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MULTIPLE SOLUTIONS TO A SINGULAR
LANE-EMDEN-FOWLER EQUATION WITH CONVECTION

TERM

CARLOS C. ARANDA, ENRIQUE LAMI DOZO

Abstract. This article concerns the existence of multiple solutions for the

problem

−∆u = K(x)u−α + s(Auβ + B|∇u|ζ) + f(x) in Ω

u > 0 in Ω

u = 0 on ∂Ω ,

where Ω is a smooth, bounded domain in Rn with n ≥ 2, α, β, ζ, A, B and s

are real positive numbers, and f(x) is a positive real valued and measurable
function. We start with the case s = 0 and f = 0 by studying the structure

of the range of −uα∆u. Our method to build K’s which give at least two
solutions is based on positive and negative principal eigenvalues with weight.

For s small positive and for values of the parameters in finite intervals, we find

multiplicity via estimates on the bifurcation set.

1. Introduction

Singular bifurcation problems of the form

−∆u = K(x)u−α + sG(x, u,∇u) + f(x) in Ω
u > 0 in Ω

u = 0 on ∂Ω
(1.1)

where α is a positive number, K(x) is a bounded measurable function, G(x, ·, ·)
a non-negative Carathéodory function, f(x) a non-negative bounded measurable
function and Ω a bounded domain in Rn, are used in several applications. As
examples, we mention: Modelling heat generation in electrical circuits [17], fluid
dynamics [7, 8, 27], magnetic fields [25], diffusion in contained plasma [26], quantum
fluids [18], chemical catalysis [2, 28], boundary layer theory of viscous fluids [37],
super-diffusivity for long range Van der Waal interactions in thin films spreading on
solid surfaces [19], laser beam propagation in gas vapors [31, 32] and plasmas [33],
exothermic reactions [6, 36], cellular automata and interacting particles systems
with self-organized criticality [9], etc.
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Our main concern in this paper is on the existence of multiple solutions for the
problem

−∆u = K(x)u−α + s(Auβ + B|∇u|ζ) + f(x) in Ω
u > 0 in Ω

u = 0 on ∂Ω ,

(1.2)

where Ω is a smooth, bounded domain in Rn with n ≥ 2, α, β, ζ, A, B and s are
real positive numbers and f(x) is a non-negative measurable function.

We start with the case s = 0 and f ≡ 0. The situation with positive K has been
widely studied by several authors. For example in [4, 14, 17, 22, 24, 29], under
different hypothesis on K, they prove the existence and unicity of solutions for
equation (1.2). In Theorem 2.4, we build a family of K’s, such that problem (1.2),
with s = 0, f ≡ 0 and α positive small enough has at least two solutions. We apply
the classical Lyapunov-Schmidt method to the map F : C+ → D,

F (u) = −uα∆u (1.3)

where C+ is defined in (3.4, 3.5) and D is defined in (3.6) to search a bifurcation
point for F (u). This point will be an eigenfunction corresponding to a negative
principal eigenvalue of a linear weighted eigenvalue problem. To prove it, we give a
Lemma concerning the localization of the maximum value of such an eigenfunction
(see Lemma 2.1). We also use a Harnack inequality to establish a necessary estimate
(see Lemma 2.3). A final technical matter is differentiability of F (u) (Lemma 3.1).
To our knowledge there are no previous similar results for (1.2) with s = 0 and
f ≡ 0.

Concerning the existence of at least one solution to (1.1) or (1.2) we may recall:
For K(x) ≡ 1, A = 1, B = 0, f ≡ 0, α > 0 and β > 0 in (1.2), Coclite-G.

Palmieri [13] have shown that there exists 0 < s∗ ≤ ∞ such that this problem (1.2)
has at least one solution for all s ∈ (0, s∗).

Similar results for problem (1.2) can be found in Zhang and Yu [35] under the
conditions K(x) ≡ 1, α > 0, A ≡ 0, B ≡ 1, 0 < ζ ≤ 2 and f(x) equivalent to a
non-negative constant.

In a recent work about (1.1), Ghergu and Rădulescu [20] prove existence and
nonexistence results for a more general singular equation. They study

−∆u = g(u) + λ|∇u|ζ + µf(x, u) in Ω
u > 0 in Ω

u = 0 on ∂Ω ,

(1.4)

where g : (0,∞) → (0,∞) is a Hölder continuous function which is non-increasing
and lims↘0 g(s) = ∞. They prove in [20, Theorem 1.4]) that for ζ = 2, f ≡ 1 and
fixed µ, (1.4) has a unique solution. Under the assumption lim sups↘0 sαg(s) <
+∞, they also prove existence of a bifurcation at infinity for some λ∗ < ∞. In this
article we also obtain bifurcations from infinity at s = 0 (see Theorems 2.7 and
2.8).

Concerning existence of multiple solutions for problem (1.2), Haitao [23], using
a variational method, proves existence of two classical solutions under the assump-
tions K(x) ≡ 1, 0 < α < 1 < β ≤ N+2

N−2 , A = 1 s ∈ (0, s∗) for some s∗ > 0,
B ≡ 0 and f ≡ 0. We remark that our problem (1.2) has not a variational structure
because of the convection term B|∇u|ζ .
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Aranda and Godoy [5] proved the existence of two weak solutions for the problem,
involving the p-laplacian,

−∆pu = g(u) + sG(u) in Ω
u > 0 in Ω

u = 0 on ∂Ω ,

(1.5)

where s > 0 is small enough. This is done under the assumptions

(i) g : (0,∞) → (0,∞) is a locally Lipschitz and non-increasing function such
that lims↘0 g(s) = ∞.

(ii) 1 < p ≤ 2, G is a locally Lipschitz on [0,∞), infs>0 G(s)/sp−1 > 0 and
lims→∞ G(s)/sq < ∞ for some q ∈

(
p− 1, n(p− 1)/(n− p)

]
.

(iii) Ω is a bounded convex domain.

We remark that for p = 2 and using the change of variable v = eu − 1 (see
[20]), we can immediately obtain existence of two classical solutions of the singular
problem with a particular convection term

−∆u =
g(eu − 1)

eu
+ s

G(eu − 1)
eu

+ |∇u|2 in Ω

u > 0 in Ω
u = 0 on ∂Ω ,

for s is small enough. In comparison with this result, Theorems 2.8 and 2.9 give
results on the existence of two classical solutions for ζ 6= 2. This indicates a complex
relation between the convection term, the function f(x) and the domain Ω.

For dimension n = 1 results on multiplicity can be found, for example, in Agarwal
and O’Reagan [1].

To prove Theorems 2.7, 2.8 and 2.9, we apply an ”inverse function” strategy.
We use that problem −∆u = u−α + f(x) in Ω, u = 0 on ∂Ω, u > 0 on Ω (see
Theorem 3.1 in [4]) has a unique solution for f(x) ≥ 0. Moreover the solution
operator defined by H(f) := u is a continuous and compact map from P into P ,
where P is the positive cone in C1(Ω) (see Lemma 3.2 and Lemma 3.3). Therefore,
we may write the problem (1.1) as u = H

(
sG(x, u,∇u) + f(x)

)
.

Properties of H and a classical theorem on nonlinear eigenvalue problems stated
in [3], give existence of an unbounded connected set of solution pairs (s, u), in an
appropriate norm, to problem (1.1). Estimates on this solution set, combined with
nonexistence results, give a bifurcation from infinity at s = 0. We use similar ideas
to establish Theorems 2.8 and 2.9.

2. Statement of the main results

Let us consider the weighted eigenvalue problem

−∆u = λm(x)u in Ω
u = 0 on ∂Ω ,

(2.1)

where Ω is a bounded domain in Rn. Suppose m = m+ − m− in L∞(Ω), where
m+ = max(m, 0), m− = −min(m, 0). Denote

Ω+ = {x ∈ Ω : m(x) > 0}, Ω− = {x ∈ Ω : m(x) < 0}
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and |Ω+|, |Ω−| its Lebesgue measures. It is well known (see [16] for a nice survey)
that if |Ω+| > 0 and |Ω−| > 0, then (2.1) has a double sequence of eigenvalues

· · · ≤ λ−2 < λ−1 < 0 < λ1 < λ2 ≤ . . . ,

where λ1 and λ−1 are simple and the associated eigenfunctions ϕ1 ∈ C(Ω), ϕ−1 ∈
C(Ω) can be taken ϕ1 > 0 on Ω, ϕ−1 > 0 on Ω. Where λ1 and λ−1 are the principal
eigenvalues of (2.1) ϕ1 and ϕ−1 are the associated principal eigenfunctions. Our
first result is as follows.

Lemma 2.1. Suppose m = m+ − m− in L∞(Ω) such that |Ω+| > 0, |Ω−| > 0.
Then the principal eigenfunctions ϕ1 > 0, ϕ−1 > 0 of (2.1) satisfy

‖ϕ1‖L∞(Ω) = ‖ϕ1‖L∞(rmsupp m+, m+dx)

‖ϕ−1‖L∞(Ω) = ‖ϕ−1‖L∞(rmsupp m−, m−dx)

(2.2)

where ‖ϕ1‖L∞(rmsupp m+, m+dx) (respectively ‖ϕ−1‖L∞(rmsupp m−, m−dx)) is the es-
sential supremum on rmsupp m+ with respect to the measure m+dx (respectively
on rmsupp m− w. r. t. m−dx).

Here rmsupp m+ is the support of the distribution m+ in Ω. We take s = 0 in
(1.1) or (1.2) and look for multiple solutions of

−uα∆u = K(x) in Ω
u = 0 on ∂Ω .

(2.3)

We fix p > n and consider K ∈ Lp(Ω). It is shown in [4] that for α > 0, 0 <

K ∈ Lp(Ω), (2.3) has a unique solution u ∈ W 2,p
loc (Ω) ∩ C(Ω). On the other hand,

for α > 0 and K < 0, we deduce from the Maximum Principle that (2.3) has no
solution. Thus, if we want multiple solutions, K should change sign.

We give now two auxiliary results which will provide a family of α and K’s giving
multiple solutions to (2.3) Let λ±j((m)) denote the eigenvalues of the problem
−∆u = λm(x)u in Ω, u = 0 on ∂Ω.

Lemma 2.2. The function

α(t) := − λ1((m+ − tm−))
λ−1((m+ − tm−))

is continuous on (0,∞) and satisfies limt→0+ α(t) = 0 and limt→∞ α(t) = ∞.

Our next lemma says that a weight m with “a positive and a negative bump”
gives a bifurcation point to F (u) for the proof of Theorem 2.4.

Lemma 2.3. Let y+, y− be fixed points of Ω, let δ > 0 be such that the ball
B20δ

(y++y−
2

)
with radius 20δ centered at y++y−

2 is contained in Ω, in such a way
that the distance between y+ and y− is 8δ. If ϕ−1 is the principal positive eigen-
function associated to the principal negative eigenvalue λ−1 and ϕ1 is the principal
positive eigenfunction associated to the principal positive eigenvalue λ1 of the prob-
lem

−∆u = λ(m+(x)− tm−(x))u in Ω
u = 0 on ∂Ω ,

(2.4)

where m(x) = m+(x) − m−(x) ∈ C(Ω), is such that rmsupp m+ = Bδ(y+),
rmsupp m− = Bδ(y−) and m−(x) > 0 in Bδ(y−). Then there exists a positive
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constant ε(m+,m−) > 0 depending on m+, m− such that for all t ∈ (0, ε(m+,m−))∫
Ω

(m+ − tm−)ϕ−1
−1ϕ

3
1dx 6= 0 . (2.5)

We give now a family of α and K providing multiple solutions to (2.3).

Theorem 2.4. Suppose m = m+ − m− as in Lemma 2.3. For t > 0, denote
mt = m+ − tm−. Let λ1(mt) > 0 in R, ϕ1(t) > 0 in C(Ω), λ−1(mt) < 0 in R,
ϕ−1(t) > 0 in C(Ω), be the principal eigenvalues and eigenfunctions of

−∆u = λmt(x)u in Ω
u = 0 on ∂Ω .

Define

α(t) = − λ1(mt)
λ−1(mt)

, t > 0 .

If α = α(t) in (2.3) and

K = K(t, ρ) = λ−1(mt)mtϕ−1(t)α(t)+1 + ρϕ−1(t)

Then (2.3) has at least two solutions for t > 0 and ρ > 0 small enough.

Remark 2.5. The first term in K is a negative function on Ω+, the second a
positive one.

Remark 2.6. For ρ = 0, (α(t), ϕ−1(t)) ∈ R+ ×C(Ω)+ could be a bifurcation pair
for (2.3) since u = ϕ−1 is a solution for α = α(t) and K = K(t, 0).

Now we consider K(x) ≡ 1. Hence for s = 0, (1.1) has a unique solution.
Our next theorem is related to the topological nature of this nonlinear eigenvalue
problem (1.1). Let P be the positive cone in C1(Ω) with its usual norm.

Theorem 2.7. Suppose 0 < α < 1/n, K(x) ≡ 1, G is nonnegative continuous and
let f(x) be a non-negative bounded measurable function. Then, the set of pairs (s, u)
of solutions of (1.1) is unbounded in R+ × P . Moreover, if G(x, η, ξ) ≥ g0 + |ξ|2
where g0 > 0 in R. Then, we have s ≤ 2n/

√
g0r(Ω), where r(Ω) is the inner radius

of Ω. As a consequence, there is bifurcation at infinity for some s∗ < ∞.

Recall that the inner radius of Ω is given by sup{r : Br(x) ⊂ Ω}.
Finally, we obtain two results dealing with multiplicity for our singular elliptic

problem (1.2) with a convection term, as in our title.

Theorem 2.8. Suppose that
(i) 0 < α < 1

n , 1 < β < n+1
n−1 and 0 < ζ < 2

n .
(ii) f ∈ L∞(Ω), f > 0.
(iii) K(x) ≡ 1.
(iv) A = 1 and

0 ≤ B < C
{∫

Ω
fϕ1dx

∫
Ω

ϕ2
1dx∫

Ω
ϕ1dx

}β−1

where ϕ1, λ1 are the principal eigenfunction an principal eigenvalue of the
operator −∆ (−∆ϕ1 = λ1ϕ1) with Dirichlet boundary conditions and C is
a constant depending only in Ω, β, λ1.
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Then there exist 0 < s∗∗ ≤ s∗ < ∞ such that for all s ∈ (0, s∗∗) problem (1.2)
admits at least two solutions and no solutions for s > s∗. Furthermore there is
bifurcation at infinity at s = 0.

For a particular form of f and for K with indefinite sign but in a more restricted
class we have the following result.

Theorem 2.9. Suppose that

(i) 0 < α < 1
n , 1 < β < n+1

n−1 , and ζ < 2
n .

(ii) f = tϕ1, t ≥ B
1

1+α
[
λ1( α

λ1
)

1
1+α + (λ1

α )
α

1+α
]
.

(iii) |K(x)| ≤ Bϕ1+α
1 (x).

(iv) A = 1 and 0 ≤ B < C where C is a constant depending only in λ1, β, B.

Then there exists 0 < s∗∗ ≤ s∗ < ∞ such that for all s ∈ (0, s∗∗) problem (1.2) has
at least two solutions and no solutions for s > s∗. Furthermore there is bifurcation
at infinity for s=0.

We remark that estimate (ii) is needed at the end of the following section.

-

6
‖u(s)‖C1(Ω)

ss∗∗
|

Figure 1. Behaviour of the two branches near s = 0 in Theorem 2.9

3. Auxiliary Results

It is our purpose in this section to prove some preliminary results.

Proof of Lemma 2.1. We set γ > 2. Then from the identity

−∆ϕγ
−1 = γλ−1(m+ −m−)ϕγ

−1 − γ(γ − 1)ϕγ−2
−1 |∇ϕ−1|2

and using that∫
Ω

∆ϕγ
−1dx =

∫
Ω

div∇ϕγ
−1dx =

∫
∂Ω

〈∇ϕγ
−1, n〉dx =

∫
∂Ω

γϕγ−1
−1 〈∇ϕγ

−1, n〉dx = 0,
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where the last equality holds because ϕγ−1
−1 = 0 on ∂Ω. So

−γλ−1

∫
Ω

m−ϕγ
−1dx = −γλ−1

∫
Ω

m+ϕγ
−1dx + γ(γ − 1)

∫
Ω

ϕγ−2
−1 |∇ϕ−1|2dx

≥ γ(γ − 1)
∫

Ω

ϕγ−2
−1 |∇ϕ−1|2dx,

and consequently

γ1/γ(−λ−1)1/γ
( ∫

Ω

m−ϕγ
−1dx

)1/γ

≥ γ1/γ(γ − 1)1/γ
( ∫

Ω

ϕγ−2
−1 |∇ϕ−1|2dx

)1/γ

.

Letting γ →∞, we find

‖ϕ−1‖L∞(rmsupp m−,m−dx) ≥ ‖ϕ−1‖L∞(Ω,|∇ϕ−1|2dx)

where ‖ϕ−1‖L∞(Ω,|∇ϕ−1|2dx) = ess sup Ω|ϕ−1| is taken with respect the measure
|∇ϕ−1|2dx. We observe that −∆ϕ−1 = 0 in Ω− {rmsupp m− ∪ supp m+} to con-
clude that the Lebesgue’s measure of thee set {x ∈ Ω−{rmsupp m−∪rmsupp m+} :
∇ϕ−1(x) = 0} is zero.

From −∆ϕ−1 < 0 in rmsupp m+, we infer that

sup
rmsupp m+

ϕ−1 ≤ sup
∂ rmsupp m+

ϕ−1

and find that

‖ϕ−1‖L∞(Ω,|∇ϕ−1|2dx) ≥ ‖ϕ−1‖L∞(Ω−{rmsupp m+∪rmsupp m−},|∇ϕ−1|2dx)

= ‖ϕ−1‖L∞(Ω−{rmsupp m+∪rmsupp m−})

= ‖ϕ−1‖L∞(Ω−{rmsupp m−});

hence
‖ϕ−1‖L∞(rmsupp m−, m−dx) ≥ ‖ϕ−1‖L∞(Ω−{rmsupp m−})

With the aid of this last expression, we arrive to the desired conclusion. �

Proof of Lemma 2.2. Continuity follows from well known results ([16]). Since m+−
tm− < m+ for all t > 0, we conclude that λ1((m+ − tm−)) > λ1((m+)) ([16]).
Clearly

lim
t→∞

λ−1((m+ − tm−)) = lim
t→∞

1
t
λ−1((

m+

t
−m−)) = 0.

Then limt→∞ α(t) = ∞. Using m+ − tm− > −tm−, we deduce that λ−1((m+ −
tm−)) < λ−1((−tm−)) = 1

t λ−1((−m−)) and therefore

lim
t→0+

λ−1((m+ − tm−)) = −∞ .

Finally, from limt→0+ λ1((m+ − tm−)) = λ1((m+)), we find limt→0+ α(t) = 0. �

Proof of Lemma 2.3. To prove this lemma, we bound t|λ−1((m+ − tm−))|. From
m+−tm− > −tm−, we deduce λ−1((m+−tm−)) < λ−1((−tm)) ([16]) and therefore

−tλ−1((m+ − tm−)) > −λ−1((−m−)) > 0 .

From the equation

−∆ϕ−1 = λ−1(m+ − tm−)ϕ−1 in Ω
ϕ−1 = 0 on ∂Ω ,
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we see that

−∆ϕ−1 = −λ−1(tm− −m+)ϕ−1 in Ω
ϕ−1 = 0 on ∂Ω .

We conclude that

−λ−1((m+ − tm−; Ω)) = λ1((tm− −m+; Ω)) .

Using rmsupp m− ⊂ Ω, it follows that

λ1((tm− −m+; Ω)) ≤ λ1((tm− −m+; rmsupp m−)) = λ1((tm−; rmsupp m−))

Thus, we have

0 < −λ−1((−m−)) < t|λ−1((m+ − tm−; Ω))| < λ1((m−; rmsupp m−)) (3.1)

Our next tool is Harnack inequality. It asserts that if u ∈ W 1,2(Ω) satisfies

−∆u + mu = 0 in Ω
u ≥ 0 on Ω,

then for any ball B4R(y) ⊂ Ω, we have

sup
BR(y)

u ≤ C(N)1+R
√
‖m‖L∞(Ω) inf

BR(y)
u

(see Theorem 8.20 [21]).
Now we are ready to deal with (2.5). We may suppose ‖ϕ−1‖L∞(Ω) = 1. From

Harnack inequality and Lemma 2.1, we find

1 ≤ C(N)1+R
√

t|λ−1| inf
rmsupp m−

ϕ−1 .

Then

t

∫
Ω

m−ϕ−1
−1ϕ

3
1dx ≤ tC(N)1+R

√
t|λ−1|

∫
Ω

m−ϕ3
1dx . (3.2)

Assume the claim in this Lemma false, i. e.,∫
Ω

(m+ − tm−)ϕ−1
−1ϕ

3
1dx = 0 .

Then ∫
Ω

m+ϕ3
1dx ≤

∫
Ω

m+ϕ−1
−1ϕ

3
1dx

= t

∫
Ω

m−ϕ−1
−1ϕ

3
1dx

≤ tC(N)1+R
√

t|λ−1|
∫

Ω

m−ϕ3
1dx .

Thus(
inf

rmsupp m+
ϕ1

)3
∫

rmsupp m+
m+dx ≤ tC(N)1+R

√
t|λ−1|

∫
Ω

m−ϕ3
1dx

≤ tC(N)1+R
√

t|λ−1|
(
sup rmsupp m−ϕ1

)3
∫

rmsupp m−
m−dx .
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Consequently,(
inf

B5R( 1
2 (y++y−))

ϕ1

)3 ≤ tC(N)1+R
√

t|λ−1|
(
sup B5R( 1

2 (y++y−))ϕ1

)3

∫
rmsupp m−

m−dx∫
supp m+ m+dx

Hence

1

C(N)(1+R
√

t|λ−1|)+3+15R
√

max(λ1,tλ1)

∫
rmsupp m+ m+dx∫
rmsupp m−

m−dx
≤ t . (3.3)

For small t, using (3.1), we deduce that (3.3) is a contradiction. �

Recall that the vector space

C(Ω̄)e = {u ∈ C(Ω̄);−se ≤ u ≤ se for some s > 0 in R},
where e is the solution of −∆e = 1 in Ω, e = 0 on ∂Ω, endowed with the norm

||u||e = inf{s > 0;−se ≤ u ≤ se}
is a Banach space [3]. We will use the Banach space

C = W 2,p(Ω) ∩ C(Ω)e (3.4)

for the norm ‖ · ‖C = ‖ · ‖W 2,p(Ω) + ‖ · ‖e. Hence, the cone of positive functions

C+ = W 2,p(Ω) ∩ C(Ω)+e (3.5)

has non empty interior C̊+. We also need

D = {f : fe−α ∈ Lp(Ω)} (3.6)

which is a Banach space for the norm

‖f‖D =
( ∫

Ω

|f |pe−pαdx
)1/p

Note that all principal eigenfunctions are in C̊+.

Lemma 3.1. The map F : C̊+ → D,

F (u) = −uα∆u,

is regular and has first and second derivatives

dF (u)v = −αuα−1v∆u− uα∆v,

d2F (u)[v, h] = −α(α− 1)uα−2vh∆u− αuα−1v∆h− αuα−1h∆v

Proof. Consider

ω(t) =
F (u + tv)− F (u)

t
+ αuα−1v∆u + uα∆v (3.7)

To prove Gateaux differentiability, we need to establish

lim
t→0

‖ω(t)‖C = 0 (3.8)

From the Mean-Value Theorem one has (at almost every x ∈ Ω)

F (u + tv)− F (u) = −
∫ 1

0

d

dξ
{(u + ξtv)α∆(u + ξtv)} dξ

= −t

∫ 1

0

{
α(u + ξtv)α−1v∆(u + ξtv) + (u + ξtv)α∆v

}
dξ .
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Thus

‖ω(t)‖D ≤ ‖
∫ 1

0

αv
{
uα−1∆u− (u + ξtv)α−1∆(u + ξtv)

}
dξ‖D

+ ‖
∫ 1

0

∆v {uα − (u + ξtv)α} dξ‖D .

(3.9)

Using the definition of ‖ · ‖D, Jensen inequality and Fubini Theorem, we obtain

‖
∫ 1

0

∆v{uα − (u + ξtv)α}dξ‖p
D =

∫
Ω

|
∫ 1

0

∆v{uα − (u + ξtv)α}dξ|p e−pαdx

≤
∫ 1

0

dξ

∫
Ω

|∆v{uα − (u + ξtv)α}|pe−pαdx .

A similar estimate is valid for the second term in (3.9) and consequently, the
Lebesgue Dominated-Convergence Theorem implies (3.8). Next we prove conti-
nuity of the map

dGF : C̊+ → L(C,D)
where L(C,D) is provided with the operator norm. Recall that

‖dGF (uj)− dGF (u)‖L(C,D) = sup
v∈C,‖v‖C≤1

‖dGF (uj)v − dGF (u)v‖D .

Furthermore,

‖dGF (uj)v − dGF (u)v‖D = ‖ − αuα−1
j v∆uj − uα

j ∆v + αuα−1v∆u + uα∆v‖D
≤ ‖αv(uα−1∆u− uα−1

j ∆uj)‖D + ‖(uα − uα
j )∆v‖D

≤ ‖αv∆u(uα−1 − uα−1
j )‖D + ‖αvuα−1

j (∆u−∆uj)‖D
+ ‖(uα − uα

j )∆v‖D .

If ‖u− uj‖C , that is |u− uj | ≤ 1
j e in Ω, we prove now that each of these last three

terms tends to zero. From

|u(x)α−1 − uj(x)α−1| = |(α− 1)
∫ 1

0

(ξuj(x) + (1− ξ)u(x))α−2dξ(u(x)− uj(x))|

≤ |1− α|
j

C e(x)α−1

and using |v| ≤ ϕ−1, we get

‖αv∆u(uα−1 − uα−1
j )‖D ≤ C

α|1− α|
j

‖ eα∆u‖D = C
α|1− α|

j
‖∆u‖Lp(Ω) .

Similarly,

‖αvuα−1
j (∆u−∆uj)‖D ≤ C‖∆u−∆uj‖Lp(Ω),

‖(uα − uα
j )∆v‖D ≤ C

α

j
.

This proves continuity of the Gateaux derivative and hence F is Fréchet differen-
tiable. For the second derivative we proceed similarly. �

In [4, Theorem 3.1] it is stated that

−∆u = u−α + f in Ω
u = 0 on ∂Ω

(3.10)
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with non-negative f ∈ Lp(Ω) (p > n), has a unique solution u ∈ W 2,p
loc (Ω) ∩ C(Ω).

Lemma 3.2. Suppose 0 < α < 1
n . Then the solution map of problem (3.10) f → u,

denoted H is well defined from {f ∈ C(Ω) : f(x) ≥ 0, x ∈ Ω} into {u ∈ C1(Ω) :
u(x) ≥ 0, x ∈ Ω, u(x) = 0 and ∂u

∂n (x) < 0, x ∈ ∂Ω}. Moreover H is a continuous
and compact map.

Proof. 0 < α < 1
n allow us to fix p > n such that αp < 1. In the proof of this Lemma

we will use this p. From the proof in [4, Theorem 1], we know that uj = Hfj ≥ w,
where w satisfies

−∆w = u−α
1 in Ω

w = 0 on ∂Ω

and u1 ∈ W 2,p(Ω) is the unique solution of the problem

−∆u1 = u−α
1 + fj in Ω

u1 = 1 on ∂Ω .

Using the Maximum Principle, we have u−α
1 ≤ w−α

1 , where w1 is the solution of
the problem

−∆w1 = fj in Ω
w1 = 1 on ∂Ω .

Using again the Maximum Principle we see that u−α
1 ≤ 1 on x ∈ Ω. We recall a

Uniform Hopf Principle as it is formulated in Diaz-Morel-Oswald [15]. It asserts
that there exists a constant C, depending only on Ω, such that for all f ≥ 0,
f ∈ L1(Ω), each weak solution u of

−∆u = f in Ω
u = 0 on ∂Ω

(3.11)

satisfies

u ≥ C
( ∫

Ω

fe
)
e . (3.12)

Applying this Uniform Hopf Principle, we get

w(x) ≥ C(Ω)
( ∫

Ω

u−α
1 edx

)
e(x) .

Jensen inequality implies( ∫
Ω

u−α
1 edx

)−α

≤
( ∫

Ω

e dx
)α−1( ∫

Ω

uα2

1 edx
)

.

As before, we have u1 ≤ wj where wj is the unique solution of

−∆wj = 1 + fj in Ω
wj = 1 on ∂Ω .

Thus

uj(x)−α ≤ C(Ω)−α
( ∫

Ω

edx
)α−1( ∫

Ω

wα2

j e dx
)
e−α . (3.13)

If fj → f in C(Ω), then there exist a constant C, independent of j, such that

‖u−α
j ‖Lp(Ω) < C .
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Then ‖uj‖W 2,p(Ω) < C, so Rellich-Kondrachov Theorem implies uj → u strongly in
C1(Ω). Using (3.13) we conclude that u−α

j → u−α strongly in Lp(Ω), and therefore
u is a solution of the problem

−∆u = u−α + f in Ω
u = 0 on ∂Ω .

Compactness is deduced from (3.13). �

Lemma 3.3. Suppose L = ∆ + c(x) satisfies the maximum principle and suppose

|K(x)| ≤ Bϕ1+α
1 (x) for some B > 0 in R, (3.14)

where ϕ1 is the principal eigenfunction corresponding to the principal positive eigen-
value of the problem −Lu = λu in Ω, u = 0 on ∂Ω. If f ∈ Lp(Ω), p > n, satisfies

f ≥ t0ϕ1 p. p.

where t0 = B
1

1+α
[
λ1( α

λ1
)

1
1+α + (λ1

α )
α

1+α
]
. Then

−Lu + K(x)u−α = f(x) in Ω
u > 0 in Ω
u = 0 on Ω

(3.15)

has a strong solution u ∈ W 2,p(Ω). Moreover, if f > t0ϕ1 then u > (αB
λ1

)
1

1+α ϕ1

and it is unique within the set {v > (αB
λ1

)
1

1+α ϕ1}. If instead of f we consider
f1 > f2 ≥ tϕ1 in C(Ω) with t > t0, then corresponding solutions u1, u2 in {u ∈
C(Ω) : u ≥ C(t)ϕ1} satisfy u1 > u2.

Proof. Let us consider, for g ∈ L∞(Ω), the solution operator h = (−L)−1g defined
by −Lh = g in Ω, h = 0 on ∂Ω. Then h lies in W 2,p(Ω)∩W 1,p

0 (Ω) for all 1 < p < ∞.
We define

GC = {u ∈ C(Ω) : u ≥ Cϕ1}

If t ≥ t0, then there exists a unique C(t) ≥ (αB
λ1

)
1

1+α satisfying t = λ1C(t) + B
C(t)α .

We prove now that for f ∈ Gt, u ∈ GC(t) the operator

F (u) = (−L)−1(f −Ku−α)

is well defined from GC(t) into GC(t). Moreover, it is continuous for the usual topol-
ogy on C(Ω). Indeed, if u ∈ GC(t) then −Ku−α ≥ −C(t)−αBϕ1 and consequently
f−Ku−α ≥ λ1C(t)ϕ1. Now positivity of L−1 implies (−L)−1(f−Ku−α) ≥ C(t)ϕ1.

To see that F is a continuous map, let (un) ∈ GC(t) be a sequence such that
un → u in C(Ω) , then K(x)un(x)−α → K(x)u(x)−α, pointwise on Ω. Since
|K(x)u−α

n (x)| ≤ C(t)−αBϕ1(x), Lebesgue’s Dominated Convergence Theorem gives
f − Ku−α

n → f − Ku−α in Lp(Ω), 1 < p < ∞. Then the classical Lp theory for
elliptic operators implies

(−L)−1(f −Ku−α
n ) → (−L)−1(f −Ku−α)

in W 2,p(Ω) for all 1 < p < ∞ and then F (un) → F (u) in C(Ω). Moreover F (GC(t))
is a compact set in C(Ω). In fact, we have

‖(−L)−1(f −Ku−α)‖W 2,p(Ω) ≤ C0‖f −Ku−α‖Lp(Ω) ≤ C,
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for all u ∈ GC(t), 1 < p < ∞, then it is clear that F (GC) is compact in C(Ω).
Since GC(t) is a convex closed set, Schauder Fixed Point Theorem provides a fixed
point for F in GC(t), so a solution to (3.15).

Suppose now that for f ∈ Gt there exist two different solutions, u and v of (3.15),
then

−L(u− v) = −K(u−α − v−α)

= αK(
∫ 1

0

(ru + (1− r)v)−α−1 dr)(u− v).

We define m = K
∫ 1

0
(ru + (1 − r)v)−α−1 dr. Thus, we can write, recalling that

L = ∆ + c(x),

∆(u− v) + (c + αm)(u− v) = 0 in Ω
u− v = 0 on ∂Ω .

Since u 6≡ v we may suppose u− v is positive somewhere in Ω. Now, [10, Corollary
1.1] implies that the principal eigenvalue λ1((∆ + c + αm)) of the problem

∆h + (c + αm)h = λh in Ω
h = 0 on ∂Ω,

is a nonpositive number. We recall Lipschitz continuity of this eigenvalue with
respect to L∞-norm of the coefficient function c + αm (see for example [10, Propo-
sition 2.1]) and the estimate |m| ≤ BC(t)−1−α to infer that

|λ1((∆ + c + αm))− λ1((∆ + c))| ≤ ‖c + αm− c‖L∞(Ω) ≤
αB

C(t)1+α

Considering the choice of C(t), we find

0 < λ1 −
αB

C(t)1+α
≤ λ1((∆ + c + αm)),

and this is a contradiction.
If u1 6> u2 in our last assertion, then there exists x0 ∈ Ω such that u2(x0) ≥

u1(x0), and u2 − u1 is a nontrivial solution of

L(u2 − u1) + αm̃(u2 − u1) ≥ 0 in Ω
u2 − u1 = 0 on ∂Ω,

where m̃ is similar to m. From [10, Corollary 1.1] we obtain λ1((∆ + c + αm̃)) ≤ 0
and this is a contradiction, because 0 ≤ m̃ ≤ BC(t)−1−α and as before, we have
λ1((∆ + c + αm̃)) > 0. �

Remark 3.4. When L = ∆, t0 is sharp under condition (3.14) for K = Bϕ1+α
1

and f ∈ {tϕ1 : t > 0}. Indeed

−∆u + Bϕ1+α
1 u−α = tϕ1 in Ω

u = 0 on ∂Ω

implies

t0

∫
Ω

ϕ2
1dx ≤

∫
Ω

(
λ1

u

ϕ1
+ B(

u

ϕ1
)−α

)
ϕ2

1dx = t

∫
Ω

ϕ2
1dx.



14 C. C. ARANDA, E. LAMI D. EJDE-2007/05

4. Proofs

Proof of Theorem 2.4. Consider the map F : C̊+ → D given by F (u) = −uα∆u.
According to Lemma 3.1, dF (u)v = 0 if and only if v satisfies

−∆v = α
∆u

u
v in Ω

v = 0 on ∂Ω .
(4.1)

Suppose m is as in Lemma 2.1 and consider the eigenvalue problem

−∆u = λmu in Ω
u = 0 on ∂Ω .

At u = ϕ−1 and for α = − λ1
λ−1

in (4.1), dF (ϕ−1)v = 0 is equivalent to

−∆v = λ1mv in Ω
v = 0 on ∂Ω

(4.2)

which implies ker dF (ϕ−1) = 〈ϕ1〉. The equation dF (ϕ−1)v = f is equivalent to

−∆v = λ1mv + ϕ−α
−1 f in Ω

v = 0 on ∂Ω
(4.3)

By hypothesis fϕ−α
−1 ∈ Lp(Ω) with p > n, hence the Fredholm alternative yields

that (4.3) has a solution v ∈ H1,2
0 (Ω) if and only if

∫
Ω

ϕ−α
−1 fϕ1dx = 0. If we have a

solution v since m ∈ L∞(Ω) a Brezis-Kato result (see for example Struwe appendix
B [14]) implies that v ∈ C.

We want to solve the equation

F (ϕ−1 + v̂) = F (ϕ−1) + ρϕ−1 (4.4)

Inserting Taylor formula in (4.4),

F (ϕ−1 + v̂) = F (ϕ−1) + dF (ϕ−1)v̂ + Ψ(v̂)

we find
dF (ϕ−1)v̂ + Ψ(v̂) = ρϕ−1 (4.5)

We use now the well known Lyapunov-Schmidt method. First we denote

〈ϕ−α
−1 ϕ1〉⊥C = {w ∈ C :

∫
Ω

wϕ−α
−1 ϕ1dx = 0},

〈ϕ−α
−1 ϕ1〉⊥D = {w ∈ D :

∫
Ω

wϕ−α
−1 ϕ1dx = 0} .

Observe that
∫
Ω

ϕ−1ϕ
−α
−1 ϕ1dx 6= 0, thus we have the decompositions as direct sums

C = 〈ϕ−1〉 ⊕ 〈ϕ−α
−1 ϕ1〉⊥C , D = 〈ϕ−1〉 ⊕ 〈ϕ−α

−1 ϕ1〉⊥D
and consequently if v̂ ∈ D, we get the unique decomposition

v̂ = ŝϕ−1 + w

with w ∈ 〈ϕ−α
−1 ϕ1〉⊥D. Let us denote

P : D → 〈ϕ−1〉, Q : D → 〈ϕ−α
−1 ϕ1〉⊥D
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linear operators such that P v̂ = ŝϕ−1 and Qv̂ = w. We can replace (4.5) by the
equivalent system

QdF (ϕ−1)v̂ + QΨ(v̂) = 0, (4.6)

PΨ(v̂) = ρϕ−1 . (4.7)

To solve (4.6), we define the function

Γ : R× 〈ϕ−α
−1 ϕ1〉⊥C → 〈ϕ−α

−1 ϕ1〉⊥D,

Γ(ŝ, w) = QdF (ϕ−1)(ŝϕ−1 + w) + QΨ(ŝϕ−1 + w) .

This function satisfies

Γ(0, 0) = 0, (4.8)

dwΓ(0, 0)w0 = QdF (ϕ−1)w0, (4.9)

dbsΓ(0, 0) = QdF (ϕ−1)ϕ−1 . (4.10)

The operator dwΓ(0, 0) has inverse from 〈ϕ−α
−1 ϕ1〉⊥C to 〈ϕ−α

−1 ϕ1〉⊥D. The Implicit
Function Theorem applies to Γ: there exist an interval (−s∗, s∗) and a function

W : (−s∗, s∗) → 〈ϕ−α
−1 ϕ1〉⊥C

such that v̂ = sϕ−1 + W (s) solves (4.6), with

W (0) = 0 and W ′(0) = −[QdF (ϕ−1)]−1QdF (ϕ−1)ϕ−1 .

Using Im dF (ϕ−1) = 〈ϕ−α
−1 ϕ1〉⊥D and W ′(0) ∈ 〈ϕ−α

−1 ϕ1〉⊥C , we conclude

dF (ϕ−1)W ′(0) = −dF (ϕ−1)ϕ−1 .

Hence W ′(0) + ϕ−1 ∈ KerdF (ϕ−1) = 〈ϕ1〉. Thus

W ′(0) = rϕ1 − ϕ−1 (4.11)

with r 6= 0 because ϕ−1 6∈ 〈ϕα
−1ϕ1〉⊥. From (4.7), we find

ρ =
∫

Ω

ϕ−1PΨ(sϕ−1 + W (s))dx = 〈ϕ−1, PΨ(sϕ−1 + W (s))〉 .

The function
χ(s) = 〈ϕ−1, PΨ(sϕ−1 + W (s))〉

is regular and has first and second derivatives given by

χ′(s) = 〈ϕ−1, PdΨ(sϕ−1 + W (s))[ϕ−1 + W ′(s)]〉 ,

χ′′(s) = 〈ϕ−1, Pd2Ψ(sϕ−1 + W (s))[ϕ−1 + W ′(s), ϕ−1 + W ′(s)]〉
+ 〈ϕ−1, PdΨ(sϕ−1 + W (s))[W ′′(s)]〉 .

From dΨ(0) = 0 and d2Ψ(0) = d2F (ϕ−1), we obtain

χ′(0) = 0,

χ′′(0) = 〈ϕ−1, Pd2F (ϕ−1)[rϕ1, rϕ1]〉 .

Direct calculations show that

d2F (ϕ−1)[ϕ1, ϕ1] = λ1(1−
λ1

λ−1
)ϕα−1
−1 ϕ2

1m .
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Using the decomposition d2F (ϕ−1)[rϕ, rϕ] = sϕ−1 + w with w ∈ 〈ϕ−α
−1 ϕ1〉⊥D, we

find

s = r2λ1(1−
λ1

λ−1
)

∫
Ω

mϕ−1
−1ϕ

3
1dx∫

Ω
ϕ1−α
−1 ϕ1dx

.

Then χ′′(0) 6= 0 is equivalent to∫
Ω

mϕ−1
−1ϕ

3
1dx 6= 0 . (4.12)

If (4.12) is true, then there exist an nonempty open interval such that the equation
(4.7) has at least two solutions. Lemma 2.3 states the existence of a class m’s
satisfying (4.12). �

Proof of Theorem 2.7. From Lemma 3.2 the operator

F (s, u) := H(sG(x, u,∇u) + f)

is well defined and is continuous, compact from R≥0×P+ to P where P is the cone
of positive functions in C1(Ω) with the usual norm. Furthermore a solution v of
the equation

F (s, v + u∗)− u∗ = v (4.13)
where u∗ is the unique solution of the problem

−∆u∗ = u−α
∗ + f in Ω

u∗ = 0 on ∂Ω
(4.14)

satisfies the equation

−∆(v + u∗) = (v + u∗)−α + sG(x, v + u∗,∇(v + u∗)) + f in Ω
v + u∗ > 0 in Ω

v + u∗ = 0 on ∂Ω .

(4.15)

The operator T (s, v) := F (s, v + u∗)− u∗ is well defined from R≥0 ×P to P and is
a continuous compact operator, moreover T (0, 0) = 0 and since T (0, v) = 0 for all
v ∈ P ∪ {0}, v = 0 is the unique fixed point of T (0, ·). For each σ ≥ 1 and ρ > 0,
we have also that T (0, v) 6= σv for v ∈ P ∩ρ∂B where B denotes the open unit ball
centered at 0 in C1(Ω). Using Theorem 17.1 in Amman’s article [3] there exist a
nonempty set Σ of pairs (s, v) in R≥0×P that solves the equation (4.16). Moreover
Σ is a closed, connected and unbounded subset of R≥0 × P containing (0, 0). The
nonexistence Corollary 1.1 in [34] implies the last affirmation. �

Proof of Theorem 2.8. We start as in the proof of Theorem 2.7. Hence, from
Lemma 3.2, the operator

F (s, u) := H(s(Auβ + B|∇u|ζ) + f)

is well defined, continuous and compact from R≥0×P+ to P where P is the cone of
positive functions in C1(Ω) with the usual norm. We study the fixed point equation

F (s, v + u∗)− u∗ = v (4.16)
where u∗ is the unique solution of

−∆u∗ = u−α
∗ + f in Ω

u∗ = 0 on ∂Ω .
(4.17)
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Moreover if v is a solution of (4.16), v + u∗ is a solution of problem (1.2). Using
Amman’s article [3, Theorem 17.1], we obtain the existence of a nonempty, closed,
connected and unbounded set Σ of pairs (s, v) in R≥0 × P that solves (4.16).

To prove existence of two solutions we obtain a constant C1 and a estimate
C(δ) > 0 for δ > 0 such that:

(a) If (s, u) solves equation (1.2) then s ≤ C1.
(b) If (s, u) solves (1.2) then ‖u‖L∞(Ω) ≤ C(δ) for all s ≥ δ.

Using that Σ is unbounded, the conclusion of Theorem 2.8 follows.
First we prove (a). The function Q(u) = λ1βu− suβ where and 1 < β < ∞, has

a global maximum on the set of positive real numbers at u = (λ1
s )

1
β−1 , furthermore

Q
(
(
λ1

s
)

1
β−1

)
= C(β, λ1)s−

1
β−1

where C(β, λ1) is a strictly positive constant depending only on β and λ1. From
the inequality

λ1βu− suβ ≤ C(β, λ1)s−
1

β−1 .

Using equation (1.2), we deduce

−∆u ≥ λ1βu− C(β, λ1)s−
1

β−1

and therefore

λ1

∫
Ω

uϕ1dx ≥ λ1β

∫
Ω

uϕ1dx− C(β, λ1)s−
1

β−1

∫
Ω

ϕ1dx .

Finally ∫
Ω

uϕ1dx ≤ C(β, λ1)s−
1

β−1

λ1(β − 1)

∫
Ω

ϕ1dx . (4.18)

From (1.2), we have −∆u ≥ f . Using the Uniform Hopf Principle (3.11), (3.12)
and (4.18), it follows that

s ≤
{ C(β, λ1)

∫
Ω

ϕ1dx

λ1(β − 1)C(Ω)
∫
Ω

fϕ1dx
∫
Ω

ϕ2
1dx

}β−1 (4.19)

This is the constant C1 and (a) is proved.
Now we prove (b). We establish a priori bounds for solutions of problem (1.2)

using a Brezis-Turner technique (see [12]). Multiplying (1.2) by ϕ1 and integrating,
we find

λ1

∫
Ω

uϕ1dx = s

∫
Ω

uβϕ1dx + sB
∫

Ω

|∇u|ζϕ1dx +
∫

Ω

u−αϕ1dx +
∫

Ω

fϕ1dx .

From (4.18) it follows that

s

∫
Ω

uβϕ1dx ≤ λ1C(β, λ1)s−
1

β−1

λ1(β − 1)

∫
Ω

ϕ1dx . (4.20)

Using the hypothesis ζ < 2
n and Young inequality, we obtain a q ≥ 1 such that

0 < ζq ≤ 2, 1
q + 1

ϑ+1 = 1, 0 ≤ ϑ < n+1
n−1 and

|∇u|ζu ≤ |∇u|ζq

q
+

uϑ+1

ϑ + 1
≤ |∇u|2 + 1 + uϑu . (4.21)
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Using the assumption

B <
{λ1(β − 1)C(Ω)

∫
Ω

fϕ1dx
∫
Ω

ϕ2
1dx

C(β, λ1)
∫
Ω

ϕ1dx

}β−1
,

inequalities (4.19), (4.21), and multiplying (1.2) by u and then integrating, we find

C1

∫
Ω

|∇u|2dx ≤ s

∫
Ω

uβu dx + sC2

∫
Ω

uϑu dx + C3‖u‖H1
0 (Ω) + C4 , (4.22)

where Ci for i = 1, . . . 4 are positive constants independent of s. Using Hölder
inequality, (4.20) and the fact that if 1 < β < n+1

n−1 then for all ε > 0 there exist a

positive constant Cε such that for all s > 0 holds sβ ≤ εs
n+1
n−1 + Cε, we deduce∫

Ω

uβu dx =
∫

Ω

uγβϕγ
1u(1−γ)βϕ−γ

1 u dx

≤
( ∫

Ω

uβϕ1dx
)γ( ∫

Ω

uβϕ
−γ
1−γ

1 u
1

1−γ dx
)1−γ

≤
(
Cs−1− 1

β−1
)γ

( ∫
Ω

uβ(
u

ϕγ
1

)
1

1−γ dx
)1−γ

≤ Cs−γ− γ
β−1

{
ε1−γ

( ∫
Ω

u
n+1
n−1+ 1

1−γ

ϕ
γ

1−γ

1

dx
)1−γ

+ C1−γ
ε

( ∫
Ω

(
u

ϕγ
1

)
1

1−γ dx
)1−γ}

.

For γ = 2/(n + 1), we find∫
Ω

uβu dx ≤ Cs−γ− γ
β−1 ε1−γ

( ∫
Ω

( u

ϕ
1/(n+1)
1

)2 n+1
n−1 dx

) n−1
2(n+1) 2

+ Cs−γ− γ
β−1 C1−γ

ε

( ∫
Ω

( u

ϕ
2/(n+1)
1

) n+1
n−1 dx

)n−1
n+1

.

Since
1

2n+1
n−1

=
1
2
− 1

n
+

1
n+1

n
,

1
q

=
1
2
− 1

n
+

2
n+1

n
,

with q > n+1
n−1 , we apply Hardy-Sobolev inequality in [12, Lemma 2.2],

‖ v

ϕτ
1

‖Lq(Ω) ≤ C‖v‖H1
0 (Ω) for all v in H1

0 (Ω)

where C is a non-negative constant, 0 ≤ τ ≤ 1, 1
q = 1

2 −
1
n + τ

n , ϕ1 is the prin-
cipal eigenfunction of the operator −∆ (−∆ϕ1 = λ1ϕ1) with Dirichlet boundary
condition, and the Hölder inequality to obtain∫

Ω

uβu dx ≤ Cs−γ− γ
β−1

{
ε1−γ‖∇u‖2L2(Ω) + C1−γ

ε ‖∇u‖L2(Ω)

}
.

From (4.22), we conclude that

C1‖∇u‖2L2(Ω) ≤ Cs1−γ− γ
β−1

{
ε1−γ‖∇u‖2L2(Ω) + C1−γ

ε ‖∇u‖L2(Ω)

}
+C‖∇u‖L2(Ω) + C(δ) , (4.23)
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where C is a non-negative constant independent of s. The condition β < n+1
n−1

implies

1− γ − γ

β − 1
=

n− 1
n + 1

− 2
(n + 1)(β − 1)

< 0 .

Therefore if s ≥ δ, we can choose ε > 0 such that

Cs1−γ− γ
β−1 ε1−γ ≤ C1

2
.

It now follows from (4.23) that
C1

2
‖∇u‖2L2(Ω) ≤ C{1 + C1−γ

ε s1−γ− γ
β−1 }‖∇u‖L2(Ω) + C(δ) . (4.24)

Finally if u is a solution of the problem (1.2) with s > δ > 0, there exists a constant
C(δ) > 0 such that ‖u‖H1,2

0 (Ω) < C(δ) and using classical Hölder estimates for weak
solutions (see [21]) and Sobolev imbedding theorem we conclude the proof of (b).
The proof is complete. �

Proof of Theorem 2.9. From Lemma 3.3, the problem

−∆u = K(x)u−α + f in Ω
u = 0 on ∂Ω

under the conditions |K(x)| ≤ Bϕ1+α
1 (x) for some B > 0 in R, f > t0ϕ1 where

t0 = B
1

1+α
[
λ1( α

λ1
)

1
1+α +(λ1

α )
α

1+α
]
, has a unique strong solution u ∈ W 2,p(Ω) within

the set {v > (αB
λ1

)
1

1+α ϕ1}. Furthermore if we denote H the solution map f → u,
it is a continuous and compact map from the set {f ∈ C1(Ω) : f > t0ϕ1} to
{u ∈ C1(Ω) : u > (αB

λ1
)

1
1+α ϕ1} (see Lemma 3.3). Hence the map

F (s, u) = H(s(uβ + |∇u|ζ) + tϕ1).

with t ≥ t0 is well from R≥0 × P to P , where P is the cone of positive functions in
C1(Ω). Like in the proof of previous theorems, we study the fixed point equation

F (s, u + u∗)− u∗ = u , (4.25)

where u∗ is the unique solution in in the set {v > (αB
λ1

)ϕ1} (see Lemma 3.3)

−∆u∗ = Ku−α
∗ + tϕ1 in Ω

u∗ = 0 on ∂Ω .

If (s, u) solves (4.25) then (s, u + u∗) solves equation (1.2). Now using again
the Corollary 17.2 in [3], we find a connected, closed unbounded in R × P and
emanating from (0, 0) set Σ of pairs (s, u) satisfying the equation (4.25). Since the
obtained solution u of problem (1.2) satisfies u ≥ (αB

λ1
)

1
1+α ϕ1, we deduce

|K|u−α ≤ B
1

1+α
(λ1

α

) α
1+α ϕ1

and from (1.2), we have

−∆u ≥ suβ ≥ λ1βu− C(β, λ1)s−
1

β−1 .

Multiplying by ϕ1 and integrating, we find

λ1

∫
Ω

uϕ1dx ≥ λ1β

∫
Ω

uϕ1dx− C(β, λ1)s−
1

β−1

∫
Ω

ϕ1dx .
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Thus

(
αB

λ1
)

1
1+α

∫
Ω

ϕ2
1dx ≤

∫
Ω

uϕ1dx ≤ C(β, λ1)s−
1

β−1

λ1(β − 1)

∫
Ω

ϕ1dx .

Consequently,

s ≤
{ C(β, λ1)

λ1(β − 1)
(

λ1

αB
)

1
1+α

∫
Ω

ϕ1dx∫
Ω

ϕ2
1dx

}β−1
.

Recalling that

λ1

∫
Ω

uϕ1dx = s

∫
Ω

uβϕ1dx + t

∫
Ω

ϕ2
1dx−

∫
Ω

K(x)u−αϕ1dx ,

we see that

s

∫
Ω

uβϕ1dx ≤ C(β, λ1)s−
1

β−1

β − 1

∫
Ω

ϕ1dx .

The rest of the proof is similar to that one of Theorem 2.8. �
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