

∫
S

ψ(t)〈f(t), u(t)〉V dt. (4.30)

From (4.29) and (4.30) we have∫
S

ψ(t)
〈
A

(
t, uk(t)

)
, uk(t)

〉
V
dt

k→+∞−→
∫

S

ψ(t)〈χ(t), u(t)〉V dt. (4.31)

Using (4.20), (4.21) and (4.31), we deduce

0 6 lim
k→∞

Ek =
∫

S

ψ(t)
〈
χ(t)−A

(
t, v(t)

)
, u(t)− v(t)

〉
V
dt. (4.32)

Setting v = u − sw in (4.32), where s > 0 and w ∈ Lp
loc(S;V ) is any function, we

obtain ∫
S

ψ(t)
〈
χ(t)−A

(
t, u(t)− sw(t)

)
, w(t)

〉
V
dt > 0. (4.33)

Passing to limit as s→ 0 in (4.33) and using (vii), we get∫
S

ψ(t)
〈
χ(t)−A

(
t, u(t)

)
, w(t)

〉
V
dt > 0. (4.34)

Since ψ > 0 and w are arbitrary functions from D(S) and Lp
loc(S;V ) respectively,

we deduce from (4.34) equality (4.24), as desired. This completes the proof. �

Proof of Theorem 3.5. The uniqueness of a solution for Problem (3.1) follows di-
rectly from condition (viii) and Theorem 3.1 by taking γ(t) ≡ K1, t ∈ S, ϕ(τ) =
τ q/2, τ ∈ [0,+∞) (see Remark 3.2).

Estimate (3.3) follows from (4.11) in the same manner as we establish (3.2) by
using (4.12), where p and ‖ · ‖V are replaced by q and ‖ · ‖VB respectively, (4.13),
(4.14) and ∫ τ

t1−δ

θ(t)
〈
A

(
t, u(t)

)
, u(t)

〉
V
dt

> K1

∫ τ

t1−δ

θ(t)‖u(t)‖q
VB
dt+

∫ τ

t1−δ

θ(t)
〈
A(t, 0), u(t)

〉
V
dt.

The last inequality is an immediate consequence of (viii).
Now we prove the existence of a solution for Problem (3.1). By the same argu-

ment used in the proof of Theorem 3.3 it is sufficient to show that the sequence{
uk

}+∞
k=1

, where uk (k ∈ N) is a solution of problem (4.17), satisfies

uk(·) k→+∞−→ u(·) strongly in Lp(t1, t2;VB) (4.35)

for any t1, t2 ∈ S. Multiplying (4.17) by v, where v ∈ Lp
loc(S;V ) is any function,

and integrating from t1 to t2 with respect to t, where t1, t2 ∈ S, (t1 < t2) are any
numbers, we obtain∫ t2

t1

〈(
Buk(t)

)′
, v(t)

〉
V
dt+

∫ t2

t1

〈
A

(
t, uk(t)

)
, v(t)

〉
V
dt =

∫ t2

t1

〈fk(t), v(t)〉V dt. (4.36)
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Let l, m ∈ N be any numbers. Taking the difference between (4.36) for k = l and
(4.36) for k = m, and then setting v = ul − um, we get∫ t2

t1

〈(
Bwlm(t)

)′
, wlm(t)

〉
V
dt+

∫ t2

t1

〈
A

(
t, ul(t)

)
−A

(
t, um(t)

)
, wlm(t)

〉
V
dt

=
∫ t2

t1

〈fl(t)− fm(t), wlm(t)〉V dt,
(4.37)

where wlm := ul−um. Since fl(t) = fm(t) for a.e. t ∈ [t1, t2] whenever l, m > −t1,
it follows from (4.37), using Lemma 2.1 and condition (viii), that

‖wlm(t2)‖2
VB − ‖wlm(t1)‖2

VB + 2K1

∫ t2

t1

‖wlm(t)‖q
VB
dt 6 0.

From here and Lemma 2.4 in the same manner as was obtained (3.2) we show that
for any natural numbers l, m > −t1 + δ

max
t∈[t1,t2]

‖wlm(t)‖2
VB ≡ max

t∈[t1,t2]
‖ul(t)− um(t)‖2

VB 6 C17δ
2

2−q , (4.38)

where δ > 0 is any number, C17 is some positive constant depending only on K1,
B and p.

Thus from (4.38) it follows that {uk}+∞
k=1 is a Cauchy sequence in C

(
[t1, t2];VB

)
,

and therefore is a Cauchy sequence in Lp(t1, t2;VB). Consequently, we conclude
from (4.20) and completeness of Lp(t1, t2;VB) that (4.35) holds, so the proof is
complete. �

We remark that the Proof of Corollary 3.7 follows from estimate (3.3).

Proof of Theorem 3.8. Existence and uniqueness of a solution u for Problem (3.1)
follows from Theorem 3.5. Note that the function u(t+σ), t ∈ R, is also a solution of
this problem. The uniqueness of a solution for Problem (3.1) implies u(t+σ) = u(t)
for a.e. t ∈ R. Thus a solution of Problem (3.1) is σ-periodic.

Now we prove estimate (3.5). Let u be a σ-periodic solution for Problem (3.1).
Multiplying equation (3.1) by u, using (4.7) and integrating from t1 ∈ R to t2 ∈ R
(t1 < t2) with respect to t, we obtain

1
2

∫ t2

t1

d

dt
‖u(t)‖2

VB dt+
∫ t2

t1

〈
A

(
t, u(t)

)
, u(t)

〉
V
dt =

∫ t2

t1

〈f(t), u(t)〉V dt. (4.39)

From (4.39), using (vi) and Young’s inequality for the right hand side of (4.39), we
get

‖u(t2)‖2
VB − ‖u(t1)‖2

VB +
∫ t2

t1

β1(t)‖u(t)‖p
V dt

6 C18

∫ t2

t1

(
β
− 1

p−1
1 (t) ‖f(t)‖p′

V ′ + β2(t)
)
dt,

(4.40)

where C18 > 0 is a constant depending on p. Set t1 = 0 and t2 = σ. Since u is a
σ-periodic, from (4.40) it follows that∫ σ

0

‖u(t)‖p
V dt 6 C19

∫ σ

0

(
‖f(t)‖p′

V ′ + β2(t)
)
dt, (4.41)

where C19 > 0 is a constant depending on p and ess inft∈[0,σ] β1(t).
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Let us take θ ∈ C1(R) with the following properties: θ(t) = 0 if t ∈ (−∞,−σ],
θ(t) = exp(− t2

(t+σ)2 ) if t ∈ (−σ, 0), θ(t) = 1 if t ∈ [0,+∞). From (4.40), setting
t1 = −σ, t2 = τ ∈ [0;σ] and using Lemma 2.4, we obtain

‖u(τ)‖2
VB +

∫ τ

0

β1(t)‖u(t)‖p
V dt

6
∫ 0

−σ

θ′(t)‖u(t)‖2
VB dt+ C18

∫ σ

−σ

(
β
− 1

p−1
1 (t) ‖f(t)‖p′

V ′ + β2(t)
)
dt.

(4.42)

Now we estimate the first term of the right hand side of (4.42). Since the imbedding
V ↪→ VB is continuous, from (4.41) we see that

∫ 0

−σ

θ′(t)‖u(t)‖2
VB dt 6 C20

∫ σ

0

‖u(t)‖2
V dt

6 C21

(∫ σ

0

‖u(t)‖p
V dt

)2/p

6 C22

(∫ σ

0

(
‖f(t)‖p′

V ′ + β2(t)
)
dt

)2/p

,

(4.43)

where C20, C21 and C22 are constants depending on p, σ, B and ess inft∈[0,σ] β1(t).
Thus estimate (3.5) follows from (4.41)-(4.43). �

Proof of Theorem 3.13. Note that Theorem 3.5 implies the existence and unique-
ness of a solution u for Problem (3.1). Define uσ(t) := u(t+σ), wσ(t) := u(t+σ)−
u(t), fσ(t) := f(t+ σ) and Aσ(t, ·) := A(t+ σ, ·), t ∈ R, for any σ 6= 0. Clearly uσ

is a solution for Problem (3.1) with A replaced by Aσ and f replaced by fσ.
Taking the difference between (3.1) for u = uσ and (3.1) for u we obtain

(
Bwσ(t)

)′ +Aσ

(
t, uσ(t)

)
−A

(
t, u(t)

)
= fσ(t)− f(t) in D ′(R;V ′). (4.44)

Let θ1 ∈ C1(R) be the same as in proof of Theorem 3.3 and τ ∈ R, δ > 0 be any
numbers. Multiplying (4.44) by θwσ, where θ(t) = θ1( t−τ

δ ), t ∈ R, and integrating
from τ − δ to τ + 1 with respect to t we get

∫ τ+1

τ−δ

θ(t)
d

dt
‖wσ(t)‖2

VB dt+ 2
∫ τ+1

τ−δ

θ(t)
〈
A

(
t, uσ(t)

)
−A

(
t, u(t)

)
, wσ(t)

〉
V
dt

= 2
∫ τ+1

τ−δ

θ(t)
〈
A

(
t, uσ(t)

)
−Aσ

(
t, uσ(t)

)
, wσ(t)

〉
V
dt (4.45)

+ 2
∫ τ+1

τ−δ

θ(t)〈fσ(t)− f(t), wσ(t)〉V dt.
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From (4.45), using (ix) and the estimates similar to (4.12), (4.13), in the same way
as was shown (3.2), we obtain

‖wσ(τ + 1)‖2
VB +

∫ 1

0

‖wσ(s+ τ)‖p
V ds

= ‖wσ(τ + 1)‖2
VB +

∫ τ+1

τ

‖wσ(t)‖p
V dt

6 C23 δ
2

2−p + C24

∫ τ+1

τ−δ

∥∥Aσ

(
t, uσ(t)

)
−A

(
t, uσ(t)

)∥∥p′

V ′ dt

+ C24

∫ τ+1

τ−δ

‖fσ(t)− f(t)‖p′

V ′ dt

(4.46)

for any τ ∈ R and δ > 0, where C23, C24 are some positive constants depending
only on B, K2 and p.

Let ε > 0 be any number. Fix δ ∈ N large enough that

C23δ
2

2−p <
ε

2
. (4.47)

Since A ∈ BC(R;Yp,V ), it follows that

sup
τ∈R

∫ τ+1

τ

‖A(t, 0)‖p′

V ′ dt 6 sup
t∈R

‖A(t, 0)‖p′

V ′

6 sup
t∈R

(
sup
v∈V

‖A(t, v)‖V ′

‖v‖p−1
V + 1

)p′

= sup
t∈R

(
dp,V

(
A(t, ·), 0

))p′

6 C25,

(4.48)

where C25 is some positive constant. Thus (4.48), the assumptions of the theorem
and Corollary 3.7 imply

sup
τ∈R

∫ τ+1

τ

‖uσ(t)‖p
V dt 6 C26, (4.49)

where C26 > 0 is some constant independent on σ. From (4.49) it follows that

∫ τ+1

τ−δ

∥∥Aσ

(
t, uσ(t)

)
−A

(
t, uσ(t)

)∥∥p′

V ′ dt

6 sup
t∈R

sup
v∈V

‖Aσ(t, v)−A(t, v)‖p′

V ′

‖v‖p
V + 1

δ∑
i=0

∫ τ+1−i

τ−i

(
‖uσ(t)‖p

V + 1
)
dt

6 C27

(
sup
t∈R

dp,V

(
Aσ(t, ·),A(t, ·)

))p′

,

(4.50)
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where C27 is positive constant depending only on p, δ and C26. Since f ∈ Sp′(R;V ′),
it follows that∫ τ+1

τ−δ

‖fσ(t)− f(t)‖p′

V ′ dt =
δ∑

i=0

∫ τ+1−i

τ−i

‖fσ(t)− f(t)‖p′

V ′ dt

6 (δ + 1) sup
s∈R

∫ s+1

s

‖fσ(t)− f(t)‖p′

V ′ dt (4.51)

= (δ + 1) ‖fσ − f‖p′

Sp′ .

Take ε0 > 0 such that

C24

(
C27 + (δ + 1)

)
ε0

p′ <
ε

2
. (4.52)

Define

Uε :=
{
σ : sup

τ∈R
‖wσ(τ)‖2

VB + sup
τ∈R

∫ 1

0

‖wσ(t+ τ)‖p
V dt < ε

}
for any ε > 0.

Since f b ∈ CAP
(
R;Lp′(0, 1;V ′)

)
and A ∈ CAP (R;Yp,V ), we see that the set

Gε0
:=

{
σ ∈ R : ‖fσ−f‖Sp′ +supt∈R dp,V

(
Aσ(t, ·),A(t, ·)

)
< ε0

}
is relatively dense

in R (see, e.g., [8, Property I.VII]). Then from (4.46), (4.47) and (4.50)-(4.52) it
follows that σ ∈ Uε whenever σ ∈ Gε0

. Thus the proof is complete. �

5. Example

Let Ω, Ω1 be bounded domains in Rn, n ∈ N, such that Ω1 ⊂ Ω, Ω0 := Ω \ Ω1,
∂Ω be a C1 manifold, S := R, and 2 < p < +∞. Set V := W 1,p

0 (Ω), then V ′ =
W−1,p′(Ω), where p′ = p/(p − 1). Define the operators A : W 1,p

0 (Ω) → W−1,p′(Ω)
by

〈A(u), v〉W 1,p
0 (Ω) :=

∫
Ω

n∑
i=1

∣∣∣∂u(x)
∂xi

∣∣∣p−2 ∂u(x)
∂xi

∂v(x)
∂xi

dx, u, v ∈W 1,p
0 (Ω),

and B : W 1,p
0 (Ω) →W−1,p′(Ω) by

〈B(u), v〉W 1,p
0 (Ω) :=

∫
Ω1

u(x)v(x) dx, u, v ∈W 1,p
0 (Ω).

Then VB ∼= {L2(Ω), ‖ · ‖VB} and V ′B = L2(Ω1), which we identify as the subspace
of L2(Ω) whose elements are zero a.e. on Ω0 (see, e.g., [12, 14]).

Let f ∈ Lp′

loc

(
R;Lp′(Ω)

)
. Then the operators A, B and f satisfy the hypothesis

of Theorem 3.5 (see, e.g., [2, 14]). Thus there exists a unique generalized solution
u ∈ Lp

loc

(
R;W 1,p

0 (Ω)
)
∩ C(R;VB) of the problem without initial conditions

∂

∂t
u(x, t)−

n∑
i=1

∂

∂xi

(∣∣∣∂u(x, t)
∂xi

∣∣∣p−2 ∂u(x, t)
∂xi

)
= f(x, t), (x, t) ∈ Ω1 × R, (5.1a)

−
n∑

i=1

∂

∂xi

(∣∣∣∂u(x, t)
∂xi

∣∣∣p−2 ∂u(x, t)
∂xi

)
= f(x, t), (x, t) ∈ Ω0 × R, (5.1b)

u(s, t) = 0, (s, t) ∈ ∂Ω× R. (5.1c)
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Furthermore, if the set{
σ : sup

τ∈R

∫ τ+1

τ

∫
Ω

|f(x, t+ σ)− f(x, t)|p
′
dx dt < ε

}
is relatively dense in R; that is, if f ∈ Sp′

(
R;Lp′(Ω)

)
, then Theorem 3.13 implies

that the solution u for problem (5.1) is almost periodic by Stepanov as an element
of BSp

(
R;W 1,p

0 (Ω)
)

and by Bohr as an element of BC(R;VB).
Note that more general examples can be obtained similarly as in [12] and [14]

by a corresponding choice of the operators A and B.

Acknowledgements. The authors thank to Prof. Showalter for his critical review
of the original manuscript and suggestions.
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