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PERIODIC SOLUTIONS AND EXPONENTIAL STABILITY FOR
SHUNTING INHIBITORY CELLULAR NEURAL NETWORKS

WITH CONTINUOUSLY DISTRIBUTED DELAYS

LE VAN HIEN, TRAN THI LOAN, DUONG ANH TUAN

Abstract. In this paper, we consider a class of shunting inhibitory cellular
neural networks with continuously distributed delays (SICNNs). The delays

are unbounded and the activation function is not assumed to be bounded.

Using the continuation theorems of coincidence degree theory, Lyapunov func-
tional method, we obtain new sufficient conditions for the existence and local

exponential stability of periodic solutions of (SICNNs). Numerical examples
illustrated our results are given.

1. Introduction

Cellular neural networks, which was introduced in [5, 6], have received much
attention in the past years due to their extensive applications in signal processing,
moving image processing, vision, pattern recognition, optimization and many other
area [6, 2] and references therein.

Now, it has been shown that such applications of neural networks rely on the
dynamical behaviors of the networks. Therefore, the existence of periodic, almost
periodic solutions, stability analysis for neural networks have been wildly investi-
gated [3, 17, 16, 9] and references therein.

Shunting inhibitory cellular neural networks (SICNNs), which was first proposed
by Bouzerdoum and Pinter [1], has been found applications in may areas, such as
psychophysics, speech, perception, robotics, adaptive pattern recognition, vision
and image processing. So its dynamic behavior research has an important signifi-
cance for theory and applications.

In this paper, we study a class of shunting inhibitory cellular neural networks
with distributed time delay. The dynamics of a cell Cij are described by the fol-
lowing equation

ẋij(t) = −aij(t)xij(t)−
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(t− u)du
)
xij(t)

+ Lij(t), i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

(1.1)
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where Cij denote the cell at the (i, j) position of the lattice, the r-neighborhood
Nr(i, j) of Cij is determined by

Nr(i, j) = {Ckl : max(|k − i|, |l − j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ 1 ≤ n}.

Here xij is the activity of the cell Cij , Lij is the external input to Cij , aij(t) > 0
represent a passive decay rate of the cell activity, Ckl

ij ≥ 0 is the connection of
coupling strength of postsynaptic activity of the cell transmitted to the cell Cij ,
the activity function f is a positive continuous function, representing the output or
firing rate of cell Ckl.

Using Poincaré mapping, the authors in [4] proved the existence and global
exponential stability of periodic solutions. However, the activation function f(.)
was bounded, Lipschitzian and the time delay was finite.

In recent paper [17], with assumptions the activation function f(.) was Lips-
chitzian and f(0) = 0, the authors give conditions for the existence and stability
of almost periodic solutions of (1.1). However, we see that the conditions for the
stability depend on each solution of (1.1). So, it’s difficult for the stability test.

In this paper, by using coincidence degree theory, we prove the existence and
exponential stability of periodic solution of (1.1) without assumptions on bound-
edness and f(0) = 0 of activation function.

Denote by BC the Banach space of bounded continuous functions φ : (−∞, 0] →
Rmn with the norm ‖φ‖ = (

∑
i,j sup−∞<s≤0 |φij(s)|2)1/2.

The initial conditions associated with (1.1) are of the form

x(θ) = φ(θ), θ ∈ (−∞, 0], φ ∈ BC. (1.2)

For system (1.1) we consider the following hypotheses
(H1) The delay kernels Kij : [0,∞) → R are piecewise continuous and Pij(ε) =∫∞

0
Kij(u)eεudu is continuous on [0, δ), Pij(0) = 1 for some δ > 0.

(H2) The functions aij(t), Lij(t) are ω-periodic, f(.) is positive, continuous and
not assumed to be bounded on R.

Let Lij = supt∈R |Lij(t)|, aij = inft∈R aij(t) > 0.
This paper is organized as follows. Section 2 presents notations, mathematical

definitions and some results from coincidence degree theory that needed to use in
the proof of main results in section 3. In section 3, we give new sufficient conditions
for the existence of periodic solutions of (SICNNs). Based on Lyapunov functional
method, the local exponential stability of the periodic solution of (SICNNs) is
established. An example illustrates our main results is given in section 4. The
paper ends with conclusion and cited references.

2. Preliminaries

In this section, we recall some notations and results in coincidence degree theory
that to be used in the proof of our main results.

Let X, Y be normed vector spaces, L : Dom L ⊂ X → Y be a linear operator and
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm
mapping if

(a) KerL is a finite dimensional subspace of X;
(b) Im L is closed;
(c) Im L has a finite co-dimension.
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When L is Fredholm mapping, its index is a integer defined by

IndL := dim KerL− codim Im L.

Suppose that L is Fredholm mapping of index zero, then there exist continuous
projectors P : X → Y and Q : Y → Y such that

Im P = KerL, KerQ = Im L = Im(I −Q).

It follows that mapping L
∣∣
Dom L∩Ker P

: Dom L ∩ KerP → Im L is invertible. De-
noted by KP the inversion of L

∣∣
Dom L∩Ker P

.
Let Ω be an open and bounded subset of X, the mapping N is called L−compact

on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact mapping. Since
ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Next, we give the following lemma, which known as Mawhin’s continuation the-
orem [8], that to be used in next section.

Lemma 2.1 ([8]). Let Ω ⊂ X be an open bounded set, L be a Fredholm mapping
of index zero and N : X → Y be a continuous mapping which is L− compact on Ω.
Assume that

(a) For λ ∈ (0, 1), Lx 6= λNx for all x ∈ ∂Ω ∩Dom L;
(b) QNx 6= 0 for every x ∈ ∂Ω ∩KerL;
(c) deg(JQN, Ω ∩KerL, 0) 6= 0.

Then equation Lx = Nx has at least one solution in Ω ∩Dom L.

3. Main results

In this section, by applying coincidence degree theory we give sufficient condi-
tions for the existence of periodic solutions of the system (1.1). Next, we prove the
local exponential stability of periodic solutions of (SICNNs) (1.1).

3.1. Existence of Periodic solutions.

Theorem 3.1. Let hypotheses (H1), (H2) hold. Then (1.1) has at least one ω-
periodic solution.

Proof. We denote

X = {u ∈ C(R, Rmn) : u(t + ω) = u(t), ∀t ∈ R}

with norm

‖u‖ =
( ∑

i,j

max
t∈[0,ω]

|uij(t)|2
)1/2

.

It’s easy to verify that (X, ‖.‖) is a Banach space. Denote Dom L = X∩C1(R, Rmn).
Consider the linear operator

L : Dom L → X, Lu = u̇(t). (3.1)

Then KerL = Rmn and

Im L =
{
x ∈ X :

∫ ω

0

xij(t)dt = 0, i = 1, . . . ,m; j = 1, . . . n
}
.

Clearly Im L is closed in X and dim KerL = codim Im L = mn. Hence, L is a
Fredholm mapping of index zero.
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For convenience, we denote

y(t) = yij(t) = −aij(t)xij(t)−
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(t− u)du
)
xij(t)

+ Lij(t).

Consider the mapping N : X → X, Nx(t) = y(t). Define two projectors P,Q :
X → X as

Pu = Qu =
1
ω

∫ ω

0

u(t)dt. (3.2)

Let Ω be an open bounded set in X. Using the Arzela-Ascoli theorem [13], it is
easy to show that N is L-compact on Ω. For λ ∈ (0, 1), corresponding to operator
equation Lx = λNx, we have

ẋij(t) = λ
[
− aij(t)xij(t)−

∑
Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(t− u)du
)
xij(t)

+ Lij(t)
] (3.3)

Suppose that x ∈ X is a solution of (3.3) for some λ ∈ (0, 1), x(t) = (xij(t)). Let
ηij ∈ [0, ω] such that xij(ηij) = maxt∈[0,ω] xij(t), then

aij(ηij)xij(ηij) +
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(ηij − u)du
)
xij(ηij) = Lij(ηij)

(3.4)
Therefore, for all i, j,

xij(ηij) ≤
Lij

aij
.

By the same argument, let ηij ∈ [0, ω] such that xij(ηij) = mint∈[0,ω] xij(t), we also
have

xij(ηij) ≥ −Lij

aij

for all i, j. Denote

C =
( ∑

ij

L2
ij

1
a2

+ T
)1/2

,

where T > 0, a = mini,j aij . Then C independent of λ. We will show that the
conditions (a), (b), (c) in Lemma 2.1 are satisfied.

We take Ω = {u ∈ X : ‖u‖ < C}. Then Ω satisfies condition (a) in Lemma 2.1.
For u ∈ ∂Ω ∩KerL = ∂Ω ∩ Rmn, u is a constant vector in Rmn with ‖u‖ = C, we
have

uT QNu ≤
∑
i,j

[
− aiju

2
ij −

∑
Ckl∈Nr(i,j)

Ckl
ij f(

∫ ∞

0

Kij(s)uklds)u2
ij + Lij |uij |

]
≤

∑
i,j

[−aiju
2
ij + Lij |uij |]

≤ −a‖u‖2 +
∑
i,j

Lij |uij | < 0.

So for any u ∈ ∂Ω∩KerL, then QNu 6= 0. It follows that condition (b) is satisfied.
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Furthermore, from Im Q = KerL, we choose J = Id. Let

Φ(γ;u) = −γu + (1− γ)QNu, γ ∈ [0, 1], u ∈ R.

Then for any x ∈ ∂Ω ∩ KerL, xT Φ(γ;x) < 0 implies 0 6∈ Φ([0, 1] × ∂Ω ∩ KerL).
According to the homotopy invariance property of mapping degree [8], we get

deg{JQN, Ω ∩KerL, 0} = deg{−Id,Ω ∩KerL, 0} 6= 0.

Hence, condition (c) of Lemma 2.1. is satisfied.
Thus, by Lemma 2.1 we conclude that Lx = Nx has at least one solution in the

ball B(0, C) = {x ∈ X : ‖x‖ < C}, which concludes the proof. �

3.2. Stability of periodic solutions. In this subsection, first we prove the bound-
edness of solutions of the system (1.1) and then we deal with the stability of the
periodic solutions of (1.1).

Definition 3.2. The periodic solution x∗(t, ϕ∗) of the system (1.1) is said to be
locally exponentially stable, if there are constants ε > 0, β > 0 and M ≥ 1 such
that for any solution x(t, ϕ) of the system (1.1) which satisfies ‖ϕ − ϕ∗‖ < β, one
has

|xij(t)− x∗ij(t)| ≤ M‖ϕ− ϕ∗‖e−εt, ∀t ∈ R+, i = 1, . . . ,m; j = 1, . . . , n.

If β = ∞ then (1.1) is said to be globally exponentially stable.

Lemma 3.3. Assume that the hypotheses H1,H2 hold. Then every solution x(t, ϕ)
of the system (1.1) is bounded. Moreover, we have

|xij(t)| ≤ Nij := max
{Lij

aij
, sup
θ∈(−∞,0]

|ϕij(θ)|
}
, ∀t ∈ R.

Proof. Suppose that the conclusion in Lemma 3.3 is not true. Then there exist a
solution x(t, ϕ) and t > 0 such that |xij(t)| > Nij .

If xij(t) > Nij then there exists a tij > 0 such that xij(tij) > Nij and
D+xij(tij) ≥ 0. On the other hand, we have

ẋij(tij) = −aij(tij)xij(tij)

−
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(tij − u)du
)
xij(tij) + Lij(tij)

≤ −aij(tij)xij(tij) + Lij(tij)
< −aijNij + Lij ≤ 0.

Hence, D+xij(tij) < 0. This is a contradiction.
If xij(t) < −Nij then also there exists tij > 0 such that xij(tij) < −Nij and

D+xij(tij) ≤ 0. But

ẋij(tij) = −aij(tij)xij(tij)

−
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(tij − u)du
)
xij(tij) + Lij(tij)

≥ −aij(tij)xij(tij) + Lij(tij)
> aijNij − Lij ≥ 0.

Then we also find that it is a contradiction. Finally, we obtain |xij(t)| ≤ Nij for all
t ∈ R, which concludes the proof. �
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In what follows, we consider the assumption
(H3) There exists µ > 0 such that |f(x)− f(y)| ≤ µ|x− y| for all x, y ∈ R. Also,

there are constants ξij > 0, β > 2C̃ such that

−aijξij +
∑

Ckl∈Nr(i,j)

Ckl
ij Mfξij +

∑
Ckl∈Nr(i,j)

C̃Ckl
ij µξkl < 0, (3.5)

for i = 1, . . . ,m; j = 1, . . . , n, where

C̃ =
( ∑

ij

L2
ij

1
a2

)1/2

, Mf = sup
{
f(u) : |u| ≤ C̃ + β

}
.

From the condition (H3), there exist constants λ > 0, T > 0, such that

(λ− aij)ξij +
∑

Ckl∈Nr(i,j)

Ckl
ij M∗

f ξij +
∑

Ckl∈Nr(i,j)

C∗Ckl
ij µPij(λ)ξkl < 0, (3.6)

for i = 1, . . . ,m; j = 1, . . . , n, where

C∗ =
( ∑

ij

L2
ij

1
a2

+ T
)1/2

< β, M∗
f = sup{f(u) : |u| ≤ C∗ + β}.

The next theorem deals with the uniqueness and locally exponential stability of
periodic solution of (1.1).

Theorem 3.4. Assume that hypotheses (H1)–(H3) hold. Then (1.1) has a unique
ω-periodic solution x∗(t, ϕ∗) in the region B = {ϕ ∈ BC : ‖ϕ‖ < β

2 }, which
is locally exponentially stable. Moreover the attractive domain of x∗ is given as
D(ϕ∗) = {ϕ ∈ BC : ‖ϕ− ϕ∗‖ ≤ β}.

Proof. By Theorem 3.1, there exists a ω-periodic solution of (1.1) x∗(t) = x∗(t, ϕ∗)
satisfies ‖x∗(t)‖ < C∗, t ∈ R. Let x(t) is a arbitrary solution of (1.1) with initial
function ϕ satisfies ‖ϕ − ϕ∗‖ ≤ β. It follows that ‖ϕ‖ ≤ ‖ϕ∗‖ + β < C∗ + β and
from Lemma 3.3, we have

|xij(t)| ≤ Nij < C∗ + β, ∀t ∈ R.

Setting z(t) = x(t)− x∗(t), the we have

żij(t) =− aij(t)zij(t)−
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(t− u)du
)
xij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)x∗kl(t− u)du
)
x∗ij(t).

(3.7)

Consider the Lyapunov functionals

Vij(t) = |zij(t)|eλt, i = 1, . . . ,m; j = 1, . . . , n,

where λ > 0 is determined from (3.6).
Putting A = (1+α)

ξmin
‖ϕ− ϕ∗‖, ξmin = mini,j ξij , α > 0. We will show that

Vij(t) ≤ ξijA, for i = 1, . . . ,m; j = 1, . . . n; t ∈ R+.

Indeed, if this is not true, then there exists i, j and tij > 0 such that: Vij(t) ≤ ξijA
and Vkl(t) ≤ ξklA, (k, l) 6= (i, j), for all t < tij and Vij(tij) = ξijA, D+Vij(tij) ≥ 0.
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Taking Dini derivative of Vij(t) along trajectories of (1.1), we have

D+Vij(tij) ≤ eλtij (λ− aij(tij))|zij(tij)|

+ eλtij

∑
Ckl∈Nr(i,j)

Ckl
ij

∣∣∣f( ∫ ∞

0

Kij(u)xkl(tij − u)du
)
xij(tij)

− f
( ∫ ∞

0

Kij(u)x∗kl(tij − u)du
)
x∗ij(tij)

∣∣∣
≤ eλtij (λ− aij(tij))|zij(tij)|

+ eλtij

∑
Ckl∈Nr(i,j)

Ckl
ij

∣∣∣f( ∫ ∞

0

Kij(u)xkl(tij − u)du
)
x∗ij(tij)

− f
( ∫ ∞

0

Kij(u)x∗kl(tij − u)du
)
x∗ij(tij)

∣∣∣
+ eλtij

∑
Ckl∈Nr(i,j)

Ckl
ij f

( ∫ ∞

0

Kij(u)xkl(tij − u)du
)
|xij(tij)− x∗ij(tij)|

≤ eλtij

(
(λ− aij(tij))|zij(tij)|+

∑
Ckl∈Nr(i,j)

Ckl
ij M∗

f |zij(tij)|

+
∑

Ckl∈Nr(i,j)

C∗Ckl
ij µ

∫ ∞

0

Kij(u)|zkl(tij − u)|du
)

= (λ− aij(tij))Vij(tij) +
∑

Ckl∈Nr(i,j)

Ckl
ij M∗

f Vij(tij)

+
∑

Ckl∈Nr(i,j)

C∗Ckl
ij µ

∫ ∞

0

Kij(u)Vkl(tij − u)eλudu

≤
(
(λ− aij(tij))ξij +

∑
Ckl∈Nr(i,j)

Ckl
ij M∗

f ξij

+
∑

Ckl∈Nr(i,j)

C∗Ckl
ij µPij(λ)ξkl

)
A.

From (3.6) we have D+Vij(tij) < 0. This is a contradiction. Hence we have,
Vij(t) ≤ ξijA for all i = 1, . . . ,m; j = 1, . . . , n, t ∈ R+ and therefore

|zij(t)| ≤
(1 + α)ξij

ξmin
e−λt‖ϕ− ϕ∗‖, ∀t ≥ 0.

This inequality shows that the periodic solution of (1.1) is exponentially stable.
The proof is completed. �

For the global exponential stability, in [4] the authors consider (SICNNs) with
bounded activation function with constant time delay. When the activation function
f is assume to be bounded, condition (H3) is replaced by

(H3’) There exists µ > 0 such that |f(x) − f(y)| ≤ µ|x − y| for all x, y ∈ R and
also there are constants ξij > 0 such that

−aijξij +
∑

Ckl∈Nr(i,j)

Ckl
ij Mfξij +

∑
Ckl∈Nr(i,j)

C̃Ckl
ij µξkl < 0, (3.8)
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for i = 1, . . . ,m; j = 1, . . . , n, where

C̃ =
( ∑

ij

L2
ij

1
a2

)1/2

, Mf = sup{f(u) : u ∈ R}.

In this case, we have the following results.

Corollary 3.5. Assume that the hypotheses (H1), (H2) and (H3’) hold. Then (1.1)
has a unique ω-periodic solution x∗(t, ϕ∗) which is globally exponentially stable.

4. Example

In this section, we give an numerical example to illustrate our obtained results.
Consider (SICNNs) described by the system

ẋij(t) = −aij(t)xij(t)−
∑

Ckl∈Nr(i,j)

Ckl
ij f

(∫ ∞

0

Kij(u)xkl(t− u)du

)
xij(t)

+ Lij(t), i, j = 1, 2, 3,

(4.1)

wherea11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)

 =

 2 + cos2 t 3 + | cos t| 2 + | sin t|
2 + 0.5 sin2 t 2 + | sin t cos t| 3 + | cos 2t|
3 + | sin t| 2 + | sin 2t| 2 + cos2 2t

 ,

and L11(t) L12(t) L13(t)
L21(t) L22(t) L23(t)
L31(t) L32(t) L33(t)

 =

 0.6 sin t 0.1 cos 3t 0.4 cos t
0.3 sin 2t 0.2 sin 3t 0.3 cos 3t
0.5 cos 2t 0.5| sin t| 0.2| cos t|


C11 C12 C13

C21 C22 C23

C31 C32 C33

 =

 0.2 0.1 0.1
0.15 0.3 0
0.1 0.25 0.1

 ,

Taking r = 1,Kij(u) = e−u and f(x) = 1
6 |x− 1|, we have

µ =
1
6
; C̃ =

( ∑
ij

L2
ij

a2

)1/2

< 1

∑
Ckl∈N1(1,1)

Ckl
11 = 0.75,

∑
Ckl∈N1(1,2)

Ckl
12 = 0.85,

∑
Ckl∈N1(1,3)

Ckl
13 = 0.5;

∑
Ckl∈N1(2,1)

Ckl
21 = 1.1,

∑
Ckl∈N1(2,2)

Ckl
22 = 1.3,

∑
Ckl∈N1(2,3)

Ckl
23 = 0.85;

∑
Ckl∈N1(3,1)

Ckl
31 = 0.8,

∑
Ckl∈N1(3,2)

Ckl
32 = 0.9,

∑
Ckl∈N1(3,3)

Ckl
33 = 0.65.

We choose β = 6, ξij = 1 then Mf = 4/3 and we have

− aijξij +
∑

Ckl∈Nr(i,j)

Ckl
ij Mfξij +

∑
Ckl∈Nr(i,j)

C̃Ckl
ij µξkl

< −2 +
4
3
× 1.3 +

1
6
× 1.3 < 0, i, j = 1, 2, 3.

According to Theorem 3.4, System (1.1) has a unique periodic solution x∗(t, ϕ∗)
in the region B = {ϕ : ‖ϕ‖ < 3} which is locally exponentially stable with the
attractive domain D(ϕ∗) = {ϕ ∈ BC : ‖ϕ− ϕ∗‖ ≤ 6}.
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Note that, the activation function f(x) is not bounded and f(0) 6= 0, so the
results in [17, 4] are not applicable for this example.

Conclusions. This paper addressed the existence and local exponential stability
of periodic solutions of (SICNNs) with continuously distributed delays. By using
coincidence degree theory, we give new sufficient conditions for the existence and
locally exponential stability of periodic solutions of (SICNNs) without assumption
of boundedness on the activation function. The results are new and complement
previously known results.

Acknowledgments. The authors would like to thank the associate editor and the
anonymous reviewers for their constructive comments and suggestions to improve
the quality of this paper.
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