Electronic Journal of Differential Equations, Vol. 2007(2007), No. 05, pp. 1-21.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE SOLUTIONS TO A SINGULAR
LANE-EMDEN-FOWLER EQUATION WITH CONVECTION
TERM

CARLOS C. ARANDA, ENRIQUE LAMI DOZO

ABSTRACT. This article concerns the existence of multiple solutions for the
problem
—Au= K(z)u™® + s(Au® + B|Vul) + f(z) inQ
u>0 inQ
u=0 on 08,

where Q is a smooth, bounded domain in R"™ with n > 2, o, 3, ¢, A, B and s
are real positive numbers, and f(x) is a positive real valued and measurable
function. We start with the case s = 0 and f = 0 by studying the structure
of the range of —u*Awu. Our method to build K’s which give at least two
solutions is based on positive and negative principal eigenvalues with weight.

For s small positive and for values of the parameters in finite intervals, we find
multiplicity via estimates on the bifurcation set.

1. INTRODUCTION
Singular bifurcation problems of the form

—Au = K(z)u™* + sG(x,u, Vu) + f(z) in Q
u>0 in (1.1)
u=0 on 00

where « is a positive number, K(z) is a bounded measurable function, G(x,-, )
a non-negative Carathéodory function, f(z) a non-negative bounded measurable
function and Q a bounded domain in R", are used in several applications. As
examples, we mention: Modelling heat generation in electrical circuits [I7], fluid
dynamics [7, [8, 27], magnetic fields [25], diffusion in contained plasma [26], quantum
fluids [I8], chemical catalysis [2 28], boundary layer theory of viscous fluids [37],
super-diffusivity for long range Van der Waal interactions in thin films spreading on
solid surfaces [19], laser beam propagation in gas vapors [31}, [32] and plasmas [33],
exothermic reactions [6l [36], cellular automata and interacting particles systems
with self-organized criticality [9], etc.
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Our main concern in this paper is on the existence of multiple solutions for the
problem

—Au = K(z)u™® + s(Au® + B|Vul) + f(z) in Q
u>0 in (1.2)
u=0 on 0N,

where Q is a smooth, bounded domain in R™ with n > 2, «, 3, (, A, B and s are
real positive numbers and f(z) is a non-negative measurable function.

We start with the case s = 0 and f = 0. The situation with positive K has been
widely studied by several authors. For example in [4] 14}, 17, 22] 24] 29], under
different hypothesis on K, they prove the existence and unicity of solutions for
equation . In Theorem we build a family of K’s, such that problem ,
with s =0, f = 0 and « positive small enough has at least two solutions. We apply
the classical Lyapunov-Schmidt method to the map F': C* — D,

F(u) = —u*Au (1.3)

where CT is defined in and D is defined in to search a bifurcation
point for F'(u). This point will be an eigenfunction corresponding to a negative
principal eigenvalue of a linear weighted eigenvalue problem. To prove it, we give a
Lemma concerning the localization of the maximum value of such an eigenfunction
(see Lemma/2.1)). We also use a Harnack inequality to establish a necessary estimate
(see Lemma[2.3). A final technical matter is differentiability of F'(u) (Lemma [3.1)).
To our knowledge there are no previous similar results for with s = 0 and
f=o.

Concerning the existence of at least one solution to or (1.2)) we may recall:

For K(z) =1, A=1,8B=0,f=0,a>0and § >0 , Coclite-G.
Palmieri [13] have shown that there exists 0 < s* < oo such that this problem
has at least one solution for all s € (0, s*).

Similar results for problem can be found in Zhang and Yu [35] under the
conditions K(z) =1, >0, A=0,B=1,0< ¢ <2 and f(x) equivalent to a
non-negative constant.

In a recent work about ([L.1), Ghergu and Radulescu [20] prove existence and
nonexistence results for a more general singular equation. They study

—Au = g(u) + M\Vul® + pf(r,u) in Q
u>0 in (1.4)
u=0 on 09,

where g : (0,00) — (0,00) is a Holder continuous function which is non-increasing
and lim\ o g(s) = co. They prove in [20, Theorem 1.4]) that for ( =2, f =1 and
fixed p, has a unique solution. Under the assumption limsup,. os*g(s) <
400, they also prove existence of a bifurcation at infinity for some A\* < co. In this
article we also obtain bifurcations from infinity at s = 0 (see Theorems and
53).

Concerning existence of multiple solutions for problem , Haitao [23], using
a variational method, proves existence of two classical solutions under the assump-
tions K(z) =1, 0<a<1<p <2 A=15c¢€ (0,5 for some s* > 0,
B =0and f =0. We remark that our problem has not a variational structure
because of the convection term B|VulS.
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Aranda and Godoy [5] proved the existence of two weak solutions for the problem,
involving the p-laplacian,
—Apu = g(u) +sG(u) in Q
u>0 inQ (1.5)
u=0 on 0,

where s > 0 is small enough. This is done under the assumptions
(i) g: (0,00) — (0,00) is a locally Lipschitz and non-increasing function such
that limg\ o g(s) = oo.
(i) 1 < p < 2, G is a locally Lipschitz on [0,00), infs~0G(s)/sP~! > 0 and
lim, .0 G(s)/s? < oo for some g € (p— 1,n(p —1)/(n — p)].

(iii) © is a bounded convex domain.

We remark that for p = 2 and using the change of variable v = e* — 1 (see
[20]), we can immediately obtain existence of two classical solutions of the singular
problem with a particular convection term
gler=1)  gler—1)

eu

e’ll,

—Au =

+ s

uw>0 inQ
u=0 on JQ,

+|Vul* in Q

for s is small enough. In comparison with this result, Theorems 2.8 and [2.9] give
results on the existence of two classical solutions for ¢ # 2. This indicates a complex
relation between the convection term, the function f(z) and the domain €.

For dimension n = 1 results on multiplicity can be found, for example, in Agarwal
and O’Reagan [1].

To prove Theorems [2.7] 2.8] and [2.9] we apply an ”inverse function” strategy.
We use that problem —Au = u™ 4+ f(z) in Q, u = 0 on 92, u > 0 on Q (see
Theorem 3.1 in [4]) has a unique solution for f(z) > 0. Moreover the solution
operator defined by H(f) := w is a continuous and compact map from P into P,
where P is the positive cone in C*(Q) (see Lemma [3.2/and Lemma. Therefore,
we may write the problem as u = H(sG(z,u, Vu) + f(2)).

Properties of H and a classical theorem on nonlinear eigenvalue problems stated
in [3], give existence of an unbounded connected set of solution pairs (s,u), in an
appropriate norm, to problem . Estimates on this solution set, combined with
nonexistence results, give a bifurcation from infinity at s = 0. We use similar ideas
to establish Theorems 2.8 and 2.9

2. STATEMENT OF THE MAIN RESULTS
Let us consider the weighted eigenvalue problem
—Au = m(z)u in

u=0 on 0N, (2.1)

where  is a bounded domain in R™. Suppose m = m* —m™ in L>®(Q), where
m* = max(m,0), m~ = —min(m, 0). Denote

Qp ={zeQ:m(x) >0}, Q-={ze:m(z) <0}
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and |Q4], |©2—| its Lebesgue measures. It is well known (see [I6] for a nice survey)
that if |24 ] > 0 and |Q2_| > 0, then (2.1) has a double sequence of eigenvalues

<A< AT <0< A <A <L,

Whgre A1 and A_; are simple and the associated eigenfunctions p; € C’(ﬁ), p_1 €
C(£2) can be taken ¢1 > 0on Q, p_1 > 0on Q. Where A\; and A_; are the principal
eigenvalues of (2.1)) ¢1 and ¢_; are the associated principal eigenfunctions. Our

first result is as follows.

Lemma 2.1. Suppose m = m™ —m™ in L>®(Q) such that Q7] > 0, [Q27| > 0.
Then the principal eigenfunctions @1 >0, p_1 > 0 of satisfy
||()01HL°°(Q) = ||%01 ||L°°(7“777.5uppm+7 mtdz) (2 2)
||<P—1||L<>O(Q) = ||(p—1HL°°(Tmsuppm*, m~dz) )
where ||<p1HL°°(Tmsuppm+, m¥tdz) (TBSPSCtiUCZy ||(10—1HL”(rmsuppn’L*7 m*dz)) is the es-
sential supremum on rmsuppm™ with respect to the measure m*dx (respectively
on rmsuppm= w. 1. t. m_daj).

Here rmsuppm™ is the support of the distribution m™ in Q. We take s = 0 in
(1.1) or (1.2) and look for multiple solutions of
—u*Au=K(z) inQ

u=0 onoN. (2:3)

We fix p > n and consider K € LP(f2). It is shown in [4] that for o > 0, 0 <
K e L*(Q), has a unique solution u € Wlicp(Q) N C(©2). On the other hand,
for « > 0 and K < 0, we deduce from the Maximum Principle that has no
solution. Thus, if we want multiple solutions, K should change sign.

We give now two auxiliary results which will provide a family of « and K’s giving
multiple solutions to Let Ax;((m)) denote the eigenvalues of the problem
—Au = Am(x)u in Q, u =0 on IN.

Lemma 2.2. The function
~ A((m —tm7))

) = =3 (G — o))

is continuous on (0,00) and satisfies lim;_ g+ a(t) =0 and lim;_, o a(t) = oo.

Our next lemma says that a weight m with “a positive and a negative bump”
gives a bifurcation point to F'(u) for the proof of Theorem [2.4

Lemma 2.3. Let yy, y_— be fized points of Q, let § > 0 be such that the ball
Bgog(‘”;y’) with radius 206 centered at y*;y’ is contained in ), in such a way
that the distance between yy and y_ is 8. If w_1 is the principal positive eigen-
function associated to the principal negative eigenvalue A_1 and @1 is the principal
positive eigenfunction associated to the principal positive eigenvalue A1 of the prob-

lem

—Au=AXmT(z) —tm™ (x))u inQ

2.4
u=0 on 0N, (24)

where m(z) = m*(z) — m~(z) € C(Q), is such that rmsuppm™ = Bs(yi),
rmsuppm”~ = Bs(y_) and m~—(xz) > 0 in Bs(y_). Then there exists a positive
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constant e(m™,m~) > 0 depending on m™*, m~ such that for allt € (0,e(m™,m™))

/(m+ —tm™ ) 1pidr #0. (2.5)
Q

We give now a family of « and K providing multiple solutions to ([2.3)).

Theorem 2.4. Suppose m = m™ —m~ as in Lemma . For t > 0, denote
my = mt —tm~. Let \i(m¢) > 0 in R, ¢1(t) > 0 in C(Q), A_1(m¢) < 0 in R,
w_1(t) > 0 in C(Q), be the principal eigenvalues and eigenfunctions of

—Au = Amg(z)u  in Q
u=0 ondQ.

Define
_ )\1 (mt)

at) = 1y t>0.

If a = a(t) in (2.3) and
K = K(t,p) = A1(m)mip 1 ()*DF + pp 1 (t)
Then (2.3) has at least two solutions for t > 0 and p > 0 small enough.

Remark 2.5. The first term in K is a negative function on Q7, the second a
positive one.

Remark 2.6. For p =0, (a(t),p_1(t)) € RT x C(Q)T could be a bifurcation pair
for (2.3) since u = ¢_1 is a solution for @ = a(t) and K = K(t,0).

Now we consider K(z) = 1. Hence for s = 0, (l.1) has a unique solution.
Our next theorem is related to the topological nature of this nonlinear eigenvalue
problem (1.1)). Let P be the positive cone in C1(Q) with its usual norm.

Theorem 2.7. Suppose 0 < a < 1/n, K(z) =1, G is nonnegative continuous and
let f(x) be a non-negative bounded measurable function. Then, the set of pairs (s, u)
of solutions of is unbounded in RT x P. Moreover, if G(z,n,&) > go + |€]?
where go > 0 in R. Then, we have s < 2n/,/gor(§2), where r(§2) is the inner radius
of Q. As a consequence, there is bifurcation at infinity for some s, < 00.

Recall that the inner radius of € is given by sup{r : B,(z) C Q}.
Finally, we obtain two results dealing with multiplicity for our singular elliptic
problem (1.2]) with a convection term, as in our title.

Theorem 2.8. Suppose that
i) 0<a<i l1<p<Zf and0< (<2
(ii) fe L>(Q), f>0.

forda [ pide -1

Joprde
where p1, A1 are the principal eigenfunction an principal eigenvalue of the
operator —A (—Ap1 = A1) with Dirichlet boundary conditions and C is
a constant depending only in Q, B, Ay.

0§l’>’<0{fQ
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Then there exist 0 < s** < s* < oo such that for all s € (0,s**) problem (1.2))
admits at least two solutions and no solutions for s > s*. Furthermore there is
bifurcation at infinity at s = 0.

For a particular form of f and for K with indefinite sign but in a more restricted
class we have the following result.

Theorem 2.9. Suppose that
(i) 0<a<i 1<pg<l and(< 2.

n—1’

(il) f=tor, t > BT [\ (£)T7 + (2)795).

(i) |K(z)| < Ber™ ().

(iv) A=1 and 0 < B < C where C is a constant depending only in A1, 3, B.
Then there exists 0 < s** < s* < 0o such that for all s € (0, ™) problem has
at least two solutions and no solutions for s > s*. Furthermore there is bifurcation
at infinity for s=0.

We remark that estimate (ii) is needed at the end of the following section.

[u(s)ll o @yt

FIGURE 1. Behaviour of the two branches near s = 0 in Theorem 2.9

3. AUXILIARY RESULTS
It is our purpose in this section to prove some preliminary results.

Proof of Lemma[2.1. We set v > 2. Then from the identity

v

—ApY = A (mt —m7)p) | —(y = 1)1 Vo

and using that

[ actide= [ avverde= [ (Valinide = [ 202 Ve s =0,
Q Q o0 o0
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where the last equality holds because wl}l =0 on 9Q. So
—WL1/ m~ ¢l dr = —le/ m* T dr +y(y - 1)/ 072 Vo1 Pda
Q Q Q

> (v — 1)/§2¢112|Vs0—1|2dx,

and consequently

1/~ _ 1/~
’yl/v(—)\fﬂl/w(/gmiipzldx) Z’YI/W(V_1)1/7</950112|Vg071|2d$> .

Letting v — oo, we find

||SO*1HL°°(Tmsuppm_,m_dI) > H(p*1||L°°(Q,|V<p_1|2dI)
where [[¢_1||L(,|ve_,|2dz) = €sssup glep_1| is taken with respect the measure
|Vp_1|?dz. We observe that —A¢_1 = 0 in Q — {rmsuppm™ Usupp m*} to con-
clude that the Lebesgue’s measure of thee set {x € Q—{rmsuppm=Urmsuppm™} :
Vo_1(x) = 0} is zero.
From —Ap_; < 0 in rmsuppm™, we infer that
sup @1 < sup i

rmsuppmt O rmsupp mt

and find that

lo—1llzoe (9, ve_12de) = 01l Lo (@ {rmsupp m+ Urmsupp m—1},| Vo1 |2dx)
= ng—l||L°°(Qf{rmsuppm*Urmsuppm*})
= |lo-1llzo (@ {rmsuppm-1);
hence
lp—1ll Lo (rmsuppm—, m—de) = |9-1ll Lo (= {rmsuppm—1})
With the aid of this last expression, we arrive to the desired conclusion. ([l

Proof of Lemma[2.3 Continuity follows from well known results ([16]). Since m™ —
tm~ < m* for all t > 0, we conclude that A\i((m™* —tm™)) > A\ ((m™)) ([16]).
Clearly

1 +
lim fx,l((mT —m™)) =0.
Then lim;_ o a(t) = co. Using m* —tm~ > —tm~, we deduce that A_;((m* —

tm™)) < A_1((—tm™)) = 2A_1((—m™)) and therefore

lim A_y((m™ —tm™))

t—o0 T 5% t

tlirél+ A ((mT —tm™)) = —0.
Finally, from lim; o+ A1 ((m* —tm™)) = A1 ((m™)), we find lim;_,o+ a(t) =0. O

Proof of Lemma[2.3 To prove this lemma, we bound ¢|A_1((m* — tm™))|. From
mt—tm~ > —tm~, we deduce A_1 ((m*—tm™)) < A_1((—tm)) ([16]) and therefore

—tA_1((mT —tm™)) > =A_1((-m7)) > 0.
From the equation
~Ap_1=A_1(m" —tm )p_; inQ
p_1=0 ondN,
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we see that

~Ap_1=-A_1(tm™ —mM)p_; inQ

w_1=0 on Q.
We conclude that
At — tm39) = M((tm —m*59)).
Using rmsuppm™ C €, it follows that
A ((tm™ —=m™T5Q)) < M((tm™ —mT;rmsuppm™)) = M ((tm™;rmsuppm ™))
Thus, we have
0< =A_1((—m7)) < tA_1((mT —tm™; Q)| < M((m ™ ;rmsuppm™))  (3.1)
Our next tool is Harnack inequality. It asserts that if u € W12(Q) satisfies
—Au+mu=0 inQ
u >0 on €,
then for any ball Bygr(y) C Q, we have

sup u < C(N)FEVImIz=@ jnf 4
Br(y) Br(y)

(see Theorem 8.20 [21]).

Now we are ready to deal with (2.5). We may suppose [[¢_1[/z~q) = 1. From
Harnack inequality and Lemma we find

1< C(N)HFEVIRl e g

rmsupp m—
Then
[ meelptdn <00 VIS [ st (3:2)
Q Q

Assume the claim in this Lemma false, i. e.,

/Q(m+ —tm™ ) 1pidr =0.

Then
/mﬂp%d:z:ﬁ/mﬂpjg@?dm
Q Q
:t/ m” e 1ptde
Q
StC’(N)HRVt‘/\*ll/m*cp"fdz.
Q
Thus

inf (pl)s/ +m+dm < tO(N)FRVEA-A] / m”@idr
msuppm Q

rmsupp m+

< tC(N)1+RV t[A_1] (Sup rmsuppm*cpl)g/ m~dx .

rmsupp m=
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Consequently,

inf <p1)3 §tC(N)1+RVt‘”\*1|(

SUD (4 ¢
Ban(}(us+y-) Bon( (020 9)

Hence
1 frms“pp me M de <t (3.3)
C(N)(+E tIA_1])+3+15Ry/max(A1,tA1) frmsuppm_ m~dr ~ '
For small ¢, using (3.1]), we deduce that (3.3)) is a contradiction. O

Recall that the vector space
C(Q)e = {u € C(Q); —se < u < se for some s > 0 in R},
where e is the solution of —Ae =1 in , e = 0 on 92, endowed with the norm
[|ulle = inf{s > 0; —se < u < se}

is a Banach space [3]. We will use the Banach space

C=wW*»(Q)NnC(Q). (3.4)
for the norm || - [lc = || - [lw2.r(q) + || - [|e- Hence, the cone of positive functions
ct=w?P( Q) nCcQ)f (3.5)

has non empty interior C*. We also need
D={f:fe*eLl?(Q)} (3.6)

which is a Banach space for the norm

ko = ( [ 1rereas)"”

Note that all principal eigenfunctions are in ct.
Lemma 3.1. The map F : Ct— D,
F(u) = —u®Au,
is reqular and has first and second derivatives
dF (u)v = —ou*"'vAu — u*Av,
d*F(u)[v, h] = —a(a — Du*"2vhAu — au® 'vAh — au® 'hAv
Proof. Consider
F(u+tv) — F(u)

w(t) = ” + au® " wAu + u*Av (3.7)
To prove Gateaux differentiability, we need to establish
lim fw(®)llc =0 (3.8)

From the Mean-Value Theorem one has (at almost every z € Q)
1
d
Fu+tv) — F(u) = —/ & {(u+ &tv)*Au + Etv)} dE
0

1
= —t/ {a(u+ &tv)* A (u+ Etv) + (u+ {tv)*Av} dE .
0
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Thus
1
lw(®)lp < |l / av {u " Au — (u+ o) T A(u + Eto) }d€lp
(3.9)
+||/ Av{u® — (u+ &tw)*} d€||p -
Using the definition of || - ||p, Jensen inequality and Fubini Theorem, we obtain

||/ Avfu® — (u + Etv)* e :/ /Av{u ~ (ut Et0)YdEP e PO da

[ @ |p,—po
S/O d{/ﬂ|Av{u (u+ Etv)*HPe P¥de .

A similar estimate is valid for the second term in (3.9) and consequently, the
Lebesgue Dominated-Convergence Theorem implies (3.8). Next we prove conti-
nuity of the map

dgF :CT — L(C,D)
where L(C, D) is provided with the operator norm. Recall that

ldaF(u;) — daF(u)llLepy = sup |daF(uj)v—deF(uvlp.
veEC, [[vfle<1
Furthermore,
ldaF(uj)v — deF(u)v|p = — au?‘_lquuj —ujAv + au® o Au + u*Av||p

< Jlow(u®™ Au = u§ ™ Aug) [ + [|(u® — uf)Av]lp
< JlawAu(ut — ug “Hllp + [|avuf™ Y(Au — Auy)|p
+ I (u® - U?)AUHD

If ||u — uj||c, that is |[u —u;| < % e in ), we prove now that each of these last three
terms tends to zero. From

1
u(z)* ™ —uy(2)* 7 = [(a - 1)/ (€uj(x) + (1 = Eu(x))* 2dé (u(x) — uj(x))|
0
|1 B Oé‘ elx a—1
S Ce(x)

and using |v| < p_1, we get

all

o _ all—of, . -«
nmmmil—ﬁlmpsojHeAwD=chmwm@

Similarly,
Havu?il(Au — Auj)|lp < Cl|Au — Aujl| Lo (ay,
I~ uf)Aofp < O

This proves continuity of the Gateaux derivative and hence F' is Fréchet differen-
tiable. For the second derivative we proceed similarly. ([l

In [4, Theorem 3.1] it is stated that
“Au=u"*+f inQ

3.10
u=0 on 9Jf) ( )
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with non-negative f € LP(Q) (p > n), has a unique solution u € mep(Q) no(Q).

Lemma 3.2. Suppose 0 < a < % Then the solution map of problem f—u,
denoted H is well defined from {f € C(Q) : f(z) > 0, x € Q} into {u € C1(Q) :
u(z) >0,z €Q, ulz) =0 and %(w) < 0, x € 00}. Moreover H is a continuous
and compact map.

Proof. 0 < a < % allow us to fix p > n such that ap < 1. In the proof of this Lemma
we will use this p. From the proof in [4, Theorem 1], we know that u; = H f; > w,
where w satisfies

—Aw=u;* inQ
w=0 on
and u; € W2P(Q) is the unique solution of the problem
—Aup =u; "+ f; inQ
up =1 on 9.
Using the Maximum Principle, we have u;* < w; ®, where wy is the solution of
the problem
—A’U)l = fj in
wy =1 ondN.
Using again the Maximum Principle we see that u;“ < 1 on x € Q. We recall a
Uniform Hopf Principle as it is formulated in Diaz-Morel-Oswald [I5]. It asserts

that there exists a constant C', depending only on 2, such that for all f > 0,

f € LY(Q), each weak solution u of
—Au=f in{ 1
u=0 ondQ (3.11)

satisfies

uZC(/Qfe)e. (3.12)

Applying this Uniform Hopf Principle, we get
w(x) > C(Q)(/ ul_aedx)e(x).
Q
Jensen inequality implies

(/Quf”‘edx)_a < (/Qedx)a_l(/ﬂufzedx).

As before, we have u; < w; where w; is the unique solution of
—ij = 1 —+ fj iIl Q
w; =1 on dN.

uj(z)™* < C(Q)_O‘(/Qedx)a_l(/ﬂch-‘zedx)e_a. (3.13)

If f; — fin C(f2), then there exist a constant C, independent of j, such that

Thus

[u; ) < C.
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C1(Q). Using ( we conclude that u;* — u™® strongly in L?(€2), and therefore
u is a solution of the problem

“Au=u"*+f inQ
u=0 on 0.

Compactness is deduced from (3.13)). ]

Then |luj|lw2rq) < C, so Rellich-Kondrachov Theorem implies u; — u strongly in
o]

Lemma 3.3. Suppose L = A+ c(x) satisfies the mazimum principle and suppose
|K(2)] < Bpit®(z)  for some B > 0 in R, (3.14)

where 1 is the principal eigenfunction corresponding to the principal positive eigen-
value of the problem —Lu = Au in Q, w =0 on Q. If f € LP(Q), p > n, satisfies

f=topr p.p
where ty = BTia [)\1(%)1% + (21)7%5]. Then

—Lu+ K(x)u™ = f(z) inQ
u>0 in§ (3.15)
u=0 on§

has a strong solution u € W2P(Q). Moreover, if f > top1 then u > (%)P%prl

and it is unique within the set {v > (%)1%&01}. If instead of f we consider

f > fa > tpr in C(Q) with t > to, then corresponding solutions ui, ug in {u €
C(Q) :u>C(t)p1} satisfy ug > ua.

Proof. Let us consider, for g € L>(£2), the solution operator h = (—£)~!g defined
by —Lh = gin Q, h = 0 on 9. Then h lies in W2P(Q)NW,*(Q2) for all 1 < p < oo.
We define

Ge={ueCQ):u>Cp}

If ¢ > tg, then there exists a unique C(¢t) > (%)1%& satisfying t = \C(t) + %.

We prove now that for f € Gy, u € Gg(y) the operator
Fu) = (=L£)7'(f — Ku™®)

is well defined from G¢ () into G ;). Moreover, it is continuous for the usual topol-
ogy on C(Q). Indeed, if u € Ge then —Ku™® > —C(t)"* By, and consequently
f=Ku=® > X\ C(t)p1. Now positivity of £71 implies (—£) " (f—Ku=%) > C(t)p1.

To see that F' is a continuous map, let (u,) € G be a sequence such that
U, — u in C(Q) , then K(x)u,(r)™® — K(x)u(xr)™®, pointwise on . Since
|K (z)u,“(x)] < C(t)”*Bei(x), Lebesgue’s Dominated Convergence Theorem gives
f—Ku,® — f— Ku ®in LP(Q), 1 < p < co. Then the classical LP theory for
elliptic operators implies

(L)~ (f = Kup®) — (=L£)7'(f = Ku™)
in W2P(Q) for all 1 < p < oo and then F(uy,) — F(u) in C(2). Moreover F(G¢ (1))

is a compact set in C'(€2). In fact, we have

(L)~ (f = Ku=*)|lw2r) < Collf — Ku™*|| o) < C,
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for all u € Gegy, 1 < p < oo, then it is clear that F(G¢) is compact in C(£2).
Since Gy is a convex closed set, Schauder Fixed Point Theorem provides a fixed
point for F'in G¢(y), so a solution to .

Suppose now that for f € G4 there exist two different solutions, v and v of ,
then

—L(u—v)=-K(u"*—v"%)
= aK(/O (ru+ (1 —r)v)~*"Ldr)(u —v).

We define m = Kfol (ru + (1 — r)v)~* Ldr. Thus, we can write, recalling that
L=A+c(x),
Alu—v)+ (c+am)(u—v) =0 inQ
u—v=0 ondQ.
Since u # v we may suppose u — v is positive somewhere in 2. Now, [10, Corollary
1.1] implies that the principal eigenvalue A1 ((A + ¢ 4+ am)) of the problem
Ah+ (c+am)h=MXh inQ
h=0 on 01,
is a nonpositive number. We recall Lipschitz continuity of this eigenvalue with

respect to L>°-norm of the coefficient function ¢+ am (see for example [10, Propo-
sition 2.1]) and the estimate |m| < BC(t)~1= to infer that

aB

IAM((A+c+am)) = M(A+c)| <|lc+am —clpe@) < e

Considering the choice of C(t), we find

0< X\ — <M ((A+c+am)),

aB
C(t)1+oc
and this is a contradiction.

If uy % wg in our last assertion, then there exists xg € Q such that wug(xg) >
u1(xp), and us — uq is a nontrivial solution of

L(ug —up) +am(ug —uy) >0 in
us —up =0 on 99,

where m is similar to m. From [10, Corollary 1.1] we obtain A1 ((A+c+am)) <0
and this is a contradiction, because 0 < m < BC’(t)_l_" and as before, we have
M((A+c+am)) > 0. O

Remark 3.4. When £ = A, tg is sharp under condition (3.14) for K = Bgoﬁo‘
and f € {ty1 : t > 0}. Indeed

—Au+ Bol™u"* =tp; inQ
u=0 on 0N

to/gofd:cg/ (A1l+B(i)7o‘><pfdm:t/<p%dz.
Q Q ®1 ¥1 Q

implies
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4. PROOFS

Proof of Theorem[2.4 Consider the map F : Ct — D given by F(u) = —u®Au.
According to Lemma dF (u)v = 0 if and only if v satisfies

u .
—Av=a—7v in
u

(4.1)
v=0 ondN.
Suppose m is as in Lemma [2.] and consider the eigenvalue problem
—Au =X mu in
u=0 on J9N.
At u=p_; and for a = —;‘—_11 in 1] dF(p_1)v =0 is equivalent to
—Av=Aimv in
(4.2)

v=0 on 0N
which implies ker dF(¢p_1) = (¢1). The equation dF (¢_1)v = f is equivalent to

—Av=Amv+¢_Tf inQ

4.3
v=0 on 0N (4.3)

By hypothesis fo~{ € LP(Q) with p > n, hence the Fredholm alternative yields

that has a solution v € HS’Q(Q) if and only if [, =¥ fp1dz = 0. If we have a
solution v since m € L*°(2) a Brezis-Kato result (see for example Struwe appendix
B [14]) implies that v € C.

We want to solve the equation

Flp-1+0) = F(p-1) + pp—1 (4.4)
Inserting Taylor formula in ,
F(p-1+70) = F(p-1) + dF(p-1)v + ¥(0)
we find
dF (p—1)v+ ¥(V) = pp—1 (4.5)

We use now the well known Lyapunov-Schmidt method. First we denote
(et = (we s [ wpTonds =0}
Q

(o= Y1)y ={weD: / we_Terde = 0}.
Q
Observe that fQ w_1p_Te1dr # 0, thus we have the decompositions as direct sums

C={p_1)®p-%e1)s, D={p_1)® (v Sv1)5

and consequently if v € D, we get the unique decomposition

~

V=35p_1+w

[e3

with w € (¢~§¢1)5. Let us denote

P:D—(p_1), Q:D— (p_$o1)p
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linear operators such that Pv = 5¢p_; and Qv = w. We can replace (4.5) by the
equivalent system

QAF(p_1)7 + QU (D) = 0, (4.6)
PU@©) = pp-1. (4.7)
To solve (4.6)), we define the function
L:Rx (pZFp1)e = (pZTe1)p,
I'(5,w) = QdF(p_1)(Sp—_1 +w) + QU (Sp_1 + w).

This function satisfies

(0,0) =0, (4.8)
dwT(0,0)wo = QdF (p—1)wo, (4.9)
dsT'(0,0) = QdF (p—1)p-1 - (4.10)

The operator d,,I'(0,0) has inverse from (p~{p1)¢ to (¢-T¢1)p. The Implicit
Function Theorem applies to I': there exist an interval (—s*, s*) and a function

W (=s",5") = {p"fpi)e
such that ¥ = sp_; + W (s) solves (4.6), with
W(0)=0 and W(0) = —[QdF(p-1)]"' QdF (p—1)p1 .

Using ImdF (p_1) = (p_§¢1)5 and W'(0) € (p-§¢1)¢, we conclude

dF (p_1)W'(0) = —dF (p-1)p-1-
Hence W/ (0) + ¢_1 € KerdF(¢_1) = {p1). Thus

W'(0) = re1 — 1 (4.11)
with 7 # 0 because p_1 € (¢®,¢1)*. From 7 we find
p= [ P + W) = (o1, PR+ W)

The function

X(8) = (o1, PU(sp_1 + W (s)))
is regular and has first and second derivatives given by

X'(8) = (o1, PA¥(sp_1 + W(s))[p—1 + W'(s)]),

X"(8) = (g1, PA*U(sp_1 + W(s))[p—1 + W'(5), p—1 + W'(s)])
+ (-1, PdU(sp_1 + W (s))[W"(s)]) -
From d¥(0) = 0 and d?>¥(0) = d>F(¢_1), we obtain
X'(0) =0,
X"(0) = {p-1, P&®F(p-1)[ren, ron]) -

Direct calculations show that

Ao
A*F(p_1)[p1, 1] = M (1 — i)%ﬁw?m
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Using the decomposition d?F (p_1)[re, r¢] = sp_1 +w with w € (p-Tp1)5, we
find
A
S = T'Q)\l( - le)

fQ m@j@i’dﬂf
Jo o5 prdz
Then x”(0) # 0 is equivalent to

/ngojgoi’dac #0. (4.12)

If (4.12)) is true, then there exist an nonempty open interval such that the equation
(4.7) has at least two solutions. Lemma states the existence of a class m’s

satisfying (4.12)). O
Proof of Theorem[2.7. From Lemma [3.2] the operator
F(s,u) i= H(sG(x, u, V) + f)
is well defined and is continuous, compact from R> x P* to P where P is the cone
of positive functions in C*(Q) with the usual norm. Furthermore a solution v of
the equation
F(s,v4 ty) —us =0 (4.13)

where u, is the unique solution of the problem

—Au,=u,“+f inQ

4.14
uy =0 on 0N ( )

satisfies the equation
“Aw4us) =W+ u) "+ sG(x, v+ u, Vot us)) + f inQ
v+u, >0 inQ (4.15)
v+u, =0 on Q.

The operator T'(s,v) := F(s,v+ u.) — u, is well defined from R>¢ x P to P and is
a continuous compact operator, moreover 7'(0,0) = 0 and since 7'(0,v) = 0 for all
v € PU{0}, v =0 is the unique fixed point of T'(0,-). For each o > 1 and p > 0,
we have also that 7'(0,v) # ov for v € PN pdB where B denotes the open unit ball
centered at 0 in C(Q). Using Theorem 17.1 in Amman’s article [3] there exist a
nonempty set ¥ of pairs (s, v) in R>q x P that solves the equation (4.16]). Moreover

¥ is a closed, connected and unbounded subset of R>g x P containing (0,0). The
nonexistence Corollary 1.1 in [34] implies the last affirmation. (]

Proof of Theorem[2.8 We start as in the proof of Theorem Hence, from
Lemma the operator

F(s,u) := H(s(Au® + B|Vul®) + f)
is well defined, continuous and compact from R>o x Pt to P where P is the cone of
positive functions in C'*(Q) with the usual norm. We study the fixed point equation

F(s,v+us) —ux =v (4.16)
where u, is the unique solution of
—Au,=u,“+f inQ

4.17
U =0 on 0N. ( )
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Moreover if v is a solution of (4.16]), v + u. is a solution of problem (L.2). Using
Amman’s article [3 Theorem 17.1], we obtain the existence of a nonempty, closed,
connected and unbounded set ¥ of pairs (s,v) in R>o x P that solves (4.16).
To prove existence of two solutions we obtain a constant C; and a estimate
C(8) > 0 for 6 > 0 such that:
(a) If (s,u) solves equation then s < (4.
(b) If (s,u) solves then [|ul| (o) < C(9) for all s > 4.
Using that ¥ is unbounded, the conclusion of Theorem [2.8] follows.
First we prove (a). The function Q(u) = A\;fu — su” where and 1 < 8 < oo, has
a global maximum on the set of positive real numbers at u = (%)ﬁ, furthermore

At
S

1

Q(( )ﬁ) =C(B,\1)s 7T

where C(83, A1) is a strictly positive constant depending only on 8 and \;. From
the inequality

M Bu — su? < C(ﬂ,)\l)s_ﬁ )
Using equation 7 we deduce
—Au > M\Bu—C(B,A)s 7T

and therefore
M [ upide = 28 [ upide - €3 [ pude.
Q Q Q

Finally
C(B, A\y)s~ 7T /
de < —————— dx . 4.18
/Q“‘”l TETNG D) Jo P (4.18)

From (1.2]), we have —Awu > f. Using the Uniform Hopf Principle (3.11)), (3.12)
and (4.18)), it follows that

C(B, M) Jo prda Lo (4.19)

s <
G100 [, forde T A
This is the constant C and (a) is proved.
Now we prove (b). We establish a priori bounds for solutions of problem

using a Brezis-Turner technique (see [12]). Multiplying (1.2)) by 1 and integrating,
we find

Al/ugoldx:s/uﬁcpldz+sb’/ |Vu|<<p1d:z:+/u7°‘<p1dz+/ fprde.
Q Q Q Q Q

From (4.18) it follows that

AMC(B, Ay)s™ 7T
Boyde < 22200 / dr . 4.20
S/QU = A(B—1) Q%x (4.20)
2

Using the hypothesis ¢ < - and Young inequality, we obtain a ¢ > 1 such that
1 1 +1

| V|5 N e

|Vau|Su < < |Vul? +1+v’u. (4.21)

d+1 "
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Using the assumption

M(B-1)C(Q) [ ferde [ oide s
B<d C(@M)ﬂfg prdx ) b

inequalities (4.19)), (4.21)), and multiplying (1.2)) by w and then integrating, we find

Cl/ |Vu\2dx§s/ uﬁudx—i—ng/ uﬂudx+03||u||Hé(Q)+C4, (4.22)
Q Q Q

where C; for i« = 1,...4 are positive constants independent of s. Using Hoélder
inequality, 1) and the fact that if 1 < § < Z—i then for all € > 0 there exist a

positive constant C, such that for all s > 0 holds s? < esnii + C., we deduce

/uﬁudacz/u75¢Yu(1_7)ﬂ¢f7udx
Q Q

< (/Quﬁcpldx>7(/ﬂuﬁapﬁuﬁdx)l_w
< (csflfﬁ)”(/ uﬁ(%)ﬁdgc)l_7
Q 1

ntly 1
1—v

n—1 1—v
< 05_7_%{6177(/ uin,dx)
Q I=y

For v =2/(n+ 1), we find

n—1
u n+1 TQ
/ Wuds < 087%"1161_%/ (W)2"”dw) e
Q Q o n

VR _ u Z+1
row e ([ (i )

Since

1
1 11 1 1 1
— ST S

ontl — 9 g n’ g 2 n n’
n—1
with ¢ > Z—ﬂ, we apply Hardy-Sobolev inequality in [12, Lemma 2.2],
v .
HE”LQ(Q) < Clvllgyq) for all vin Hg(€)
1
where C' is a non-negative constant, 0 < 7 < 1, % = % — % + T, ¢1 is the prin-
cipal eigenfunction of the operator —A (—Ay; = A1) with Dirichlet boundary
condition, and the Holder inequality to obtain

/ wude < Cs™7 T Y|Vl 2 ) + CL [Vl 2o } -
Q
From (4.22)), we conclude that

ClIVulfey < Cs'77FT {61’”HVUII%2<Q)+03’”||VuI\L2(Q)}
+C||Vul|2) + C(6) (4.23)
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where C is a non-negative constant independent of s. The condition § < Zﬂ
implies
ol n—1 2
1—~— = — <0.
TTB-1 n+l (m+D(B-1)
Therefore if s > §, we can choose € > 0 such that
et < G
-2
It now follows from (4.23]) that
C P VRS
%HWH;(Q) < C{1+ CIs 77T} Vul| 2o + C(6) - (4.24)

Finally if u is a solution of the problem (1.2)) with s > ¢ > 0, there exists a constant
C(8) > 0 such that ||u||Hé,2(Q) < C(6) and using classical Holder estimates for weak

solutions (see [21I]) and Sobolev imbedding theorem we conclude the proof of (b).
The proof is complete. O

Proof of Theorem[2.9. From Lemma the problem
—Au=K(@)u "+ f inQ
u=0 on 0N
under the conditions |K(x)| < Bypit*(z) for some B > 0 in R, f > top; where
ty= BTra [Al(%)ﬁ + (%)1%&], has a unique strong solution u € W2P(Q) within
the set {v > (%)ﬁwl}. Furthermore if we denote H the solution map f — u,
it is a continuous and compact map from the set {f € C1(Q) : f > top1} to
{fueCHQ):u> (%)ﬁgpl} (see Lemma. Hence the map
F(s,u) = H(s(u” + |Vu|®) + to1).

with ¢ > tg is well from R>g x P to P, where P is the cone of positive functions in
C1(Q). Like in the proof of previous theorems, we study the fixed point equation

. . . c. B
where u, is the unique solution in in the set {v > (5Z)p1} (see Lemma
—Au, = Ku, %+ tp; in Q
u, =0 on 0.

If (s,u) solves then (s,u + u,) solves equation . Now using again
the Corollary 17.2 in [3], we find a connected, closed unbounded in R x P and
emanating from (0, 0) set ¥ of pairs (s, u) satisfying the equation (4.25). Since the
obtained solution w of problem satisfies u > (%)ﬁapl, we deduce

Klu < Bre (2o,

and from ((1.2]), we have
—Au > suf >\ fu— 0(57)\1)5*ﬁ .
Multiplying by ¢1 and integrating, we find

Al/ugoldacz)\lﬁ/ugpldx—C(ﬂ,)\l)s_ﬁ%l/goldx.
Q Q Q
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Thus N
aB 1 9 / C(B, 1)s 71 /
THa der < [ uwprde < ———— dx .
()\1) \/ngl —= o ¥1 —= )\1(,8—1) Qgpl
Consequently,

C(B,M1) , M1 Hﬁfﬂgoldm -1
e Ly vl

Recalling that

Al/ugold:z::s/uﬁcpldx—i—t/go%dx—/K(m)u‘o‘gpldx,
Q Q Q Q

we see that

1
[ ode < SO,
Q ﬁ_ Q

The rest of the proof is similar to that one of Theorem [2.8] O
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