Electronic Journal of Differential Equations, Vol. 2008(2008), No. 04, pp. 1-16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

PROBLEMS WITHOUT INITIAL CONDITIONS FOR DEGENERATE IMPLICIT EVOLUTION EQUATIONS

MYKOLA BOKALO, YURIY DMYTRYSHYN

Abstract

We study some sufficient conditions for the existence and uniqueness of a solution to a problem without initial conditions for degenerate implicit evolution equations. We also establish a condition of Bohr's and Stepanov's almost periodicity of solutions for this problem.

1. Introduction

Problems for an implicit evolution equation of the form

$$
\begin{equation*}
(\mathcal{B} u(t))^{\prime}+\mathcal{A}(t, u(t))=f(t), \quad t \in S \tag{1.1}
\end{equation*}
$$

where $\mathcal{A}(t, \cdot)$ and \mathcal{B} are operators from a Banach space V to its dual V^{\prime}, S is an interval in \mathbb{R}, sometimes known as Sobolev equation (see, e.g., [1, 11), has been studied extensively by many authors. See, for example, [1]-14 and references therein. Note that in the case where \mathcal{B} is linear and \mathcal{A} is linear or nonlinear, the monographs by Showalter [12, 14] give many sufficient conditions to existence and uniqueness of solutions of the Cauchy problem for equation 1.1.

More recently in the papers [6, 7] the Cauchy problem for the inclusion of the form (1.1) was considered as \mathcal{A} may be set-valued. The existence of almost periodic solutions of abstract differential equations of the type (1.1) (when $\mathcal{B}=I$) has been studied in several works; see for example [5, 8, 10, 15]. A problem without initial conditions for the equation of the form (1.1) (when $\mathcal{B}=I$ and \mathcal{A} is almost linear) was investigated in [13, 14 in the class of integrable functions on $(-\infty, T), T \in \mathbb{R}$. In [2] the similar problem was considered (when $\mathcal{B}=I$ and \mathcal{A} is nonlinear) in the class of locally integrable functions on $(-\infty, T]$.

In this paper, we generalize the results of [2] and [10] for the case of degenerate implicit equation (1.1), that is, when \mathcal{B} may vanish on non-zero vectors. We obtain sufficient conditions to existence (Theorems 3.3, 3.5) and uniqueness (Theorem 3.1) of solutions of a problem without initial conditions for (1.1) independent of an additional assumption on the behavior of the solution and data-in at $-\infty$. We also establish the existence of periodic (Theorem 3.8) and almost periodic by Bohr and Stepanov (Theorem 3.13) solutions of (1.1).

[^0]We shall introduce here some of the notions that we shall use hereafter. We denote by $\|\cdot\|_{X}$ the norm (seminorm) of the norm (seminorm) space X and by $(\cdot, \cdot)_{Y}$ the scalar product in the Hilbert space Y. By X^{\prime} we denote the dual space of X. The duality pairing between X and X^{\prime} is denoted by $\langle\cdot, \cdot\rangle_{X}$. By $L_{\text {loc }}^{q}(S ; X)$, where $q \in[1,+\infty)$ and S is an unbounded connected subset of \mathbb{R}, we denote the space of (equivalence classes of) measurable functions in S, with values in X such that its restrictions on any compact $K \subset S$ belong to $L^{q}(K ; X)$. We denote by $\mathscr{D}^{\prime}(S ; X)$ the space of X_{w} valued distributions on int S, which we regard extended on all S by zero. It is known that the space $L_{\text {loc }}^{q}(S ; X)$ can be identified with some subspace of $\mathscr{D}^{\prime}(S ; X)$. For $v \in L_{\mathrm{loc}}^{q}(S ; X)$, we denote by v^{\prime} the derivative in the sense of $\mathscr{D}^{\prime}(S ; X)$ [4]. Throughout the paper the symbol \hookrightarrow means a continuous imbedding.

Our paper is organized as follows. Section 2 is devoted to some preliminary facts needed in the sequel. In Section 3 we state a problem and formulate main results. We prove our main results in Section 4. The last section is devoted to a simple example of applications of our results.

2. Preliminary Results

Let V be a separable reflexive Banach space. Assume that $\mathcal{B}: V \rightarrow V^{\prime}$ is a linear, continuous, symmetric (i.e., $\left\langle\mathcal{B} v_{1}, v_{2}\right\rangle_{V}=\left\langle\mathcal{B} v_{2}, v_{1}\right\rangle_{V} \quad \forall v_{1}, v_{2} \in V$) and monotone (i.e., $\left.\langle\mathcal{B} v, v\rangle_{V} \geqslant 0 \quad \forall v \in V\right)$ operator. Then $\langle\mathcal{B} \cdot, \cdot\rangle_{V}$ is a semiscalar product and $\|\cdot\|_{V_{\mathcal{B}}}:=\langle\mathcal{B} \cdot, \cdot\rangle_{V}^{1 / 2}$ is a seminorm on V. We denote the completion of the seminorm space $\left\{V,\|\cdot\|_{V_{\mathcal{B}}}\right\}$ by $V_{\mathcal{B}}$ and the dual Hilbert space by $V_{\mathcal{B}}^{\prime}$. Note that $V \hookrightarrow V_{\mathcal{B}}$ is dense. By restriction of functionals we have $V_{\mathcal{B}}^{\prime} \hookrightarrow V^{\prime}$. The operator \mathcal{B} has a unique continuous linear extension $\mathcal{B}: V_{\mathcal{B}} \rightarrow V_{\mathcal{B}}^{\prime}$. The scalar product on $V_{\mathcal{B}}^{\prime}$ satisfies

$$
(w, \mathcal{B} v)_{V_{\mathcal{B}}^{\prime}}=\langle w, v\rangle_{V}, \quad w \in V_{\mathcal{B}}^{\prime}, \quad v \in V
$$

Hence, taking $w=\mathcal{B} v$,

$$
\begin{equation*}
\|\mathcal{B} v\|_{V_{\mathcal{B}}^{\prime}}=\|v\|_{V_{\mathcal{B}}}, \quad v \in V_{\mathcal{B}} . \tag{2.1}
\end{equation*}
$$

We define the norm on the range of $\mathcal{B}: V \rightarrow V^{\prime}$ by

$$
\|w\|_{W}:=\inf \left\{\|v\|_{V}: v \in V, \mathcal{B} v=w\right\}, \quad w \in \operatorname{Rg} \mathcal{B}
$$

The normed linear space $W=\left\{\operatorname{Rg} \mathcal{B},\|\cdot\|_{W}\right\}$ is a reflexive Banach space. Note that $W \hookrightarrow V_{\mathcal{B}}^{\prime}$. These results are due to the books by Showalter [12, 14 .

Throughout the rest of this paper $S:=\mathbb{R}$ or $S:=(-\infty, T]$, where $T<+\infty$, unless the contrary is explicitly stated.

Lemma 2.1. Let $v \in L_{\mathrm{loc}}^{p}(S ; V),(\mathcal{B} v)^{\prime} \in L_{\mathrm{loc}}^{p^{\prime}}\left(S ; V^{\prime}\right)$, where $p \in[2 ;+\infty)$ and $p^{\prime}=p /(p-1)$. Then $v \in C\left(S ; V_{\mathcal{B}}\right)$ and the function $\|v(\cdot)\|_{V_{\mathcal{B}}}$ is absolutely continuous on each closed subinterval of S. Furthermore,

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|v(t)\|_{V_{\mathcal{B}}}^{2}=\left\langle(\mathcal{B} v(t))^{\prime}, v(t)\right\rangle_{V} \quad \text { for a.e. } t \in S \tag{2.2}
\end{equation*}
$$

Proof. Let $t_{1}, t_{2} \in S$ be any numbers such that $t_{1}<t_{2}$. In view of the assumptions we have $v \in L^{p}\left(t_{1}, t_{2} ; V\right)$ and $(\mathcal{B} v)^{\prime} \in L^{p^{\prime}}\left(t_{1}, t_{2} ; V^{\prime}\right)$. With the same proof as that of [14, Proposition 1.2 , p. 106] we obtain $v \in C\left(\left[t_{1}, t_{2}\right] ; V_{\mathcal{B}}\right)$, the function $t \mapsto\|v(t)\|_{V_{\mathcal{B}}}$ is absolutely continuous on $\left[t_{1}, t_{2}\right]$ and 2.2) holds for a.e. $t \in\left[t_{1}, t_{2}\right]$. Since $t_{1}, t_{2} \in S$ are arbitrary, the conclusion of Lemma 2.1 follows.

Lemma 2.2. Let $1<p<+\infty$. Assume that the inclusion $V \hookrightarrow V_{\mathcal{B}}$ is compact and define

$$
U_{p}:=\left\{u \in L_{\mathrm{loc}}^{p}(S ; V):(\mathcal{B} v)^{\prime} \in L_{\mathrm{loc}}^{p^{\prime}}\left(S ; V^{\prime}\right)\right\}
$$

Then the imbedding $U_{p} \hookrightarrow L_{\mathrm{loc}}^{p}\left(S ; V_{\mathcal{B}}\right)$ is compact.
Proof. Let us first prove that $W \hookrightarrow V_{\mathcal{B}}^{\prime}$ is compact. To do this, assume that $\left\{w_{n}\right\}_{n=1}^{+\infty} \subset W$ is any bounded sequence. The definition of the space W implies for each $n \in \mathbb{N}$ the existence of $v_{n} \in V$ such that $w_{n}=\mathcal{B} v_{n}$ and $\left\|v_{n}\right\|_{V}<\left\|w_{n}\right\|_{W}+1$. Since $\left\{w_{n}\right\}_{n=1}^{+\infty}$ is bounded in W, it follows that $\left\{v_{n}\right\}_{n=1}^{+\infty}$ is bounded in V. Then, the compactness of the imbedding $V \hookrightarrow V_{\mathcal{B}}$ implies the existence of a subsequence $\left\{v_{n_{k}}\right\}_{k=1}^{+\infty}$ of $\left\{v_{n}\right\}_{n=1}^{+\infty}$ which is strongly convergent in the space $V_{\mathcal{B}}$. Since the operator $\mathcal{B}: V_{\mathcal{B}} \rightarrow V_{\mathcal{B}}^{\prime}$ is continuous, it follows that $\left\{\mathcal{B} v_{n_{k}}\right\}_{k=1}^{+\infty}$ is strongly convergent in $V_{\mathcal{B}}^{\prime}$. But $w_{n_{k}}=\mathcal{B} v_{n_{k}}, k \in \mathbb{N}$. Thus the sequence $\left\{w_{n_{k}}\right\}_{k=1}^{+\infty}$ is strongly convergent in $V_{\mathcal{B}}^{\prime}$. Hence the imbedding $W \hookrightarrow V_{\mathcal{B}}^{\prime}$ is compact.

Now we show the compactness of the imbedding $U_{p} \hookrightarrow L_{\text {loc }}^{p}\left(S ; V_{\mathcal{B}}\right)$. Let $\left\{u_{n}\right\}_{n=1}^{+\infty}$ be any bounded sequence in U_{p}; that is, for every $t_{1}, t_{2} \in S, t_{1}<t_{2}$, the sequences of restrictions to $\left(t_{1}, t_{2}\right)$ of the elements of $\left\{u_{n}\right\}_{n=1}^{+\infty}$ and $\left\{\left(\mathcal{B} u_{n}\right)^{\prime}\right\}_{n=1}^{+\infty}$ are bounded sequences in $L^{p}\left(t_{1}, t_{2} ; V\right)$ and $L^{p^{\prime}}\left(t_{1}, t_{2} ; V^{\prime}\right)$ respectively. Let $t_{1}, t_{2} \in S$ with $t_{1}<t_{2}$. Since the operator $\mathcal{B}: V \rightarrow W$ is linear and continuous, we have that $\mathcal{B}: L^{p}\left(t_{1}, t_{2} ; V\right) \rightarrow L^{p}\left(t_{1}, t_{2} ; W\right)$ is also linear and continuous (see, e.g., [14]). Thereby, the sequence $\left\{\mathcal{B} u_{n}\right\}_{n=1}^{+\infty}$ is bounded in $L^{p}\left(t_{1}, t_{2} ; W\right)$. The compactness of the imbedding $W \hookrightarrow V_{\mathcal{B}}^{\prime}$, and Lions-Aubin's theorem (see, e.g., [9] or [14, p. 106]), imply the existence of a subsequence $\left\{\mathcal{B} u_{n_{k}}\right\}_{k=1}^{+\infty}$ of $\left\{\mathcal{B} u_{n}\right\}_{n=1}^{+\infty}$, which is strongly convergent in $L^{p}\left(t_{1}, t_{2} ; V_{\mathcal{B}}^{\prime}\right)$. From 2.1) it follows that $\left\{u_{n_{k}}\right\}_{k=1}^{+\infty}$ is strongly convergent in $L^{p}\left(t_{1}, t_{2} ; V_{\mathcal{B}}\right)$. Thus Lemma 2.2 is proved.

Lemma 2.3 ([2, Lemma 1.1]). Let z be a nonnegative absolutely continuous function on each closed subinterval of S and

$$
z^{\prime}(t)+\beta(t) \chi(z(t)) \leqslant 0 \quad \text { for a.e. } t \in S
$$

where $\beta \in L_{\mathrm{loc}}^{1}(S), \beta(t) \geqslant 0$ for a.e. $t \in S, \int_{-\infty} \beta(t) d t=+\infty, \chi \in C([0,+\infty))$, $\chi(0)=0, \chi(\tau)>0$ for $\tau>0$ and $\int^{+\infty} \frac{d \tau}{\chi(\tau)}<+\infty$. Then $z(\cdot) \equiv 0$.
Lemma 2.4 ([3, p. 60). Let $y \in C(S), z \in L_{\mathrm{loc}}^{1}(S)$ be such that

$$
y\left(t_{2}\right)-y\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} z(t) d t \leqslant 0
$$

for any $t_{1}, t_{2} \in S$. Then

$$
y\left(t_{2}\right) \theta\left(t_{2}\right)-y\left(t_{1}\right) \theta\left(t_{1}\right)-\int_{t_{1}}^{t_{2}} y(t) \theta^{\prime}(t) d t+\int_{t_{1}}^{t_{2}} z(t) \theta(t) d t \leqslant 0
$$

for any $\theta \in C^{1}(S)$ and $t_{1}, t_{2} \in S$.

3. Statement of the problem and main results

Throughout this section $S, V, V_{\mathcal{B}}$ and \mathcal{B} are the same as in Section 2 and $p \in$ $(1,+\infty)$. Assume that a family of operators $\mathcal{A}(t, \cdot): V \rightarrow V^{\prime}, t \in S$, is given such that
(i) for each measurable function $v: S \rightarrow V$ the function $w(\cdot)=\mathcal{A}(\cdot, v(\cdot))$ is measurable on S;
(ii) $\mathcal{A}(\cdot, v(\cdot)) \in L_{\text {loc }}^{p^{\prime}}\left(S ; V^{\prime}\right)$ whenever $v \in L_{\text {loc }}^{p}(S ; V)$, where $p^{\prime}=p /(p-1)$.

Consider the problem: for every $f \in L_{\mathrm{loc}}^{p^{\prime}}\left(S ; V^{\prime}\right)$, find a function u in $L_{\mathrm{loc}}^{p}(S ; V) \cap$ $C\left(S ; V_{\mathcal{B}}\right)$ such that

$$
\begin{equation*}
(\mathcal{B} u(t))^{\prime}+\mathcal{A}(t, u(t))=f(t) \quad \text { in } \mathscr{D}^{\prime}\left(S ; V^{\prime}\right) \tag{3.1}
\end{equation*}
$$

We call this problem a Problem without initial conditions for degenerate implicit evolution equation (3.1) or Problem (3.1) for short.

Theorem 3.1 (Uniqueness). Assume that $p>2$ and
(iii) for a.e. $t \in S$ and each $v, w \in V, v \neq w$,

$$
\langle\mathcal{A}(t, v)-\mathcal{A}(t, w), v-w\rangle_{V}>\gamma(t) \varphi\left(\|v-w\|_{V_{\mathcal{B}}}^{2}\right),
$$

where $\gamma \in L_{\mathrm{loc}}^{1}(S), \gamma(t) \geqslant 0$ for a.e. $t \in S, \int_{-\infty}^{a} \gamma(\tau) d \tau=+\infty$ for some $a \in S, \varphi \in C([0,+\infty)), \varphi(0)=0, \varphi(\tau)>0$ for $\tau>0$ and $\int_{1}^{+\infty} \frac{d \tau}{\varphi(\tau)}<+\infty$.
Then there is at most one solution of Problem (3.1).
Remark 3.2. Clearly, conditions of Theorem 3.1 are satisfied by the functions $\gamma(t) \equiv \gamma_{0}, t \in S$, and $\varphi(\tau)=\tau^{\mu}, \tau \geqslant 0$, where $\gamma_{0}>0$ and $\mu>1$ are some constants.

Theorem 3.3 (Existence). Let $p>2$ and suppose the embedding $V \hookrightarrow V_{\mathcal{B}}$ is compact. Assume that
(iv) there exist $\alpha_{1} \in L_{\mathrm{loc}}^{\infty}(S)$ and $\alpha_{2} \in L_{\mathrm{loc}}^{p^{\prime}}(S), p^{\prime}=p /(p-1)$, such that

$$
\|\mathcal{A}(t, v)\|_{V^{\prime}} \leqslant \alpha_{1}(t)\|v\|_{V}^{p-1}+\alpha_{2}(t), \quad v \in V \text {, a.e. } t \in S
$$

(v) $\left\langle\mathcal{A}\left(t, v_{1}\right)-\mathcal{A}\left(t, v_{2}\right), v_{1}-v_{2}\right\rangle_{V} \geqslant 0$ for all $v_{1}, v_{2} \in V$, a.e. $t \in S$;
 $\beta_{2} \in L_{\mathrm{loc}}^{1}(S)$ such that

$$
\langle\mathcal{A}(t, v), v\rangle_{V} \geqslant \beta_{1}(t)\|v\|_{V}^{p}-\beta_{2}(t), \quad v \in V \text {, a.e. } t \in S
$$

(vii) for almost every $t \in S$ and every vectors $v_{1}, v_{2} \in V$ the real-valued function $s \mapsto\left\langle\mathcal{A}\left(t, v_{1}+s v_{2}\right), v_{2}\right\rangle_{V}$ is continuous on \mathbb{R}.
Then Problem (3.1) has at least one solution and each its solution for any numbers $t_{1}, t_{2} \in S\left(t_{1}<t_{2}\right), \delta>0$, satisfies the estimate

$$
\begin{align*}
& \max _{t \in\left[t_{1}, t_{2}\right]}\|u(t)\|_{V_{\mathcal{B}}}^{2}+\bar{\beta}\left(t_{1}-\delta, t_{2}\right) \int_{t_{1}}^{t_{2}}\|u(t)\|_{V}^{p} d t \\
& \leqslant \tag{3.2}\\
& C_{1}\left(\delta \cdot \bar{\beta}\left(t_{1}-\delta, t_{2}\right)\right)^{\frac{2}{2-p}}+C_{2}\left(\bar{\beta}\left(t_{1}-\delta, t_{2}\right)\right)^{\frac{1}{1-p}} \int_{t_{1}-\delta}^{t_{2}}\|f(t)\|_{V^{\prime}}^{p^{\prime}} d t \\
& \quad+2 \int_{t_{1}-\delta}^{t_{2}} \beta_{2}(t) d t
\end{align*}
$$

where $\bar{\beta}\left(t_{1}-\delta, t_{2}\right)=\operatorname{ess}_{\inf }^{t \in\left[t_{1}-\delta, t_{2}\right]} \beta_{1}(t), C_{1}, C_{2}$ are positive constants depending only on \mathcal{B} and p.

Remark 3.4. The family of operators $\mathcal{A}(t, \cdot)$ satisfies condition (i) in the context of conditions va vii) if we assume that the function $w(\cdot)=\mathcal{A}(\cdot, v)$ is weakly measurable on S for each $v \in V$ (see, e.g., [4, 14]). Condition (iii) is an immediate consequence of conditions (i) and (iv).
Theorem 3.5 (Existence and uniqueness). Assume that $p>2$ and the family of operators $\mathcal{A}(t, \cdot): V \rightarrow V^{\prime}, t \in S$, satisfies conditions (iv, vil, vii) and
(viii) there exists $K_{1}>0$ such that for each $v, w \in V, v \neq w$,

$$
\langle\mathcal{A}(t, v)-\mathcal{A}(t, w), v-w\rangle_{V}>K_{1}\|v-w\|_{V_{\mathcal{B}}}^{q}, \quad \text { a.e. } t \in S,
$$

where $q \in(2 ; p]$ is some number.
Then there exists a unique solution of Problem (3.1). Moreover, if u is a solution of Problem (3.1), then for any numbers $t_{1}, t_{2} \in S\left(t_{1}<t_{2}\right)$ and $\delta>0$ we have the estimate

$$
\begin{align*}
& \max _{t \in\left[t_{1}, t_{2}\right]}\|u(t)\|_{V_{\mathcal{B}}}^{2}+\int_{t_{1}}^{t_{2}} \beta_{1}(t)\|u(t)\|_{V}^{p} d t \\
& \leqslant C_{3}\left(\delta \cdot K_{1}\right)^{\frac{2}{2-q}}+C_{4} \int_{t_{1}-\delta}^{t_{2}} \beta_{1}^{\frac{1}{1-p}}(t)\left(\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\|\mathcal{A}(t, 0)\|_{V^{\prime}}^{p^{\prime}}\right) d t \tag{3.3}\\
& \quad+2 \int_{t_{1}-\delta}^{t_{2}} \beta_{2}(t) d t
\end{align*}
$$

where C_{3}, C_{4} are some positive constants depending only on \mathcal{B} and p.
Remark 3.6. Clearly condition viii) is satisfied in the context of the condition
(ix) there exists $K_{2}>0$ such that for every $v, w \in V$,

$$
\langle\mathcal{A}(t, v)-\mathcal{A}(t, w), v-w\rangle_{V} \geqslant K_{2}\|v-w\|_{V}^{p}, \quad \text { a.e. } t \in S .
$$

Corollary 3.7. Let $S=\mathbb{R}$. Suppose that the hypotheses of Theorem 3.5 hold and there exists a constant $C_{5} \geqslant 0$ such that

$$
\sup _{\tau \in \mathbb{R}} \int_{\tau}^{\tau+1}\left(\beta_{1}^{\frac{1}{1-p}}(t)\left(\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\|\mathcal{A}(t, 0)\|_{V^{\prime}}^{p^{\prime}}\right)+\beta_{2}(t)\right) d t \leqslant C_{5}
$$

Then the solution u for Problem (3.1) satisfies

$$
\begin{equation*}
\sup _{\tau \in \mathbb{R}}\|u(\tau)\|_{V_{\mathcal{B}}}+\sup _{\tau \in \mathbb{R}} \int_{\tau}^{\tau+1} \beta_{1}(t)\|u(t)\|_{V}^{p} d t \leqslant C_{6} \tag{3.4}
\end{equation*}
$$

where $C_{6} \geqslant 0$ is a constant depending only on p, q, K_{1} and C_{5}.
Theorem 3.8. Let $S=\mathbb{R}$ and the assumptions of Theorem 3.5 hold. Suppose that there exists a number $\sigma>0$ such that $\mathcal{A}(t+\sigma, v)=\mathcal{A}(t, v)$ and $f(t+\sigma)=f(t)$ for any $v \in V$ and a.e. $t \in \mathbb{R}$. Then Problem (3.1) has a unique solution. Moreover, this solution is σ-periodic (that is, $u(t+\sigma)=u(t)$ for a.e. $t \in \mathbb{R}$) and satisfies the estimate

$$
\begin{align*}
& \max _{t \in[0, \sigma]}\|u(t)\|_{V_{\mathcal{B}}}^{2}+\int_{0}^{\sigma}\|u(t)\|_{V}^{p} d t \tag{3.5}\\
& \leqslant C_{7} \max \left\{\int_{0}^{\sigma}\left(\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\beta_{2}(t)\right) d t,\left(\int_{0}^{\sigma}\left(\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\beta_{2}(t)\right) d t\right)^{2 / p}\right\}
\end{align*}
$$

where C_{7} is some positive constant depending only on p, σ, \mathcal{B} and $\operatorname{ess}_{\inf }^{t \in[0, \sigma]} \beta_{1}(t)$.
Following [8] and [10] we recall some definitions.

Definition 3.9. A subset $Q \subset \mathbb{R}$ is called relatively dense if there exists $l>0$ such that $[a, a+l] \cap Q \neq \varnothing$ for all $a \in \mathbb{R}$.

Let X be a complete seminorm space with the seminorm $\|\cdot\|_{X}$ or a complete metric space with the metric $d_{X}(\cdot, \cdot)$. By $B C(\mathbb{R} ; X)$ we denote the space of all bounded continuous functions $g: \mathbb{R} \rightarrow X$. For any $g \in C(\mathbb{R} ; X)$ and $\varepsilon>0$ define

$$
F_{\varepsilon}(g):=\left\{\sigma \in \mathbb{R}: \sup _{t \in \mathbb{R}}\|g(t+\sigma)-g(t)\|_{X}<\varepsilon\right\}
$$

if X is the seminorm space, and

$$
F_{\varepsilon}(g):=\left\{\sigma \in \mathbb{R}: \sup _{t \in \mathbb{R}} d_{X}(g(t+\sigma), g(t))<\varepsilon\right\}
$$

if X is the metric space.
Definition 3.10. A function $g \in C(\mathbb{R} ; X)$ is said to be Bohr almost periodic if for any $\varepsilon>0$ the set $F_{\varepsilon}(g)$ is relatively dense in \mathbb{R}.

Denote by $C A P(\mathbb{R} ; X)$ the set of all Bohr almost periodic functions $\mathbb{R} \rightarrow X$. Note that $C A P(\mathbb{R} ; X) \subset B C(\mathbb{R} ; X)$.

Let $\left\{Y,\|\cdot\|_{Y}\right\}$ be a Banach space and $q \in[1,+\infty)$. The Banach space of Stepanov bounded on \mathbb{R} functions, with the exponent q, is the space $B S^{q}(\mathbb{R} ; Y)$ which consists of all functions $g \in L_{\mathrm{loc}}^{q}(\mathbb{R} ; Y)$ having finite norm

$$
\|g\|_{S^{q}}^{q}:=\sup _{\tau \in \mathbb{R}} \int_{\tau}^{\tau+1}\|g(t)\|_{Y}^{q} d t
$$

Definition 3.11. The Bochner transform $g^{b}(t, s), t \in \mathbb{R}, s \in[0,1]$, of a function $g(t), t \in \mathbb{R}$, with values in Y, is defined by

$$
g^{b}(t, s):=g(t+s)
$$

Definition 3.12. A function $g \in L_{\mathrm{loc}}^{q}(\mathbb{R} ; Y)$ is called a Stepanov almost periodic function, with the exponent q, if $g^{b} \in C A P\left(\mathbb{R} ; L^{q}(0,1 ; Y)\right)$.

The space of all Stepanov almost periodic functions with values in Y is denoted by $S^{q}(\mathbb{R} ; Y)$. Clearly the following inclusion holds $S^{q}(\mathbb{R} ; Y) \subset B S^{q}(\mathbb{R} ; Y)$.

Denote by $Y_{p, V}$ the space of all operators $A: V \rightarrow V^{\prime}$ such that

$$
\|A(v)\|_{V^{\prime}} \leqslant C_{A}\left(\|v\|_{V}^{p-1}+1\right) \quad \forall v \in V
$$

where $C_{A}>0$ is some constant depending on A. The space $Y_{p, V}$ is a complete metric space with respect to the metric

$$
d_{p, V}\left(A_{1}, A_{2}\right):=\sup _{v \in V} \frac{\left\|A_{1}(v)-A_{2}(v)\right\|_{V^{\prime}}}{\|v\|_{V}^{p-1}+1}, \quad A_{1}, A_{2} \in Y_{p, V}
$$

Theorem 3.13. Let $S=\mathbb{R}$ and $p>2$. Assume that the family of operators $\mathcal{A}(t, \cdot): V \rightarrow V^{\prime}, t \in \mathbb{R}$, belongs to the space $C A P\left(\mathbb{R} ; Y_{p, V}\right)$, satisfies conditions (iv), (vii), (ix) and $f \in S^{p^{\prime}}\left(\mathbb{R} ; V^{\prime}\right)$. Then Problem (3.1) has a unique solution and this solution belongs to the space $C A P\left(\mathbb{R} ; V_{\mathcal{B}}\right) \cap S^{p}(\mathbb{R} ; V)$.

4. Proof main results

We now turn to the proof of Theorems 3.13 .13 and Corollary 3.7 .
Proof of Theorem 3.1. Suppose that u_{1} and u_{2} are two solutions of Problem (3.1), and write $w:=u_{1}-u_{2}$. By taking the difference between (3.1) for $u=u_{1}$ and (3.1) for $u=u_{2}$ we get

$$
\begin{equation*}
(\mathcal{B} w(t))^{\prime}+\mathcal{A}\left(t, u_{1}(t)\right)-\mathcal{A}\left(t, u_{2}(t)\right)=0 \quad \text { in } \quad \mathscr{D}^{\prime}\left(S ; V^{\prime}\right) \tag{4.1}
\end{equation*}
$$

This and condition (ii) give us $(\mathcal{B} w)^{\prime} \in L_{\text {loc }}^{p^{\prime}}\left(S ; V^{\prime}\right)$, so using Lemma 2.1 we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|w(t)\|_{V_{\mathcal{B}}}^{2}=\left\langle(\mathcal{B} w(t))^{\prime}, w(t)\right\rangle_{V} \quad \text { for a.e. } t \in S \tag{4.2}
\end{equation*}
$$

Multiplying (4.1) by w we get

$$
\begin{equation*}
\left\langle(\mathcal{B} w(t))^{\prime}, w(t)\right\rangle_{V}+\left\langle\mathcal{A}\left(t, u_{1}(t)\right)-\mathcal{A}\left(t, u_{2}(t)\right), u_{1}(t)-u_{2}(t)\right\rangle_{V}=0 \tag{4.3}
\end{equation*}
$$

for a.e. $t \in S$. From 4.2 and 4.3 we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|w(t)\|_{V_{B}}^{2}+\left\langle\mathcal{A}\left(t, u_{1}(t)\right)-\mathcal{A}\left(t, u_{2}(t)\right), u_{1}(t)-u_{2}(t)\right\rangle_{V}=0 \quad \text { a.e. on } S \tag{4.4}
\end{equation*}
$$

From (4.4) and (iii) we have

$$
\begin{equation*}
\frac{1}{2} \frac{d y(t)}{d t}+\gamma(t) \varphi(y(t)) \leqslant 0 \quad \text { for a.e. } t \in S \tag{4.5}
\end{equation*}
$$

where $y(t)=\left\|u_{1}(t)-u_{2}(t)\right\|_{V_{\mathcal{B}}}^{2}$. Further, from 4.5 we obtain $y \equiv 0$ on S by Lemma 2.3. This and 4.4 imply

$$
\begin{equation*}
\left\langle\mathcal{A}\left(t, u_{1}(t)\right)-\mathcal{A}\left(t, u_{2}(t)\right), u_{1}(t)-u_{2}(t)\right\rangle_{V}=0 \quad \text { a.e. on } S . \tag{4.6}
\end{equation*}
$$

From (4.6) and (iii) we get $u_{1}(t)=u_{2}(t)$ for a.e. $t \in S$. Theorem 3.1 is proved.
Proof of Theorem 3.3. First we obtain a priori estimate 3.2 for any solution of Problem (3.1). Let u be a solution of Problem (3.1). Hence, using Lemma 2.1. we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|u(t)\|_{V_{\mathcal{B}}}^{2}=\left\langle(\mathcal{B} u(t))^{\prime}, u(t)\right\rangle_{V} \tag{4.7}
\end{equation*}
$$

for a.e. $t \in S$. Take $\theta_{1} \in C^{1}(\mathbb{R})$ with the following properties: $\theta_{1}(t)=0$ if $t \in(-\infty,-1], \theta_{1}(t)=\exp \left(\frac{t^{2}}{t^{2}-1}\right)$ if $t \in(-1,0), \theta_{1}(t)=1$ if $t \in[0,+\infty)$. It is clear that

$$
\begin{equation*}
\sup _{t \in(-1,+\infty)} \frac{\theta_{1}^{\prime}(t)}{\theta_{1}^{\nu}(t)}<C_{8}(\nu) \tag{4.8}
\end{equation*}
$$

where $0<\nu<1, C_{8}(\nu)>0$ is a constant depending only on ν.
Let $t_{1}, t_{2} \in S\left(t_{1}<t_{2}\right), \delta>0$ be any numbers. We define the function $\theta(t):=$ $\theta_{1}\left(\frac{t-t_{1}}{\delta}\right)$ for each $t \in S$. It is clear that $\theta u \in L_{\text {loc }}^{p}(S ; V)$. Multiply equation (3.1) by θu and integrate from $t_{1}-\delta$ to $\tau \in\left[t_{1}, t_{2}\right]$ with respect to t :

$$
\begin{align*}
& \int_{t_{1}-\delta}^{\tau}\left\{\theta(t)\left\langle(\mathcal{B} u(t))^{\prime}, u(t)\right\rangle_{V}+\theta(t)\langle\mathcal{A}(t, u(t)), u(t)\rangle_{V}\right\} d t \tag{4.9}\\
& =\int_{t_{1}-\delta}^{\tau} \theta(t)\langle f(t), u(t)\rangle_{V} d t
\end{align*}
$$

Substituting 4.7 into 4.9 yields

$$
\begin{align*}
& \int_{t_{1}-\delta}^{\tau} \theta(t) \frac{d}{d t}\|u(t)\|_{V_{\mathcal{B}}}^{2} d t+2 \int_{t_{1}-\delta}^{\tau} \theta(t)\langle\mathcal{A}(t, u(t)), u(t)\rangle_{V} d t \\
& =2 \int_{t_{1}-\delta}^{\tau} \theta(t)\langle f(t), u(t)\rangle_{V} d t \tag{4.10}
\end{align*}
$$

Integrating by parts the first term of the left hand side of equality 4.10 we obtain

$$
\begin{align*}
& \|u(\tau)\|_{V_{\mathcal{B}}}^{2}+2 \int_{t_{1}-\delta}^{\tau} \theta(t)\langle\mathcal{A}(t, u(t)), u(t)\rangle_{V} d t \tag{4.11}\\
& =\int_{t_{1}-\delta}^{\tau} \theta^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t+2 \int_{t_{1}-\delta}^{\tau} \theta(t)\langle f(t), u(t)\rangle_{V} d t
\end{align*}
$$

Let us estimate the first term of the right hand side of 4.11 using 4.8) the continuity of the imbedding V in $V_{\mathcal{B}}$ and Young's inequality:

$$
\begin{align*}
\int_{t_{1}-\delta}^{\tau} \theta^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t \leqslant & C_{9} \int_{t_{1}-\delta}^{\tau} \theta^{\prime}(t)\|u(t)\|_{V}^{2} d t \\
\leqslant & C_{9} \int_{t_{1}-\delta}^{\tau} \frac{\theta^{\prime}(t)}{\theta^{2 / p}(t)} \theta^{2 / p}(t)\|u(t)\|_{V}^{2} d t \\
\leqslant & \varepsilon \int_{t_{1}-\delta}^{\tau} \theta(t)\|u(t)\|_{V}^{p} d t \tag{4.12}\\
& +C_{10} \varepsilon^{-\frac{p}{p-2}} \int_{t_{1}-\delta}^{t_{2}}\left(\theta^{\prime}(t) \theta^{-2 / p}(t)\right)^{\frac{p}{p-2}} d t \\
\leqslant & \varepsilon \int_{t_{1}-\delta}^{\tau} \theta(t)\|u(t)\|_{V}^{p} d t+C_{11}(\delta \cdot \varepsilon)^{-\frac{p}{p-2}}
\end{align*}
$$

where $\varepsilon>0$ is any number, $C_{9}, C_{10} C_{11}$ are positive constants depending only on p and \mathcal{B}.

Now we estimate the second term of the right hand side of 4.11) using Young's inequality

$$
\begin{align*}
& 2 \int_{t_{1}-\delta}^{\tau} \theta(t)\langle f(t), u(t)\rangle_{V} d t \\
& \leqslant \eta \int_{t_{1}-\delta}^{\tau} \theta(t)\|u(t)\|_{V}^{p} d t+C_{12} \eta^{\frac{1}{1-p}} \int_{t_{1}-\delta}^{\tau} \theta(t)\|f(t)\|_{V^{\prime}}^{p^{\prime}} d t \tag{4.13}
\end{align*}
$$

where $\eta>0$ is any number and $C_{12}>0$ is a constant depending only on p. Next let us estimate the second term of the left hand side of 4.11 using vi)

$$
\begin{align*}
2 \int_{t_{1}-\delta}^{\tau} \theta(t)\langle\mathcal{A}(t, u(t)), u(t)\rangle_{V} d t \geqslant & 2 \int_{t_{1}-\delta}^{\tau} \theta(t) \beta_{1}(t)\|u(t)\|_{V}^{p} d t-2 \int_{t_{1}-\delta}^{\tau} \theta(t) \beta_{2}(t) d t \\
\geqslant & 2 \bar{\beta}\left(t_{1}-\delta, \tau\right) \int_{t_{1}-\delta}^{\tau} \theta(t)\|u(t)\|_{V}^{p} d t \tag{4.14}\\
& -2 \int_{t_{1}-\delta}^{\tau} \theta(t) \beta_{2}(t) d t
\end{align*}
$$

From 4.11, using 4.12 -4.14 and taking $\varepsilon=\eta=\frac{1}{2} \bar{\beta}\left(t_{1}-\delta, \tau\right)$, we get

$$
\begin{align*}
&\|u(\tau)\|_{V_{\mathcal{B}}}^{2}+\bar{\beta}\left(t_{1}-\delta, \tau\right) \int_{t_{1}-\delta}^{\tau} \theta(t)\|u(t)\|_{V}^{p} d t \\
& \leqslant C_{13}\left(\delta \cdot \bar{\beta}\left(t_{1}-\delta, \tau\right)\right)^{\frac{2}{2-p}}+C_{14}\left(\bar{\beta}\left(t_{1}-\delta, \tau\right)\right)^{\frac{1}{1-p}} \int_{t_{1}-\delta}^{\tau} \theta(t)\|f(t)\|_{V^{\prime}}^{p^{\prime}} d t \tag{4.15}\\
&+2 \int_{t_{1}-\delta}^{\tau} \theta(t) \beta_{2}(t) d t
\end{align*}
$$

where $\delta>0$ is any number, C_{13} and C_{14} are some positive constants depending only on \mathcal{B} and p. Since $\tau \in\left[t_{1}, t_{2}\right]$ is arbitrary, we see that 4.15 implies (3.2).

Second, we construct a sequence of functions approximating a solution for Problem 3.1). We assume without loss of generality that $T>0$ if $S=(-\infty, T]$. Define $S_{k}:=S \cap\{t \in \mathbb{R}: t \geqslant-k\}, k \in \mathbb{N}$. Let us for each $k \in \mathbb{N}$ consider the problem of finding $\hat{u}_{k} \in L_{\text {loc }}^{p}\left(S_{k} ; V\right), \mathcal{B} \hat{u}_{k} \in C\left(S_{k} ; V_{\mathcal{B}}^{\prime}\right)$ such that

$$
\begin{align*}
\left(\mathcal{B} \hat{u}_{k}(t)\right)^{\prime}+\mathcal{A}\left(t, \hat{u}_{k}(t)\right) & =f(t) & & \text { in } \mathscr{D}^{\prime}\left(S_{k} ; V^{\prime}\right) \tag{4.16a}\\
\lim _{t \rightarrow-k} \mathcal{B} \hat{u}_{k}(t) & =0 & & \text { in } V_{\mathcal{B}}^{\prime} . \tag{4.16b}
\end{align*}
$$

The existence and uniqueness of a solution \hat{u}_{k} of problem (4.16) follow from results of [14, Corollary III.6.3]. Let us extend \hat{u}_{k} to $(-\infty,-k]$ by zero and denote this extension by u_{k}. It is clear that u_{k} is a solution of the problem without initial conditions

$$
\begin{equation*}
\left(\mathcal{B} u_{k}(t)\right)^{\prime}+\mathcal{A}\left(t, u_{k}(t)\right)=f_{k}(t) \quad \text { in } \quad \mathscr{D}^{\prime}\left(S ; V^{\prime}\right) \tag{4.17}
\end{equation*}
$$

where $f_{k}(t)=f(t)$ on S_{k} and $f_{k}(t)=\mathcal{A}(t, 0)$ on $(-\infty,-k]$.
For each $k \in \mathbb{N}$ the solution of problem (4.17) satisfies estimate (3.2), where f is replaced by f_{k}. Thus from this estimate and the definition of f_{k} we get

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left\|u_{k}(t)\right\|_{V}^{p} d t \leqslant C_{15}\left(t_{1}, t_{2}\right) \tag{4.18}
\end{equation*}
$$

for any numbers $t_{1}, t_{2} \in S$, where $C_{15}\left(t_{1}, t_{2}\right)>0$ is a constant dependent on t_{1} and t_{2} but independent on k. From this estimate and we obtain

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left\|\mathcal{A}\left(t, u_{k}(t)\right)\right\|_{V^{\prime}}^{p^{\prime}} d t \leqslant C_{16}\left(t_{1}, t_{2}\right) \tag{4.19}
\end{equation*}
$$

where $C_{16}\left(t_{1}, t_{2}\right)>0$ is a constant independent on k. From estimates 4.18) and 4.19 (see, e.g., 9,14) the existence of the subsequence of $\left\{u_{k}\right\}_{k=1}^{+\infty}$ follows, which we hereafter denote by $\left\{u_{k}\right\}_{k=1}^{+\infty}$, such that

$$
\begin{gather*}
u_{k}(\cdot) \xrightarrow{k \rightarrow+\infty} u(\cdot) \quad \text { weakly in } L_{\mathrm{loc}}^{p}(S ; V), \tag{4.20}\\
\mathcal{A}\left(\cdot, u_{k}(\cdot)\right) \xrightarrow{k \rightarrow+\infty} \chi(\cdot) \quad \text { weakly in } L_{\mathrm{loc}}^{p^{\prime}}\left(S ; V^{\prime}\right) . \tag{4.21}
\end{gather*}
$$

Since the operator $\mathcal{B}: V \rightarrow V^{\prime}$ is linear and continuous, it follows that its realization $\mathcal{B}: L_{\mathrm{loc}}^{p}(S ; V) \rightarrow L_{\mathrm{loc}}^{p}\left(S ; V^{\prime}\right)$ is also linear and continuous, and hence weakly continuous. From this and 4.20 we have

$$
\begin{equation*}
\mathcal{B} u_{k}(\cdot) \xrightarrow{k \rightarrow+\infty} \mathcal{B} u(\cdot) \quad \text { weakly in } L_{\mathrm{loc}}^{p}\left(S ; V^{\prime}\right) \text {. } \tag{4.22}
\end{equation*}
$$

Finally we show that u is a solution for Problem (3.1). To see this, let us pass to the limit as $k \rightarrow+\infty$ in 4.17) and use 4.21, 4.22):

$$
\begin{equation*}
(\mathcal{B} u(t))^{\prime}+\chi(t)=f(t) \quad \text { in } \quad \mathscr{D}^{\prime}\left(S ; V^{\prime}\right) \tag{4.23}
\end{equation*}
$$

From 4.23 we have $(\mathcal{B} u)^{\prime} \in L_{\text {loc }}^{p^{\prime}}\left(S ; V^{\prime}\right)$, so by Lemma 2.1 we get $u \in C\left(S ; V_{B}\right)$. It remains to prove only that

$$
\begin{equation*}
\chi(t)=\mathcal{A}(t, u(t)) \quad \text { in } V^{\prime} \text { for a.e. } t \in S \tag{4.24}
\end{equation*}
$$

We will establish 4.24 using the monotonicity method of Browder and Minty.
Let us define

$$
E_{k}=\int_{S} \psi(t)\left\langle\mathcal{A}\left(t, u_{k}(t)\right)-\mathcal{A}(t, v(t)), u_{k}(t)-v(t)\right\rangle_{V} d t, \quad k \in \mathbb{N}
$$

for any $\psi \geqslant 0$ from $\mathscr{D}(S)$ and v from $L_{\mathrm{loc}}^{p}(S ; V)$. From (v) it follows that $E_{k} \geqslant 0$.
Multiplying (4.17) by $\psi u_{k}, k \in \mathbb{N}$, and integrating over S with respect to t, we obtain

$$
\begin{align*}
& \int_{S}\left\{\psi(t)\left\langle\left(\mathcal{B} u_{k}(t)\right)^{\prime}, u_{k}(t)\right\rangle_{V}+\psi(t)\left\langle\mathcal{A}\left(t, u_{k}(t)\right), u_{k}(t)\right\rangle_{V}\right\} d t \\
& =\int_{S} \psi(t)\left\langle f_{k}(t), u_{k}(t)\right\rangle_{V} d t \tag{4.25}
\end{align*}
$$

Then from 4.25, using 4.7 where u is replaced by u_{k} and the definition of f_{k}, after integrating by parts, we have

$$
\begin{align*}
& \int_{S} \psi(t)\left\langle\mathcal{A}\left(t, u_{k}(t)\right), u_{k}(t)\right\rangle_{V} d t \\
& =\frac{1}{2} \int_{S} \psi^{\prime}(t)\left\|u_{k}(t)\right\|_{V_{\mathcal{B}}}^{2} d t+\int_{S} \psi(t)\left\langle f(t), u_{k}(t)\right\rangle_{V} d t . \tag{4.26}
\end{align*}
$$

Let t_{1}, t_{2} be any real numbers such that $\operatorname{supp} \psi^{\prime} \subset\left[t_{1}, t_{2}\right] \subset S$. From 4.20 we obtain

$$
u_{k}(\cdot) \xrightarrow{k \rightarrow+\infty} u(\cdot) \quad \text { weakly in } L^{p}\left(t_{1}, t_{2} ; V\right)
$$

Hence, using the compactness of the imbedding $V \hookrightarrow V_{\mathcal{B}}$ and Lemma 2.2 by dropping to a subsequence and reindexing, we get

$$
u_{k}(\cdot) \xrightarrow{k \rightarrow+\infty} u(\cdot) \quad \text { strongly in } L^{p}\left(t_{1}, t_{2} ; V_{\mathcal{B}}\right) .
$$

This and $p>2$ imply

$$
\begin{equation*}
u_{k}(\cdot) \xrightarrow{k \rightarrow+\infty} u(\cdot) \quad \text { strongly in } L^{2}\left(t_{1}, t_{2} ; V_{\mathcal{B}}\right) . \tag{4.27}
\end{equation*}
$$

From 4.27 we have

$$
\begin{equation*}
\int_{S} \psi^{\prime}(t)\left\|u_{k}(t)\right\|_{V_{\mathcal{B}}}^{2} d t \xrightarrow{k \rightarrow+\infty} \int_{S} \psi^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t \tag{4.28}
\end{equation*}
$$

Passing to the limit as $k \rightarrow+\infty$ in 4.26) and using 4.20, 4.28), we obtain

$$
\begin{align*}
& \int_{S} \psi(t)\left\langle\mathcal{A}\left(t, u_{k}(t)\right), u_{k}(t)\right\rangle_{V} d t \\
& \xrightarrow{k \rightarrow+\infty} \frac{1}{2} \int_{S} \psi^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t+\int_{S} \psi(t)\langle f(t), u(t)\rangle_{V} d t \tag{4.29}
\end{align*}
$$

Now multiply equality 4.23 by ψu_{k} and integrate over S with respect to t. We get

$$
\begin{equation*}
\int_{S} \psi(t)\langle\chi(t), u(t)\rangle_{V}=\frac{1}{2} \int_{S} \psi^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t+\int_{S} \psi(t)\langle f(t), u(t)\rangle_{V} d t \tag{4.30}
\end{equation*}
$$

From 4.29 and 4.30 we have

$$
\begin{equation*}
\int_{S} \psi(t)\left\langle\mathcal{A}\left(t, u_{k}(t)\right), u_{k}(t)\right\rangle_{V} d t \stackrel{k \rightarrow+\infty}{\longrightarrow} \int_{S} \psi(t)\langle\chi(t), u(t)\rangle_{V} d t . \tag{4.31}
\end{equation*}
$$

Using 4.20, 4.21 and 4.31, we deduce

$$
\begin{equation*}
0 \leqslant \lim _{k \rightarrow \infty} E_{k}=\int_{S} \psi(t)\langle\chi(t)-\mathcal{A}(t, v(t)), u(t)-v(t)\rangle_{V} d t \tag{4.32}
\end{equation*}
$$

Setting $v=u-s w$ in 4.32, where $s>0$ and $w \in L_{\mathrm{loc}}^{p}(S ; V)$ is any function, we obtain

$$
\begin{equation*}
\int_{S} \psi(t)\langle\chi(t)-\mathcal{A}(t, u(t)-s w(t)), w(t)\rangle_{V} d t \geqslant 0 \tag{4.33}
\end{equation*}
$$

Passing to limit as $s \rightarrow 0$ in (4.33) and using (vii), we get

$$
\begin{equation*}
\int_{S} \psi(t)\langle\chi(t)-\mathcal{A}(t, u(t)), w(t)\rangle_{V} d t \geqslant 0 \tag{4.34}
\end{equation*}
$$

Since $\psi \geqslant 0$ and w are arbitrary functions from $\mathscr{D}(S)$ and $L_{\mathrm{loc}}^{p}(S ; V)$ respectively, we deduce from (4.34) equality 4.24 , as desired. This completes the proof.

Proof of Theorem 3.5. The uniqueness of a solution for Problem (3.1) follows directly from condition viii and Theorem 3.1 by taking $\gamma(t) \equiv K_{1}, t \in S, \varphi(\tau)=$ $\tau^{q / 2}, \tau \in[0,+\infty)$ (see Remark 3.2).

Estimate (3.3) follows from (4.11) in the same manner as we establish (3.2) by using (4.12), where p and $\|\cdot\|_{V}$ are replaced by q and $\|\cdot\|_{V_{\mathcal{B}}}$ respectively, (4.13), 4.14) and

$$
\begin{aligned}
& \int_{t_{1}-\delta}^{\tau} \theta(t)\langle\mathcal{A}(t, u(t)), u(t)\rangle_{V} d t \\
& \geqslant K_{1} \int_{t_{1}-\delta}^{\tau} \theta(t)\|u(t)\|_{V_{\mathcal{B}}}^{q} d t+\int_{t_{1}-\delta}^{\tau} \theta(t)\langle\mathcal{A}(t, 0), u(t)\rangle_{V} d t
\end{aligned}
$$

The last inequality is an immediate consequence of viii).
Now we prove the existence of a solution for Problem (3.1). By the same argument used in the proof of Theorem 3.3 it is sufficient to show that the sequence $\left\{u_{k}\right\}_{k=1}^{+\infty}$, where $u_{k}(k \in \mathbb{N})$ is a solution of problem 4.17, satisfies

$$
\begin{equation*}
u_{k}(\cdot) \xrightarrow{k \rightarrow+\infty} u(\cdot) \quad \text { strongly in } L^{p}\left(t_{1}, t_{2} ; V_{\mathcal{B}}\right) \tag{4.35}
\end{equation*}
$$

for any $t_{1}, t_{2} \in S$. Multiplying 4.17 by v, where $v \in L_{\mathrm{loc}}^{p}(S ; V)$ is any function, and integrating from t_{1} to t_{2} with respect to t, where $t_{1}, t_{2} \in S,\left(t_{1}<t_{2}\right)$ are any numbers, we obtain

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left\langle\left(\mathcal{B} u_{k}(t)\right)^{\prime}, v(t)\right\rangle_{V} d t+\int_{t_{1}}^{t_{2}}\left\langle\mathcal{A}\left(t, u_{k}(t)\right), v(t)\right\rangle_{V} d t=\int_{t_{1}}^{t_{2}}\left\langle f_{k}(t), v(t)\right\rangle_{V} d t \tag{4.36}
\end{equation*}
$$

Let $l, m \in \mathbb{N}$ be any numbers. Taking the difference between 4.36 for $k=l$ and 4.36) for $k=m$, and then setting $v=u_{l}-u_{m}$, we get

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}}\left\langle\left(\mathcal{B} w_{l m}(t)\right)^{\prime}, w_{l m}(t)\right\rangle_{V} d t+\int_{t_{1}}^{t_{2}}\left\langle\mathcal{A}\left(t, u_{l}(t)\right)-\mathcal{A}\left(t, u_{m}(t)\right), w_{l m}(t)\right\rangle_{V} d t \tag{4.37}\\
& =\int_{t_{1}}^{t_{2}}\left\langle f_{l}(t)-f_{m}(t), w_{l m}(t)\right\rangle_{V} d t
\end{align*}
$$

where $w_{l m}:=u_{l}-u_{m}$. Since $f_{l}(t)=f_{m}(t)$ for a.e. $t \in\left[t_{1}, t_{2}\right]$ whenever $l, m>-t_{1}$, it follows from (4.37), using Lemma 2.1 and condition viii), that

$$
\left\|w_{l m}\left(t_{2}\right)\right\|_{V_{\mathcal{B}}}^{2}-\left\|w_{l m}\left(t_{1}\right)\right\|_{V_{\mathcal{B}}}^{2}+2 K_{1} \int_{t_{1}}^{t_{2}}\left\|w_{l m}(t)\right\|_{V_{\mathcal{B}}}^{q} d t \leqslant 0
$$

From here and Lemma 2.4 in the same manner as was obtained 3.2 we show that for any natural numbers $l, m>-t_{1}+\delta$

$$
\begin{equation*}
\max _{t \in\left[t_{1}, t_{2}\right]}\left\|w_{l m}(t)\right\|_{V_{\mathcal{B}}}^{2} \equiv \max _{t \in\left[t_{1}, t_{2}\right]}\left\|u_{l}(t)-u_{m}(t)\right\|_{V_{\mathcal{B}}}^{2} \leqslant C_{17} \delta^{\frac{2}{2-q}} \tag{4.38}
\end{equation*}
$$

where $\delta>0$ is any number, C_{17} is some positive constant depending only on K_{1}, \mathcal{B} and p.

Thus from 4.38 it follows that $\left\{u_{k}\right\}_{k=1}^{+\infty}$ is a Cauchy sequence in $C\left(\left[t_{1}, t_{2}\right] ; V_{\mathcal{B}}\right)$, and therefore is a Cauchy sequence in $L^{p}\left(t_{1}, t_{2} ; V_{\mathcal{B}}\right)$. Consequently, we conclude from 4.20 and completeness of $L^{p}\left(t_{1}, t_{2} ; V_{\mathcal{B}}\right)$ that 4.35 holds, so the proof is complete.

We remark that the Proof of Corollary 3.7 follows from estimate (3.3).
Proof of Theorem 3.8. Existence and uniqueness of a solution u for Problem (3.1) follows from Theorem 3.5. Note that the function $u(t+\sigma), t \in \mathbb{R}$, is also a solution of this problem. The uniqueness of a solution for Problem 3.1) implies $u(t+\sigma)=u(t)$ for a.e. $t \in \mathbb{R}$. Thus a solution of Problem (3.1) is σ-periodic.

Now we prove estimate (3.5). Let u be a σ-periodic solution for Problem (3.1). Multiplying equation (3.1) by u, using 4.7) and integrating from $t_{1} \in \mathbb{R}$ to $t_{2} \in \mathbb{R}$ $\left(t_{1}<t_{2}\right)$ with respect to t, we obtain

$$
\begin{equation*}
\frac{1}{2} \int_{t_{1}}^{t_{2}} \frac{d}{d t}\|u(t)\|_{V_{\mathcal{B}}}^{2} d t+\int_{t_{1}}^{t_{2}}\langle\mathcal{A}(t, u(t)), u(t)\rangle_{V} d t=\int_{t_{1}}^{t_{2}}\langle f(t), u(t)\rangle_{V} d t \tag{4.39}
\end{equation*}
$$

From 4.39, using (vi) and Young's inequality for the right hand side of 4.39, we get

$$
\begin{align*}
& \left\|u\left(t_{2}\right)\right\|_{V_{\mathcal{B}}}^{2}-\left\|u\left(t_{1}\right)\right\|_{V_{\mathcal{B}}}^{2}+\int_{t_{1}}^{t_{2}} \beta_{1}(t)\|u(t)\|_{V}^{p} d t \tag{4.40}\\
& \leqslant C_{18} \int_{t_{1}}^{t_{2}}\left(\beta_{1}^{-\frac{1}{p-1}}(t)\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\beta_{2}(t)\right) d t
\end{align*}
$$

where $C_{18}>0$ is a constant depending on p. Set $t_{1}=0$ and $t_{2}=\sigma$. Since u is a σ-periodic, from 4.40 it follows that

$$
\begin{equation*}
\int_{0}^{\sigma}\|u(t)\|_{V}^{p} d t \leqslant C_{19} \int_{0}^{\sigma}\left(\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\beta_{2}(t)\right) d t \tag{4.41}
\end{equation*}
$$

where $C_{19}>0$ is a constant depending on p and $\operatorname{ess}^{\inf }{ }_{t \in[0, \sigma]} \beta_{1}(t)$.

Let us take $\theta \in C^{1}(\mathbb{R})$ with the following properties: $\theta(t)=0$ if $t \in(-\infty,-\sigma]$, $\theta(t)=\exp \left(-\frac{t^{2}}{(t+\sigma)^{2}}\right)$ if $t \in(-\sigma, 0), \theta(t)=1$ if $t \in[0,+\infty)$. From 4.40 , setting $t_{1}=-\sigma, t_{2}=\tau \in[0 ; \sigma]$ and using Lemma 2.4 we obtain

$$
\begin{align*}
& \|u(\tau)\|_{V_{\mathcal{B}}}^{2}+\int_{0}^{\tau} \beta_{1}(t)\|u(t)\|_{V}^{p} d t \\
& \leqslant \int_{-\sigma}^{0} \theta^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t+C_{18} \int_{-\sigma}^{\sigma}\left(\beta_{1}^{-\frac{1}{p-1}}(t)\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\beta_{2}(t)\right) d t \tag{4.42}
\end{align*}
$$

Now we estimate the first term of the right hand side of 4.42. Since the imbedding $V \hookrightarrow V_{\mathcal{B}}$ is continuous, from 4.41 we see that

$$
\begin{align*}
\int_{-\sigma}^{0} \theta^{\prime}(t)\|u(t)\|_{V_{\mathcal{B}}}^{2} d t & \leqslant C_{20} \int_{0}^{\sigma}\|u(t)\|_{V}^{2} d t \\
& \leqslant C_{21}\left(\int_{0}^{\sigma}\|u(t)\|_{V}^{p} d t\right)^{2 / p} \tag{4.43}\\
& \leqslant C_{22}\left(\int_{0}^{\sigma}\left(\|f(t)\|_{V^{\prime}}^{p^{\prime}}+\beta_{2}(t)\right) d t\right)^{2 / p}
\end{align*}
$$

where C_{20}, C_{21} and C_{22} are constants depending on p, σ, \mathcal{B} and $\operatorname{ess}^{\inf }{ }_{t \in[0, \sigma]} \beta_{1}(t)$. Thus estimate (3.5) follows from (4.41)-4.43).

Proof of Theorem 3.13. Note that Theorem 3.5 implies the existence and uniqueness of a solution u for Problem (3.1). Define $u_{\sigma}(t):=u(t+\sigma), w_{\sigma}(t):=u(t+\sigma)-$ $u(t), f_{\sigma}(t):=f(t+\sigma)$ and $\mathcal{A}_{\sigma}(t, \cdot):=\mathcal{A}(t+\sigma, \cdot), t \in \mathbb{R}$, for any $\sigma \neq 0$. Clearly u_{σ} is a solution for Problem (3.1) with \mathcal{A} replaced by \mathcal{A}_{σ} and f replaced by f_{σ}.

Taking the difference between (3.1) for $u=u_{\sigma}$ and (3.1) for u we obtain

$$
\begin{equation*}
\left(\mathcal{B} w_{\sigma}(t)\right)^{\prime}+\mathcal{A}_{\sigma}\left(t, u_{\sigma}(t)\right)-\mathcal{A}(t, u(t))=f_{\sigma}(t)-f(t) \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R} ; V^{\prime}\right) \tag{4.44}
\end{equation*}
$$

Let $\theta_{1} \in C^{1}(\mathbb{R})$ be the same as in proof of Theorem 3.3 and $\tau \in \mathbb{R}, \delta>0$ be any numbers. Multiplying (4.44) by θw_{σ}, where $\theta(t)=\theta_{1}\left(\frac{t-\tau}{\delta}\right), t \in \mathbb{R}$, and integrating from $\tau-\delta$ to $\tau+1$ with respect to t we get

$$
\begin{align*}
& \int_{\tau-\delta}^{\tau+1} \theta(t) \frac{d}{d t}\left\|w_{\sigma}(t)\right\|_{V_{\mathcal{B}}}^{2} d t+2 \int_{\tau-\delta}^{\tau+1} \theta(t)\left\langle\mathcal{A}\left(t, u_{\sigma}(t)\right)-\mathcal{A}(t, u(t)), w_{\sigma}(t)\right\rangle_{V} d t \\
& =2 \int_{\tau-\delta}^{\tau+1} \theta(t)\left\langle\mathcal{A}\left(t, u_{\sigma}(t)\right)-\mathcal{A}_{\sigma}\left(t, u_{\sigma}(t)\right), w_{\sigma}(t)\right\rangle_{V} d t \tag{4.45}\\
& \quad+2 \int_{\tau-\delta}^{\tau+1} \theta(t)\left\langle f_{\sigma}(t)-f(t), w_{\sigma}(t)\right\rangle_{V} d t
\end{align*}
$$

From 4.45, using (ix) and the estimates similar to 4.12, 4.13, in the same way as was shown (3.2), we obtain

$$
\begin{align*}
& \left\|w_{\sigma}(\tau+1)\right\|_{V_{\mathcal{B}}}^{2}+\int_{0}^{1}\left\|w_{\sigma}(s+\tau)\right\|_{V}^{p} d s \\
& =\left\|w_{\sigma}(\tau+1)\right\|_{V_{\mathcal{B}}}^{2}+\int_{\tau}^{\tau+1}\left\|w_{\sigma}(t)\right\|_{V}^{p} d t \\
& \leqslant C_{23} \delta^{\frac{2}{2-p}}+C_{24} \int_{\tau-\delta}^{\tau+1}\left\|\mathcal{A}_{\sigma}\left(t, u_{\sigma}(t)\right)-\mathcal{A}\left(t, u_{\sigma}(t)\right)\right\|_{V^{\prime}}^{p^{\prime}} d t \tag{4.46}\\
& \quad+C_{24} \int_{\tau-\delta}^{\tau+1}\left\|f_{\sigma}(t)-f(t)\right\|_{V^{\prime}}^{p^{\prime}} d t
\end{align*}
$$

for any $\tau \in \mathbb{R}$ and $\delta>0$, where C_{23}, C_{24} are some positive constants depending only on \mathcal{B}, K_{2} and p.

Let $\varepsilon>0$ be any number. Fix $\delta \in \mathbb{N}$ large enough that

$$
\begin{equation*}
C_{23} \delta^{\frac{2}{2-p}}<\frac{\varepsilon}{2} \tag{4.47}
\end{equation*}
$$

Since $\mathcal{A} \in B C\left(\mathbb{R} ; Y_{p, V}\right)$, it follows that

$$
\begin{align*}
\sup _{\tau \in \mathbb{R}} \int_{\tau}^{\tau+1}\|\mathcal{A}(t, 0)\|_{V^{\prime}}^{p^{\prime}} d t & \leqslant \sup _{t \in \mathbb{R}}\|\mathcal{A}(t, 0)\|_{V^{\prime}}^{p^{\prime}} \\
& \leqslant \sup _{t \in \mathbb{R}}\left(\sup _{v \in V} \frac{\|\mathcal{A}(t, v)\|_{V^{\prime}}}{\|v\|_{V}^{p-1}+1}\right)^{p^{\prime}} \tag{4.48}\\
& =\sup _{t \in \mathbb{R}}\left(d_{p, V}(\mathcal{A}(t, \cdot), 0)\right)^{p^{\prime}} \leqslant C_{25}
\end{align*}
$$

where C_{25} is some positive constant. Thus 4.48, the assumptions of the theorem and Corollary 3.7 imply

$$
\begin{equation*}
\sup _{\tau \in \mathbb{R}} \int_{\tau}^{\tau+1}\left\|u_{\sigma}(t)\right\|_{V}^{p} d t \leqslant C_{26} \tag{4.49}
\end{equation*}
$$

where $C_{26} \geqslant 0$ is some constant independent on σ. From 4.49 it follows that

$$
\begin{align*}
& \int_{\tau-\delta}^{\tau+1}\left\|\mathcal{A}_{\sigma}\left(t, u_{\sigma}(t)\right)-\mathcal{A}\left(t, u_{\sigma}(t)\right)\right\|_{V^{\prime}}^{p^{\prime}} d t \\
& \leqslant \sup _{t \in \mathbb{R}} \sup _{v \in V} \frac{\left\|\mathcal{A}_{\sigma}(t, v)-\mathcal{A}(t, v)\right\|_{V^{\prime}}^{p^{\prime}}}{\|v\|_{V}^{p}+1} \sum_{i=0}^{\delta} \int_{\tau-i}^{\tau+1-i}\left(\left\|u_{\sigma}(t)\right\|_{V}^{p}+1\right) d t \tag{4.50}\\
& \leqslant C_{27}\left(\sup _{t \in \mathbb{R}} d_{p, V}\left(\mathcal{A}_{\sigma}(t, \cdot), \mathcal{A}(t, \cdot)\right)\right)^{p^{\prime}}
\end{align*}
$$

where C_{27} is positive constant depending only on p, δ and C_{26}. Since $f \in S^{p^{\prime}}\left(\mathbb{R} ; V^{\prime}\right)$, it follows that

$$
\begin{align*}
\int_{\tau-\delta}^{\tau+1}\left\|f_{\sigma}(t)-f(t)\right\|_{V^{\prime}}^{p^{\prime}} d t & =\sum_{i=0}^{\delta} \int_{\tau-i}^{\tau+1-i}\left\|f_{\sigma}(t)-f(t)\right\|_{V^{\prime}}^{p^{\prime}} d t \\
& \leqslant(\delta+1) \sup _{s \in \mathbb{R}} \int_{s}^{s+1}\left\|f_{\sigma}(t)-f(t)\right\|_{V^{\prime}}^{p^{\prime}} d t \tag{4.51}\\
& =(\delta+1)\left\|f_{\sigma}-f\right\|_{S^{p^{\prime}}}^{p^{\prime}}
\end{align*}
$$

Take $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
C_{24}\left(C_{27}+(\delta+1)\right) \varepsilon_{0}^{p^{\prime}}<\frac{\varepsilon}{2} \tag{4.52}
\end{equation*}
$$

Define

$$
U_{\varepsilon}:=\left\{\sigma: \sup _{\tau \in \mathbb{R}}\left\|w_{\sigma}(\tau)\right\|_{V_{\mathcal{B}}}^{2}+\sup _{\tau \in \mathbb{R}} \int_{0}^{1}\left\|w_{\sigma}(t+\tau)\right\|_{V}^{p} d t<\varepsilon\right\}
$$

for any $\varepsilon>0$.
Since $f^{b} \in C A P\left(\mathbb{R} ; L^{p^{\prime}}\left(0,1 ; V^{\prime}\right)\right)$ and $\mathcal{A} \in C A P\left(\mathbb{R} ; Y_{p, V}\right)$, we see that the set $G_{\varepsilon_{0}}:=\left\{\sigma \in \mathbb{R}:\left\|f_{\sigma}-f\right\|_{S^{p^{\prime}}}+\sup _{t \in \mathbb{R}} d_{p, V}\left(\mathcal{A}_{\sigma}(t, \cdot), \mathcal{A}(t, \cdot)\right)<\varepsilon_{0}\right\}$ is relatively dense in \mathbb{R} (see, e.g., [8, Property I.VII]). Then from 4.46, 4.47) and 4.50-4.52) it follows that $\sigma \in U_{\varepsilon}$ whenever $\sigma \in G_{\varepsilon_{0}}$. Thus the proof is complete.

5. Example

Let Ω, Ω_{1} be bounded domains in $\mathbb{R}^{n}, n \in \mathbb{N}$, such that $\Omega_{1} \subset \Omega, \Omega_{0}:=\Omega \backslash \Omega_{1}$, $\partial \Omega$ be a C^{1} manifold, $S:=\mathbb{R}$, and $2<p<+\infty$. Set $V:=W_{0}^{1, p}(\Omega)$, then $V^{\prime}=$ $W^{-1, p^{\prime}}(\Omega)$, where $p^{\prime}=p /(p-1)$. Define the operators $\mathcal{A}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ by

$$
\langle\mathcal{A}(u), v\rangle_{W_{0}^{1, p}(\Omega)}:=\int_{\Omega} \sum_{i=1}^{n}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p-2} \frac{\partial u(x)}{\partial x_{i}} \frac{\partial v(x)}{\partial x_{i}} d x, \quad u, v \in W_{0}^{1, p}(\Omega)
$$

and $\mathcal{B}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ by

$$
\langle\mathcal{B}(u), v\rangle_{W_{0}^{1, p}(\Omega)}:=\int_{\Omega_{1}} u(x) v(x) d x, \quad u, v \in W_{0}^{1, p}(\Omega)
$$

Then $V_{\mathcal{B}} \cong\left\{L^{2}(\Omega),\|\cdot\|_{V_{\mathcal{B}}}\right\}$ and $V_{\mathcal{B}}^{\prime}=L^{2}\left(\Omega_{1}\right)$, which we identify as the subspace of $L^{2}(\Omega)$ whose elements are zero a.e. on Ω_{0} (see, e.g., [12, 14]).

Let $f \in L_{\text {loc }}^{p^{\prime}}\left(\mathbb{R} ; L^{p^{\prime}}(\Omega)\right)$. Then the operators \mathcal{A}, \mathcal{B} and f satisfy the hypothesis of Theorem 3.5 (see, e.g., [2, 14]). Thus there exists a unique generalized solution $u \in L_{\text {loc }}^{p}\left(\mathbb{R} ; W_{0}^{1, p}(\Omega)\right) \cap C\left(\mathbb{R} ; V_{\mathcal{B}}\right)$ of the problem without initial conditions

$$
\begin{array}{rlrl}
\frac{\partial}{\partial t} u(x, t)-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u(x, t)}{\partial x_{i}}\right|^{p-2} \frac{\partial u(x, t)}{\partial x_{i}}\right) & =f(x, t), & & (x, t) \in \Omega_{1} \times \mathbb{R} \\
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u(x, t)}{\partial x_{i}}\right|^{p-2} \frac{\partial u(x, t)}{\partial x_{i}}\right) & =f(x, t), & (x, t) \in \Omega_{0} \times \mathbb{R} \\
u(s, t) & =0, & & (s, t) \in \partial \Omega \times \mathbb{R} \tag{5.1c}
\end{array}
$$

Furthermore, if the set

$$
\left\{\sigma: \sup _{\tau \in \mathbb{R}} \int_{\tau}^{\tau+1} \int_{\Omega}|f(x, t+\sigma)-f(x, t)|^{p^{\prime}} d x d t<\varepsilon\right\}
$$

is relatively dense in \mathbb{R}; that is, if $f \in S^{p^{\prime}}\left(\mathbb{R} ; L^{p^{\prime}}(\Omega)\right)$, then Theorem 3.13 implies that the solution u for problem (5.1) is almost periodic by Stepanov as an element of $B S^{p}\left(\mathbb{R} ; W_{0}^{1, p}(\Omega)\right)$ and by Bohr as an element of $B C\left(\mathbb{R} ; V_{\mathcal{B}}\right)$.

Note that more general examples can be obtained similarly as in [12] and [14] by a corresponding choice of the operators \mathcal{A} and \mathcal{B}.

Acknowledgements. The authors thank to Prof. Showalter for his critical review of the original manuscript and suggestions.

References

[1] D. Bahuguna, R. Shukla; Approximations of solutions to nonlinear Sobolev type evolution equations, Electron. J. Differential Equations, Vol. 2003 (2003), No. 31, 1-16.
[2] M. M. Bokalo; Problem without initial conditions for classes of nonlinear parabolic equations, J. Sov. Math., 51 (1990), No. 3, 2291-2322.
[3] M. M. Bokalo; Well-posedness of problems without initial conditions for nonlinear parabolic variational inequalities, Nonlinear boundary value problems, 8 (1998), 58-63.
[4] H. Gajewski, K. Gröger and K. Zacharias; Nichtlineare operatorgleichungen und operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
[5] Z. Hu; Boundeness and Stepanov's almost periodicity of solutions, Electron. J. Differential Equations, Vol. 2005 (2005), No. 35, 1-7.
[6] K. Kuttler and M. Shillor; Set-valued pseudomonotone mappings and degenerate evolution inclusions, Communications in Contemporary mathematics, Vol. 1 (1999), No. 1, 87-133.
[7] K. Kuttler; Non-degenerate implicit evolution inclusions, Electron. J. Differential Equations, Vol. 2000 (2000), No. 34, 1-20.
[8] B. M. Levitan, V. V. Zhikov; Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge, 1982.
[9] J. L. Lions; Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Dunod, 1969.
[10] A. A. Pankov; Bounded and almost periodic solutions of nonlinear operator differential equations, Kluwer, Dordrecht, 1990.
[11] R. E. Showalter; Partial differential equations of Sobolev-Galpern type, Pacific J. Math., 31 (1969), 787-793.
[12] R. E. Showalter; Hilbert space methods for partial differential equations, Monographs and Studies in Mathematics, Vol. 1, Pitman, London, 1977.
[13] R. E. Showalter; Singular nonlinear evolution equations, Rocky Mountain J. Math., 10 (1980), No. 3, 499-507.
[14] R. E. Showalter; Monotone operators in Banach space and nonlinear partial differential equations, Amer. Math. Soc., Vol. 49, Providence, 1997.
[15] S. Zaidman; A non linear abstract differential equation with almost-periodic solution, Riv. Mat. Univ. Parma, 4 (1984), 331-336.

Mykola Bokalo
Department of Differential Equations, Ivan Franko National University of Lviv, Lviv, Ukraine

E-mail address: mm_bokalo@franko.lviv.ua
Yuriy Dmytryshyn
Department of Differential Equations, Ivan Franko National University of Lviv, Lviv, Ukraine

E-mail address: yuree@yandex.ru

[^0]: 2000 Mathematics Subject Classification. 34A09, 34G20, 35B15, 35K65, 47J35.
 Key words and phrases. Problems without initial conditions; degenerate implicit equations; nonlinear evolution equations; almost periodic solutions.
 (C) 2008 Texas State University - San Marcos.

 Submitted December 15, 2007. Published January 2, 2008.

