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PROBLEMS WITHOUT INITIAL CONDITIONS FOR
DEGENERATE IMPLICIT EVOLUTION EQUATIONS

MYKOLA BOKALO, YURIY DMYTRYSHYN

ABSTRACT. We study some sufficient conditions for the existence and unique-
ness of a solution to a problem without initial conditions for degenerate implicit
evolution equations. We also establish a condition of Bohr’s and Stepanov’s
almost periodicity of solutions for this problem.

1. INTRODUCTION

Problems for an implicit evolution equation of the form
(Bu(t)) + A(t,u(t)) = f(t), tes, (1.1)

where A(t,-) and B are operators from a Banach space V to its dual V', S is
an interval in R, sometimes known as Sobolev equation (see, e.g., [1 [II]), has
been studied extensively by many authors. See, for example, [I]-[I4] and references
therein. Note that in the case where B is linear and A is linear or nonlinear, the
monographs by Showalter [12] [14] give many sufficient conditions to existence and
uniqueness of solutions of the Cauchy problem for equation .

More recently in the papers [6l [7] the Cauchy problem for the inclusion of the
form was considered as A may be set-valued. The existence of almost periodic
solutions of abstract differential equations of the type (when B = I) has been
studied in several works; see for example [5 [8, [T0, [I5]. A problem without initial
conditions for the equation of the form (when B = I and A is almost linear)
was investigated in [I3] [I4] in the class of integrable functions on (—o0,T), T € R.
In [2] the similar problem was considered (when B = I and A is nonlinear) in the
class of locally integrable functions on (—oo,T].

In this paper, we generalize the results of [2] and [I0] for the case of degenerate
implicit equation 7 that is, when B may vanish on non-zero vectors. We obtain
sufficient conditions to existence (Theorems and uniqueness (Theorem [3.1])
of solutions of a problem without initial conditions for independent of an
additional assumption on the behavior of the solution and data-in at —oco. We also
establish the existence of periodic (Theorem and almost periodic by Bohr and

Stepanov (Theorem [3.13)) solutions of (1.1)).
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We shall introduce here some of the notions that we shall use hereafter. We
denote by || - ||x the norm (seminorm) of the norm (seminorm) space X and by
(+, )y the scalar product in the Hilbert space Y. By X’ we denote the dual space
of X. The duality pairing between X and X' is denoted by (-,-)x. By L .(S;X),
where ¢ € [1,400) and S is an unbounded connected subset of R, we denote the
space of (equivalence classes of) measurable functions in S, with values in X such
that its restrictions on any compact K C S belong to LI(K; X). We denote by
2'(S; X) the space of X,, valued distributions on int S, which we regard extended
on all S by zero. It is known that the space L{ (S;X) can be identified with some
subspace of 2'(S;X). For v € LL _(S;X), we denote by v’ the derivative in the
sense of 2'(S;X) [4]. Throughout the paper the symbol — means a continuous
imbedding.

Our paper is organized as follows. Section [2]is devoted to some preliminary facts
needed in the sequel. In Section [3]| we state a problem and formulate main results.
We prove our main results in Section [} The last section is devoted to a simple
example of applications of our results.

2. PRELIMINARY RESULTS

Let V be a separable reflexive Banach space. Assume that B: V — V' is a linear,
continuous, symmetric (i.e., (Bvi,ve)y = (Bug,v1)y Vw1, v2 € V) and monotone
(i.e., (Bv,v)y >0 Vv € V) operator. Then (B-,-}y is a semiscalar product and
I 1lvs = (B, )%//2 is a seminorm on V. We denote the completion of the seminorm
space {V, || - |lvs} by Vi and the dual Hilbert space by V. Note that V — Vs
is dense. By restriction of functionals we have V5 — V’. The operator B has a
unique continuous linear extension B : Vg — Vj. The scalar product on Vj satisfies

(w,Bv)VB/ = <U},v>v, w e VBla veV.
Hence, taking w = Bu,
1Bvllvy = l[vllvs, v € Vs (2.1)
We define the norm on the range of B: V — V' by
|wllw = inf{|lv]|y : veV, Bv=w}, weRgB.

The normed linear space W = {RgB, || - ||lw} is a reflexive Banach space. Note

that W < V}. These results are due to the books by Showalter [12, [14].
Throughout the rest of this paper S := R or S := (—o00,T], where T" < o0,

unless the contrary is explicitly stated.

Lemma 2.1. Let v € L} (S;V), (Bv) € L{’;C(S;V’), where p € [2;400) and

p =p/(p—1). Thenv € C(S; Vi) and the function ||v(-)||v, is absolutely continuous

on each closed subinterval of S. Furthermore,

o)}, = (Bu(®),v(t)),, forae teS. (2.2)

Proof. Let t1, ta € S be any numbers such that ¢t; < t5. In view of the assumptions
we have v € LP(ty,tq; V) and (Bv)' € v (t1,t2; V'). With the same proof as that of
[14, Proposition 1.2, p. 106] we obtain v € C([t1,2]; Vi), the function ¢ — [[v(t)||v4
is absolutely continuous on [t1, t2] and holds for a.e. t € [t1,t2]. Sincetq,ta € S
are arbitrary, the conclusion of Lemma follows. |
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Lemma 2.2. Let 1 < p < +o0o. Assume that the inclusion V' — Vg is compact
and define

U,:={uell (S;V): (Bv) €L”

loc loc

Then the imbedding U, — L¥ (S; V) is compact.

loc

(S; V).

Proof. Let us first prove that W — V} is compact. To do this, assume that
{wn}:z C W is any bounded sequence. The definition of the space W implies for
each n € N the existence of v, € V such that w,, = Bv, and ||v,|lv < |ws|lw + 1.
Since {wn}zz is bounded in W, it follows that {vn}:iol is bounded in V. Then,
the compactness of the imbedding V' — Vg implies the existence of a subsequence
{v"k }Zji of {vn}zz which is strongly convergent in the space V. Since the oper-
ator B : Vz — V} is continuous, it follows that {ank }Zj’l is strongly convergent in

V. But wy,, = Bu,,, k € N. Thus the sequence {wn,c }Zzol is strongly convergent
in V. Hence the imbedding W — V}; is compact.
Now we show the compactness of the imbedding U, — L (S;Vg). Let {un}:z

loc

be any bounded sequence in U,; that is, for every ¢, t2 € S, t1 < t3, the se-

quences of restrictions to (t1,t2) of the elements of {un}zz and {(Bun)’}zz are

bounded sequences in LP(t1,t9; V) and ¥ (t1,t2; V') respectively. Let t1, to € S
with ¢; < t3. Since the operator B : V' — W is linear and continuous, we have
that B : LP(t1,t2; V) — LP(t1,t2; W) is also linear and continuous (see, e.g., [14]).
Thereby, the sequence {Bun}:z is bounded in LP(t1,t2; W). The compactness of

the imbedding W — V}, and Lions-Aubin’s theorem (see, e.g., [9] or [14] p. 106]),

imply the existence of a subsequence {Bunk }Zz of {Bun}:ij, which is strongly

convergent in LP(t1,tq; V). From 1| it follows that {unk}::; is strongly con-
vergent in LP(t1,tq; V). Thus Lemma [2.2]is proved. O

Lemma 2.3 ([2, Lemma 1.1]). Let z be a nonnegative absolutely continuous func-
tion on each closed subinterval of S and

Z(t)+ Bt)x(2(t)) <O fora.e. t €S,
where § € Li(S), B(t) 2 0 for a.e. t€ S, [ B(t)dt = +oo, x € C([0,400)),

loc

x(0) =0, x(7) >0 for 7 >0 and f+oo X‘Z) < +o0o. Then z(-) = 0.

Lemma 2.4 ([3], p. 60). Lety € C(S), z € LL _(S) be such that

loc

y(t2) —y(t1) +/ ) 2(t)dt <0

ty

for any ti, to € S. Then
to

y(t2)6(t2) — y(t1)6(t1) — / Ty de + / 2(8)6(t) dt < 0

t1 t1

for any 6 € C*(S) and t1, ts € S.

3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Throughout this section S, V, Vi and B are the same as in Section [2] and p €
(1,+00). Assume that a family of operators A(t, ) : V — V' t € S, is given such
that
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(i) for each measurable function v : § — V the function w(-) = A(-,v(")) is
measurable on S;

(i) A(-,v(") € L¥ (S; V') whenever v € L _(S; V), where p' = p/(p — 1).

loc loc

Consider the problem: for every f € Lﬁ;C(S; V'), find a function w in LY (S;V) N
C(S;Vg) such that

(Bu(t)) + A(t,u(t)) = f(t) in 2'(S;V"). (3.1)

We call this problem a Problem without initial conditions for degenerate implicit
evolution equation (3.1)) or Problem (3.1f) for short.

Theorem 3.1 (Uniqueness). Assume that p > 2 and

(iii) for a.e. t € S and each v, w € V, v # w,
<A(t,’l)) - A(tvw)7v - w>V > V(ﬂ@(”v - w||%/5)7
where v € Li (9), y(t) = 0 for a.e. t €S, ffoo v(1)dr = 400 for some

a€ S, ¢eC(0,+00)), ¢(0) =0, ¢(r) >0 forT >0 and f1+oo (;Z) < 400.
Then there is at most one solution of Problem (3.1)).

Remark 3.2. Clearly, conditions of Theorem are satisfied by the functions
v({t) = v, t €S, and o(7) = 7™, T = 0, where g > 0 and p > 1 are some
constants.

Theorem 3.3 (Existence). Let p > 2 and suppose the embedding V. — Vg is
compact. Assume that

(iv) there exist oy € LS (S) and as € v (S), p =p/(p—1), such that

loc
At 0) v < ar(@®)|[v]5 4+ aa(t), v €V, ae. te€S;

(v) (A(t,v1) — A(t,v2),v1 —v2)v =2 0 for all vi,v3 €V, a.e. t €S
(vi) there exist 31 € L5, (S), essinficpqp B1(t) > 0 for any [a,b] C S, and

loc

Bo € Li (S) such that

loc
(At,v),v)y = Bi(@0)|[v|y, — B2(t), veV,ae tes;
(vil) for almost everyt € S and every vectors vy, va € V the real-valued function
s+ (A(t,v1 + sv2),v2)v is continuous on R.

Then Problem (3.1) has at least one solution and each its solution for any numbers
t1, ta € S (t1 <t2), § >0, salisfies the estimate

ta
max [Ju(t)f + 5t~ 8.t2) [ Ju@)|f de
t1

te[ty,ta]
2 _ 1 [t ,
< C1(6- Bt — 6,t2)) 7 + Co(B(t1 — 6,t2)) 7 / I F@I dt (3.2)
t1—0
ta
+2 Ba(t) dt,
t1—6

where B(t; — J,ts) = ess infyepe, 5.4, B1(t), C1, Ca are positive constants depending
only on B and p.
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Remark 3.4. The family of operators A(t, -) satisfies condition (if) in the context
of conditions and if we assume that the function w(-) = A(~, v) is weakly
measurable on S for each v € V (see, e.g., [4, [14]). Condition is an immediate
consequence of conditions (ij) and .

Theorem 3.5 (Existence and uniqueness). Assume that p > 2 and the family of
operators A(t, ) : V — V' t € S, satisfies conditions , , and
(viii) there exists K1 > 0 such that for each v, w € V, v # w,

(A(t,v) — A(t,w),v —w)y > Killv —wll{,, ae teS,
where q € (2;p] is some number.

Then there exists a unique solution of Problem (3.1). Moreover, if u is a solution
of Problem (3.1)), then for any numbers t1, ta € S (t1 < t2) and § > 0 we have the
estimate
ta
max ||u(t)|3, +/ Br(®)[u(t)|5, dt
t€(ty,tz] t1
to

<Oy K)TT RO [ AT (IO + AR ) de (33

1—90
to

+2 Ba(t) dt,

t1—0
where Cs, Cy are some positive constants depending only on B and p.

Remark 3.6. Clearly condition is satisfied in the context of the condition
(ix) there exists Ko > 0 such that for every v, w € V,

(A(t,v) — A(t,w),v —w)y > Ksllv —wl|},, ae. tes.

Corollary 3.7. Let S = R. Suppose that the hypotheses of Theorem[3.5 hold and
there exists a constant Cs > 0 such that

T+1 1 , ,
Sup/_r ( ffp(t)(Hf(t)”p/ + ||A(t,0)||p,) —+ 62(]5)) dt < 05.

TER

Then the solution u for Problem (3.1]) satisfies

T7+1
sup [|u(7)|lvs + Sup/ BB [u@)[fy, dt < Ce, (3.4)
TER TeERJ 1

where Cg > 0 is a constant depending only on p, q, K1 and Cs.

Theorem 3.8. Let S =R and the assumptions of Theorem[3.5 hold. Suppose that
there exists a number o > 0 such that A(t +o,v) = A(t,v) and f(t+ o) = f(t) for
any v € V and a.e. t € R. Then Problem (3.1) has a unique solution. Moreover,

this solution is o-periodic (that is, u(t + o) = u(t) for a.e. t € R) and satisfies the
estimate

tgg};]uu(t)H%/B + /0 [u(t)|[7, dt

< Crmax{ [ (0. + o) e, ([ (O + o) )",

where C7 is some positive constant depending only on p, o, B and essinfycjg o) B1(t).

(3.5)

Following [§] and [I0] we recall some definitions.



6 M. BOKALO, Y. DMYTRYSHYN EJDE-2008/04

Definition 3.9. A subset Q) C R is called relatively dense if there exists [ > 0 such
that [a,a +1]NQ # @ for all a € R.

Let X be a complete seminorm space with the seminorm || - ||x or a complete
metric space with the metric dx(-,-). By BC(R; X) we denote the space of all
bounded continuous functions g : R — X. For any g € C(R; X) and £ > 0 define

F.(9) :={o€eR: sup lg(t+0) —g(t)|lx <e}

if X is the seminorm space, and

F.(9):={oceR: igﬂgdx(g(t+o)7g(t)) <e}

if X is the metric space.

Definition 3.10. A function g € C(R; X) is said to be Bohr almost periodic if for
any € > 0 the set F.(g) is relatively dense in R.

Denote by CAP(R; X) the set of all Bohr almost periodic functions R — X.
Note that CAP(R; X) C BC(R; X).

Let {Y, | - |ly} be a Banach space and ¢ € [1,+00). The Banach space of
Stepanov bounded on R functions, with the exponent ¢, is the space BS4(R;Y")

which consists of all functions g € L{ (R;Y’) having finite norm

T+1
lgl%, <= sup / lg ()% dt.
T7€R J+

Definition 3.11. The Bochner transform g¢°(t,s), t € R, s € [0,1], of a function
g(t), t € R, with values in Y, is defined by

g(t,s) == g(t + s).

Definition 3.12. A function g € L _(R;Y) is called a Stepanov almost periodic

loc

function, with the exponent q, if g° € C’AP(R; L4(0, 1;Y)).

The space of all Stepanov almost periodic functions with values in Y is denoted
by S¢(R;Y). Clearly the following inclusion holds S¢(R;Y) C BSY(R;Y).
Denote by Y, v the space of all operators A : V' — V' such that

IA@)llv < Ca(llollf ! +1) Vo eV,

where C4 > 0 is some constant depending on A. The space Y,y is a complete
metric space with respect to the metric

| A1(v) = Az(v)]|v
dy v (A1, Ag) :=su
pv (4, Aa) = sup o5 +1

, AL, Ay eY,v.

Theorem 3.13. Let S = R and p > 2. Assume that the family of operators
A(t,) : V = V', t € R, belongs to the space CAP(R;Y, v), satisfies conditions

, , and [ € sr’ (R; V). Then Problem (3.1) has a unique solution and
this solution belongs to the space CAP(R; Vi) N SP(R; V).
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4. PROOF MAIN RESULTS
We now turn to the proof of Theorems [3.1 and Corollary

Proof of Theorem[3.1. Suppose that u; and uy are two solutions of Problem (3.1,
and write w := u; —ug. By taking the difference between ({3.1)) for u = u; and (3.1))

for u = up we get
(Bw(t)) + A(t,ui (t)) — A(t,us(t)) =0 in  2'(S; V). (4.1)

This and condition (ii)) give us (Bw)’ € ¥ (S; V'), so using Lemmawe obtain

loc
~—Jwt)|}, = (Buw(t)) w(t)), forae. teS. (4.2)
Multiplying by w we get
<(Bw(t))’,w(t)>v + (At ur (1) — A(t, ua(t)), ur () — ua(t)),, =0 (4.3)
for a.e. t € S. From and we obtain

1
5%Hw(t)H?VB + (A(t,ur (1)) — A(t, ua(t)), ur (t) — uz(t)),, =0 ae. on S. (4.4)
From and we have
%d%it) +y(t)p(y(t)) <0 forae. t €S, (4.5)

where y(t) = |Jui(t) — ua(t)|3,. Further, from (4.5) we obtain y = 0 on S by
Lemma This and (4.4) imply

(A(t,ur(t)) — A(t, ug(t)), ur (t) — ua(t)),, =0 a.e. on S. (4.6)
From (4.6]) and we get up (t) = uo(t) for a.e. t € S. Theorem [3.1]is proved. [

Proof of Theorem[3.3 First we obtain a priori estimate (3.2 for any solution of
Problem (3.1). Let u be a solution of Problem (3.1]). Hence, using Lemma we
get

= @)%, = ((Bu®) u(t)),, (4.7)

for a.e. t € S. Take §; € C'(R) with the following properties: 6;(t) = 0 if
t € (—o00,—1], 01(t) = exp(#ag) if t € (—1,0), 61 (t) = 1if t € [0, +00). Tt is clear
that

01(t)
sup = < Cg(v), 4.8
te(—1,400) 07 () a(v) (4.8)

where 0 < v < 1, Cg(v) > 0 is a constant depending only on v.
Let t1, ta € S (t1 < t2), 6 > 0 be any numbers. We define the function 6(t) :=
61(552) for each ¢ € S. It is clear that fu € Lf, (S;V). Multiply equation (3.1)

by fu and integrate from t; — § to 7 € [t1, 2] with respect to t:

/T [00)((Bu(t) u(t)),, + 00 (At u(t)). u(®), } dr
=0 (4.9)

=[79wuwmmwa.

1—9
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Substituting into yields
T d T
/t 9(t)%||u(t)||%,g dt + 2/ 0(t)(A(t, u(t)), u(t)), dt

1—6 t1—48

:2/; () (f (1), ult))y dt.

1—0

(4.10)

Integrating by parts the first term of the left hand side of equality (4.10) we obtain

l[u(r)13, +2/T O(t) (At ult)), ult)),, dt
=0 (4.11)

:/Ti 0 (t)]|u(t) |12, dt+2/T 0(t)(f(t), u(t))v dt.

t1—0 t1—0
Let us estimate the first term of the right hand side of (4.11) using (4.8), the
continuity of the imbedding V' in Vi3 and Young’s inequality:

T

[ vomoias<c [ eouol o

t1—0 t1—0

0t
<Co [ st ol a

< a/tT_(SH(t)Hu(t)’{/ it (4.12)

to p
+ Croe™ 72 / (0 ()0~ 2/7 (1)) 7 dt
t1—0

<g/ OO [u(t)|IE, dt + Cur (5 - )7,

t1—0

where € > 0 is any number, Cy, C1g (11 are positive constants depending only on
p and B.

Now we estimate the second term of the right hand side of using Young’s
inequality

2 | () u(t)y di
fimo (4.13)

T

< / B u®)|, dt + Cron™ /
)

t1 ti—

5 0(t)| £ (6)E, dt,

where 17 > 0 is any number and Ci2 > 0 is a constant depending only on p. Next
let us estimate the second term of the left hand side of (4.11]) using

2 [ oOAbu0) w0 22 [ owm@h -2 [ om0
> 2B(t) — 6,7) / 0(t)|[u(t)1 dt (4.14)
t1—9

- 2[169(t)52(t) dt.
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From l) using ||l) and taking e = n = 18(t; — §,7), we get
lu(r)|I2, + Bt — 6,7) / o(1)[u(t)| dt

t1—0

< Cuafb- Bt - 0.7) 7 + CulBlts - 6.7)™ [ owIsOIE @t (419

t1

vz swma
t1—6

where § > 0 is any number, Ci3 and Cy4 are some positive constants depending

only on B and p. Since 7 € [t1,t2] is arbitrary, we see that implies .
Second, we construct a sequence of functions approximating a solution for Prob-

lem (.I). We assume without loss of generality that 7' > 0 if S = (—oo, T]. Define

Sp:=SN{teR: t>—k}, k € N. Let us for each k € N consider the problem of

finding 4y, € L? (Sk; V), By, € C(Sk; VB/) such that

loc

(Bag(t)) + A(t, @, (t)) = f(t) in Z'(S; V') (4.16a)
Jim Bi(t) =0 in Vj. (4.16Db)

The existence and uniqueness of a solution uy, of problem follow from results
of [14, Corollary IT1.6.3]. Let us extend iy to (—oo, —k] by zero and denote this
extension by wuy. It is clear that uy is a solution of the problem without initial
conditions

(Bug(t)) + A(t,u(t)) = fu(t) in 2'(S; V"), (4.17)

where fi(t) = f(t) on Sg and fx(t) = A(t,0) on (—oo, —k].
For each k € N the solution of problem (4.17) satisfies estimate (3.2]), where f is
replaced by fr. Thus from this estimate and the definition of fj we get

to
[ I} e < Croforota) (419
t1

for any numbers ¢, to € S, where C5(t1,t2) > 0 is a constant dependent on ¢; and
to but independent on k. From this estimate and we obtain

4 wo)|

where Cig(t1,t2) > 0 is a constant independent on k. From estimates (4.18) and
|| (see, e.g., [9L[14]) the existence of the subsequence of {Uk}zz follows, which

we hereafter denote by {“k}zzv such that

v dt < Cig(ta, ta), (4.19)

ur (") "= u()  weakly in LE (S;V), (4.20)
Al () "5 () weakly in LY (S5 V). (4.21)

Since the operator B : V — V' is linear and continuous, it follows that its realiza-
tion B : L (S;V) — LV (S;V’) is also linear and continuous, and hence weakly

continuous. From this and (4.20]) we have

Buy,(-) "5 Bu(-)  weakly in LP._(S; V). (4.22)

loc
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Finally we show that u is a solution for Problem (3.1]). To see this, let us pass

to the limit as k — 400 in (4.17)) and use (4.21)), (4.22):
(Bu(t) +x(t) = f(t) in 2'(S;V"). (4.23)

From 1) we have (Bu)' € 1OC(S V'), so by Lemmawe getu € C(S;Vp). 1

remains to prove only that
x(t) = A(t,u(t)) in V' forae. teS. (4.24)

We will establish (4.24)) using the monotonicity method of Browder and Minty.
Let us define

Ek_/w At un() — At v(t)), ux(t) — v(t)), dt, k€N,

for any ¢ > 0 from 2(S) and v from L (S;V). From it follows that Ej > 0.

Multiplying (4.17)) by vug, k € N, and integrating over S with respect to ¢, we
obtain

/S{q/}( )((Bur(®))ur(®)), + SO (AL wn(0)), u(t))y, } dt
= [ o0 )y ar

Then from (4.25)), using (4.7) where u is replaced by uy and the definition of fy,
after integrating by parts, we have

/1/J(t)<A(t,uk(t)),uk(t)>vdt
—5 [ Ol@R e+ [ 0u0u@)y

Let t1, to be any real numbers such that suppy’ C [t1,¢2] C S. From (4.20) we
obtain

(4.25)

(4.26)

u(-) I () weakly in LP(ty, to; V).

Hence, using the compactness of the imbedding V' < Vi and Lemma [2.2] by
dropping to a subsequence and reindexing, we get

up() "2 u()  strongly in LP(ty, 2 Vig).

This and p > 2 imply

ug(+) Fotpo u(-) strongly in L?(t,t2; Vi). (4.27)
From (4.27) we have
k—
/Sw’(t)\luk(t)II%/B de =57 /SW(t)IIU(t)H%/B dt. (4.28)

Passing to the limit as k — 400 in (4.26]) and using (4.20), (4.28]), we obtain
/1/) A(t, ur(t)), ur(t)),, dt

(4.29)
5 g [ Ol e [ vouo.uoy
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Now multiply equality (4.23)) by ¥uy and integrate over S with respect to t. We

/ B (1), / () a2, dt + / SO () u(t))y dt. (430)
From and ([4.30) we have
/ SO (A () un(6)), de 5 / B (1), u(t)y dt. (4.31)

Using (4.20)), (4.21) and (4.31)), we deduce

0< hm E, = / P(t) A(t,v(t)), u(t) — v(t)>v dt. (4.32)

Setting v = u — sw in , where s > 0 and w € L}, (S;V) is any function, we
obtain

/ p(t) A(t, ut) — sw(t)), w(t)),, dt > 0. (4.33)
Passing to limit as s — 0 in and using (vii), we get
/qu(t)(X(t) — A(t,u(t)), w(t)),, dt > 0. (4.34)

Since 1 > 0 and w are arbltrary functlons from 2(S) and L, (S; V) respectively,

we deduce from 4)) equality (4.24] , as desired. This completes the proof. O

Proof of Theorem[3.5. The uniqueness of a solution for Problem (3.1]) follows di-
rectly from condition and Theorem by taking v(t) = K1, t € S, ¢(7) =

74/2 1€ [0,+00) (see Remark [3.2)).

Estimate follows from (4.11) in the same manner as we establish (3.2) by
using (4.12), where p and || - ||y are replaced by ¢ and || - [|v; respectively
and

)

/tT_(S Q(t) <A(t, u(t)) , u(t)>v dt
> | OO, e [ 00(A00.0), o

17(5
The last inequality is an immediate consequence of .
Now we prove the existence of a solution for Problem ([3.1). By the same argu-
ment used in the proof of Theorem it is sufficient to show that the sequence

{uk}::, where uy (k € N) is a solution of problem 1) satisfies

ug(+) gmaryy u(-) strongly in LP(tq,ts; Vg) (4.35)

for any ¢y, to € S. Multiplying (4.17) by v, where v € LY (S;V) is any function,
and integrating from ¢; to ¢y Wlth respect to t, where t1, ta € S, (t; < t2) are any
numbers, we obtain

/2<(Buk(t))’,v(t)>vdt+/2<A(t,uk(t)),v(t)>vdt=/2<fk<t),v(t)>vdt. (4.36)

t1 ty t1



12 M. BOKALO, Y. DMYTRYSHYN EJDE-2008/04

Let I, m € N be any numbers. Taking the difference between (4.36]) for £ = [ and
(4.36) for k = m, and then setting v = u; — u,,, we get

/2<(Bwlm(t))lawZM(t)>vdt+/2<A(t7ul(t)) 7A(t7um(t))7wlm(t)>vdt
" h (4.37)
:~/t <fl(t) _fm(t)7wlm(t)>tha

where wyy, := u; — Up,. Since fi(t) = fn(t) for a.e. t € [t1,t2] whenever I, m > —t,

it follows from (4.37)), using Lemma [2.1] and condition (viii), that

12
i (t2) I35 = llwim (82 35, + 2K1/ [wim (8)] 75 dt < 0.
t1
From here and Lemma in the same manner as was obtained ([3.2]) we show that
for any natural numbers [, m > —t; +§

i (t) = wm (813, < Crré77, (4.38)

max ||w;m (9|7, = max
te[tm]l\ im ()17 nax

where 6 > 0 is any number, C;7 is some positive constant depending only on Kj,
B and p.

Thus from it follows that {uy};°] is a Cauchy sequence in C([ty,t2]; Vi),
and therefore is a Cauchy sequence in LP(t1,t2;Vg). Consequently, we conclude
from and completeness of LP(t1,tq;Vp) that holds, so the proof is
complete. [l

We remark that the Proof of Corollary follows from estimate (3.3]).

Proof of Theorem[3.8 Existence and uniqueness of a solution u for Problem
follows from Theorem[3.5] Note that the function u(t+0), t € R, is also a solution of
this problem. The uniqueness of a solution for Problem implies u(t+0) = u(t)
for a.e. t € R. Thus a solution of Problem is o-periodic.

Now we prove estimate (3.5)). Let u be a o-periodic solution for Problem .
Multiplying equation by u, using and integrating from t; € R to to € R
(t1 < t2) with respect to ¢, we obtain

1 to d to to
3 GO+ [ (AGu©) )y d = [0 (439)
1 1 1

From (4.39)), using and Young’s inequality for the right hand side of (4.39)), we

get
to

lult2) 1% — lut)If + [ Bi@llu@)] dt

h (4.40)

t2 1 ’

<G [ (57T OO+ 5a(t)) e

t1

where Cig > 0 is a constant depending on p. Set t; = 0 and t3 = o. Since u is a
o-periodic, from (4.40)) it follows that

[ g de < o [ (101 + 00 at (4.41)

where C1g9 > 0 is a constant depending on p and essinf,¢(g o) B1(t).
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Let us take § € C*(R) with the following properties: 8(t) = 0 if t € (—o0, —0a],
o(t) = exp(fﬁ) ift € (—0,0), (t) = 1if t € [0,400). From 1) setting
t1 = —0, ty = 7 € [0; 0] and using Lemma [2.4] we obtain

()3, + / "Bt di
(4.42)

o

0 1 ’
< [ o0luR.dcn [ (57O 1O, +50) dt

Now we estimate the first term of the right hand side of (4.42). Since the imbedding
V — Vg is continuous, from (4.41]) we see that
0 o
| o dr < [ el o
7 » 2/p
<Ca ([ lutol, d) (1.43)
0
g p' 2/1’
<Gl [ (1N +Ba(t) ),
0

where Ca, Ca1 and Csy are constants depending on p, o, B and essinf,c o7 81 (t).

Thus estimate (3.5]) follows from (4.41])-(4.43). O

Proof of Theorem[3.13 Note that Theorem [3.5] implies the existence and unique-
ness of a solution u for Problem (3.I). Define u, (t) := u(t+0), we(t) := u(t+0)—
u(t), fo(t) == f(t+ o) and A, (t,-) := A(t + 0,-), t € R, for any o # 0. Clearly u,
is a solution for Problem with A replaced by A, and f replaced by f,.
Taking the difference between for u = u, and for u we obtain

(Bwy (1)) + Aq (t,up (1)) — At u(t)) = fo(t) — f(t) in Z'(R; V).  (4.44)

Let 6; € C'(R) be the same as in proof of Theorem and 7 € R, 6 > 0 be any
numbers. Multiplying (4.44) by fw,, where (t) = 61(*57), t € R, and integrating
from 7 — 6 to 7 + 1 with respect to t we get

T+1 d 9 T+1
/Hs 0(t) 7 lws (D117 dt+2/T75 O(t)(A(t us(t)) — At u(t)), wo(t)),, dt
T+1
= 2/_5 0()(A(t, uo (1)) — Ao (t, ug(t)), we(t)),, dt (4.45)

T+1
b2 [ 800 - e )y de.

-0
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From (4.45)), using and the estimates similar to (4.12)), (4.13)), in the same way
as was shown (3.2]), we obtain

1
o (r + 1|2, + / o (s + 7 ds

T+1
— o (r + D)2, + / o (8)7, dt

T (4.46)

< Coy 677 +024/ ) [ A (8,10 (1)) — At uq (1))

T—

p/
v dt

T7+1 ,
o [ 1A = SOOI

for any 7 € R and § > 0, where Cs3, Co4 are some positive constants depending
only on B, K3 and p.
Let € > 0 be any number. Fix ¢ € N large enough that

Ca3077 < = (4.47)

[\

Since A € BC(R; Y, v), it follows that

T+1 , ,
sup / A, 0%, dt < sup At )L,
teR

T7€ER J 7
Alt, P
< Sup(sup [ A( _ﬁ)IIv )
teR eV o) +1

p/
= sup (dp,V (-A(ta ')a O)) < 0257
teR

(4.48)

where Cos is some positive constant. Thus (4.48)), the assumptions of the theorem
and Corollary [3.7 imply

T+1
sup [ s ()] dt < Ca, (4.49)

TER J

where Cag > 0 is some constant independent on o. From it follows that

T+1 ,
/T |, (e (®) = A ua ) [ dt
As(t, (t , T+1—i
<o LA A 5= [ o s

p’
< Cor (sup dpy (As(t,2), A1) )
teR
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where Cay is positive constant depending only on p, § and Cag. Since f € S?' (R; V'),
it follows that

T+1 T+1—1 ,
|1t = SO e = Z / 1£o(t) — PO, dt

s+1 ,
< (5+1) sup / 1) — FOIE di - (451)

seR Js
=@+ D fo =115,
Take ¢ > 0 such that
Cos (Cor + (5 +1))2? < g (4.52)
Define )
U, := {0 : sup ||’U.)U(T)||%/B + Sup/ lwo (t + 1)} dt < 5}
rER rer Jo

for any € > 0.

Since f’ € CAP(R; L (0, 1;V’)) and A € CAP(R;Y, ), we see that the set
Ge, = {o €R: | fo—fllgr +5uPser dpv (As(t,-), A(t,")) < g0} is relatively dense
in R (see, e.g., [8, Property I.VII]). Then from (4.46)), (4.47) and (4.50)-(4.52) it
follows that o € U, whenever o € GEO. Thus the proof is complete. O

5. EXAMPLE

Let ©, ©; be bounded domains in R™, n € N, such that Q; C Q, Qp := Q\ Qq,
0Q be a C' manifold, S := R, and 2 < p < +00. Set V := Wol’p(Q), then V' =
W17 (Q), where p' = p/(p — 1). Define the operators A : W, ?(Q) — W~1#'(Q)
by

P 23U( ) dv(z)
r;  0x;

dz, u,ve W),

A oy = | 3|

and B : Wy (Q) — W1 (Q) by

<B(u)7v>wol,p(m ::/Q w(x)o(z)de, u,ve WP (Q).

Then Vi = {L*(Q), || - |lvis} and V) = L?*(€4), which we identify as the subspace
of L?(Q) Whose elements are zero a.e. on Qq (see, e.g., [12, [I4]).

Let f € LIOC (R; L (Q)) Then the operators A, B and f satisfy the hypothesis
of Theorem (see, e.g., [2| [14]). Thus there exists a unique generalized solution

u € Li (R Wo P(€)) N C(R; V) of the problem without initial conditions
9 "9 Ou(x,t) 2 dula,t)\
Eu(x t- ; ox; (’ Ox; ‘ o, ) = f(z,t), (z,t) €U xR, (5.1a)
"9 ou(z,t) =2 0u(z,t)\
*Z O (’ oz oz, ) = f(z,t), (2,t) € Q xR, (5.1b)

u(s,t) =0, (s,t) € 02 x R. (5.1c)
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Furthermore, if the set

T7+1
{o: sup/ /|f(m,t+o)—f(m,t)|p/dacdt<5}
TeERJr Q

is relatively dense in R; that is, if f € S7' (R; Lp,(Q)), then Theorem implies
that the solution u for problem is almost periodic by Stepanov as an element
of BSP(R; Wol’p(Q)) and by Bohr as an element of BC(R; Vg).

Note that more general examples can be obtained similarly as in [12] and [14]
by a corresponding choice of the operators A and B.

Acknowledgements. The authors thank to Prof. Showalter for his critical review
of the original manuscript and suggestions.
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