# ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO NONLINEAR PARABOLIC EQUATION WITH NONLINEAR BOUNDARY CONDITIONS 

THÉODORE K. BONI, DIABATE NABONGO


#### Abstract

We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as $t$ approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.


## 1. Introduction

Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial \Omega$. Consider the boundary value problem

$$
\begin{gather*}
\frac{\partial \varphi(u)}{\partial t}-L u+f(x, t, u)=0 \quad \text { in } \Omega \times(0, \infty)  \tag{1.1}\\
\frac{\partial u}{\partial N}+g(x, t, u)=0 \quad \text { on } \partial \Omega \times(0, \infty)  \tag{1.2}\\
u(x, 0)=u_{0}(x) \quad \text { in } \bar{\Omega} \tag{1.3}
\end{gather*}
$$

where

$$
L u=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+\sum_{i=1}^{n} a_{i}(x) \frac{\partial u}{\partial x_{i}}, \quad \frac{\partial u}{\partial N}=\sum_{i, j=1}^{n} \cos \left(\nu, x_{i}\right) a_{i j}(x) \frac{\partial u}{\partial x_{j}} .
$$

Here the coefficients $a_{i j}(x) \in C(\Omega)$ satisfy the inequality

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq C|\xi|^{2} \quad \text { for } \xi \in \mathbb{R}^{n}, \xi \neq 0, C>0
$$

$a_{i j}(x)=a_{j i}(x), \nu$ is the exterior normal unit vector on $\partial \Omega, f_{x, t}(s)=f(x, t, s)$ and $g_{x, t}(s)=g(x, t, s)$ are positive, increasing and convex functions for $s \geq 0$ with $f_{x, t}(0)=f_{x, t}^{\prime}(0)=g_{x, t}(0)=g_{x, t}^{\prime}(0)=0$. For positive values of $s, \varphi(s)$ is a positive and concave function. Throughout this paper, we assume the following condition:

[^0](H0) There exist functions $f_{*}(s), g_{*}(s)$ of class $C^{1}([0, \infty))$, positive for positive values of $s$ such that for any $\alpha(t)$ tending to zero as $t \rightarrow \infty$,
\[

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{f(x, t, \alpha(t))}{f_{*}(\alpha(t))}=a(x), \quad \lim _{t \rightarrow \infty} \frac{g(x, t, \alpha(t))}{g_{*}(\alpha(t))}=b(x), \\
\frac{f_{*}}{\varphi^{\prime}}(0)=\frac{g_{*}}{\varphi^{\prime}}(0)=\left(\frac{f_{*}}{\varphi^{\prime}}\right)^{\prime}(0)=\left(\frac{g_{*}}{\varphi^{\prime}}\right)^{\prime}(0)=0
\end{gathered}
$$
\]

where $a(x)$ is a bounded nonnegative function in $\Omega$ and $b(x)$ is a bounded nonnegative function on $\partial \Omega$.
Existence of positive classical solutions, local in time, was proved by Ladyzenskaya, Solonnikov and Ural'ceva in [9]. In this paper, we are dealing with the asymptotic behavior as $t \rightarrow \infty$ of positive solutions of (1.1)-(1.3). The asymptotic behavior of solutions for parabolic equations has been the subject of study of many authors (see, for instance [1, 2, 3, 4, 6, 7, 10, In particular, Kondratiev and Oleinik [6] considered the problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}-L u+a|u|^{p-1} u=0 \quad \text { in } \Omega \times(0, \infty),  \tag{1.4}\\
\frac{\partial u}{\partial N}=0 \quad \text { on } \partial \Omega \times(0, \infty)  \tag{1.5}\\
u(x, 0)=u_{0}(x) \quad \text { in } \bar{\Omega} \tag{1.6}
\end{gather*}
$$

where $p>1$, and $a$ is a positive constant. They proved that if $u$ is a positive solution of Problem (1.4)-(1.6), then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t^{\frac{1}{p-1}} u(x, t)=\left(\frac{p-1}{|\Omega|} \int_{\Omega} a v_{1}(x) d x\right)^{\frac{-1}{p-1}} \tag{1.7}
\end{equation*}
$$

uniformly in $x \in \Omega$, where $v_{1}(x)$ is a positive solution of the boundary value problem

$$
\begin{gather*}
L^{*}(v)=0 \quad \text { in } \Omega \\
\frac{\partial v}{\partial N}=\sum_{i=1}^{n} a_{i}(x) \cos \left(\nu, x_{i}\right) v \quad \text { on } \partial \Omega \tag{1.8}
\end{gather*}
$$

with

$$
L^{*}(v)=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}(x) v\right) .
$$

Notice that Problem $\sqrt{1.8}$ is the adjoint of the Neumann problem for the operator $L$. The same result with $v_{1}(x)=1, a=a(x)$ has been also obtained in [2] and [7] in the case where $a(x)$ is a bounded function in $\Omega$ and $a_{i}(x)=0(i=1, \ldots, n)$ (i.e. the operator $L$ is self-adjoint). In [4], the second author has shown similar results about the asymptotic behavior of solutions for another particular case of Problem (1.1)-1.3 which corresponds to this last for $a_{i}(x)=0(i=1, \ldots, n)$, $\varphi(u)=u, f(x, t, u)=a(x) f_{*}(u), g(x, t, u)=b(x) g_{*}(u)$. Our aim in this paper is to generalize the above results, describing the asymptotic behavior of solutions for Problem (1.1)-1.3. Our paper is written in the following manner. Under some conditions, we obtain in the next section the asymptotic behavior of positive solutions for Problem (1.1)- (1.3).

Introduce the function class $Z_{p}$ defined as follows: $u \in Z_{p}$ if $u$ is continuous in $\bar{G}, \frac{\partial u}{\partial x_{i}} \in G^{\prime}$ and $\frac{\partial u}{\partial t}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \in G$, where $G=\Omega \times(0, \infty), G^{\prime}=\bar{\Omega} \times(0, \infty)$, and $\bar{G}$ is the closure of $G$.

## 2. Asymptotic behavior

In this section, we show that under some assumptions, any positive solution $u \in Z_{p}$ of Problem (1.1)-1.3) tends to zero as $t \rightarrow \infty$ uniformly in $x \in \Omega$. We also describe its asymptotic behavior as $t \rightarrow \infty$. The following lemma will be useful later.

Lemma 2.1. Let $u, v \in Z_{p}$ satisfying the following inequalities

$$
\begin{gathered}
\frac{\partial \varphi(u)}{\partial t}-L u+f(x, t, u)>\frac{\partial \varphi(v)}{\partial t}-L v+f(x, t, v) \quad \text { in } \Omega \times(0, \infty) \\
\frac{\partial u}{\partial N}+g(x, t, u)>\frac{\partial v}{\partial N}+g(x, t, v) \quad \text { on } \partial \Omega \times(0, \infty) \\
u(x, 0)>v(x, 0) \quad \text { in } \bar{\Omega}
\end{gathered}
$$

Then we have $u(x, t)>v(x, t)$ in $\Omega \times(0, \infty)$.
Proof. The function $w(x, t)=u(x, t)-v(x, t)$ is continuous in $\bar{\Omega} \times[0, \infty)$. Then its minimum value $m$ is attained at a point $\left(x_{0}, t_{0}\right) \in \bar{\Omega} \times[0, \infty]$. If $t_{0}=0$, then $m>0$. If $0<t_{0} \leq \infty$, suppose that there exists $t_{1}$ such that $0<t_{1} \leq t_{0}$ with $u(x, t)>v(x, t)$ for $0 \leq t<t_{1}$ but $u\left(x_{1}, t_{1}\right)=v\left(x_{1}, t_{1}\right)$ for some $x_{1} \in \bar{\Omega}$.
If $x_{1} \in \Omega$ then we have

$$
\frac{\partial \varphi(u)-\varphi(v)}{\partial t}\left(x_{1}, t_{1}\right) \leq 0, \quad L w\left(x_{1}, t_{1}\right) \geq 0, \quad f\left(u\left(x_{1}, t_{1}\right)\right)=f\left(v\left(x_{1}, t_{1}\right)\right)
$$

Consequently, we have a contradiction because

$$
\frac{\partial \varphi(u)-\varphi(v)}{\partial t}\left(x_{1}, t_{1}\right)-L w\left(x_{1}, t_{1}\right)+\left[f\left(x_{1}, t_{1}, u\left(x_{1}, t_{1}\right)\right)-f\left(x_{1}, t_{1}, v\left(x_{1}, t_{1}\right)\right)\right]>0
$$

Finally if $x_{1} \in \partial \Omega$, then $\frac{\partial w}{\partial N}\left(x_{1}, t_{1}\right) \leq 0$. We have again an absurdity because of the fact that

$$
\frac{\partial w}{\partial N}\left(x_{1}, t_{1}\right)+\left[g\left(x_{1}, t_{1}, u\left(x_{1}, t_{1}\right)\right)-g\left(x_{1}, t_{1}, v\left(x_{1}, t_{1}\right)\right)\right]>0
$$

Therefore we have $m>0$.
For the limit of $f_{*}(t) / g_{*}(t)$ as $t \rightarrow 0$, we have the following possibilities:
(P1) $\lim _{t \rightarrow 0} \frac{f_{*}(t)}{g_{*}(t)}=0$,
(P2) $\lim _{t \rightarrow 0} \frac{f_{*}(t)}{g_{*}(t)}=\infty$,
(P3) $\lim _{t \rightarrow 0} \frac{f_{*}(t)}{g_{*}(t)}=C_{*}$, where $C_{*}$ is a positive constant.
Let $\varepsilon_{f}$ and $\varepsilon_{g}$ be such that:
(H1) $\varepsilon_{f}=0, \varepsilon_{g}=1$ if (P1) is satisfied;
(H2) $\varepsilon_{f}=1, \varepsilon_{g}=0$ if (P2) is satisfied;
(H3) $\varepsilon_{f}=\sqrt{\frac{C_{*}}{1+C_{*}}}, \varepsilon_{g}=\sqrt{\frac{C_{*}}{1+C_{*}}}$ if (P3) is satisfied.

Assumption (P1) is always used with the coefficients $\varepsilon_{f}, \varepsilon_{g}$ defined in (H1)-(H3). The function

$$
\begin{equation*}
h(t)=\varepsilon_{f} f_{*}(t)+\varepsilon_{g} g_{*}(t) \tag{2.1}
\end{equation*}
$$

is crucial for the study of asymptotic behavior of solutions. Let

$$
\begin{equation*}
G(s)=\int_{s}^{1} \frac{\varphi^{\prime}(t) d t}{h(t)} \tag{2.2}
\end{equation*}
$$

and let $H(s)$ be the inverse function of $G(s)$. In this notation the initial-value problem

$$
\begin{equation*}
\varphi^{\prime}(\beta(t)) \beta^{\prime}(t)=-\lambda h(\beta(t)), \quad \beta(0)=1 \quad(\lambda>0) \tag{2.3}
\end{equation*}
$$

has the unique solution $\beta(t)=H(\lambda t)$. It follows from $\frac{h}{\varphi^{\prime}}(0)=\left(\frac{h}{\varphi^{\prime}}\right)^{\prime}(0)=0$ that $0<\frac{h(t)}{\varphi^{\prime}(t)}<t$ for $0<t<\delta(\delta>0)$ and hence

$$
\begin{equation*}
G(0)=\infty, \quad G(1)=0 \quad \text { and } \quad H(0)=1, \quad H(\infty)=0 \tag{2.4}
\end{equation*}
$$

which implies that $\beta(\infty)=0$. The function $\beta(t)$ will be used later in the construction of supersolutions and subsolutions of 1.1 -1.3) to obtain the asymptotic behavior of solutions.

Remark 2.2. If (P1)-(P3) are satisfied, then

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left\{-\varepsilon_{f} a(x)+\frac{f(x, t, \beta(t))}{h(\beta(t))}\right\}=0 \\
& \lim _{t \rightarrow \infty}\left\{-\varepsilon_{g} b(x)+\frac{g(x, t, \beta(t))}{h(\beta(t))}\right\}=0
\end{aligned}
$$

In the following theorems, we suppose that (P1) or (P2) or (P3) is satisfied. Consider the boundary-value problem

$$
\begin{equation*}
-\lambda-L \psi=-\varepsilon_{f} a(x)+\delta, \quad \frac{\partial \psi}{\partial N}=-\varepsilon_{g} b(x)+\delta \tag{2.5}
\end{equation*}
$$

This problem has a solution if and only if

$$
\begin{equation*}
\delta\left(\int_{\Omega} v_{0}(x) d x+\int_{\partial \Omega} v_{0}(x) d s\right)=I(a, b)-\lambda \int_{\Omega} v_{0}(x) d x \tag{2.6}
\end{equation*}
$$

where $v_{0}(x)$ is a solution of Problem (1.8) and

$$
\begin{equation*}
I(a, b)=\varepsilon_{g} \int_{\partial \Omega} b(x) v_{0}(x) d s+\varepsilon_{f} \int_{\Omega} a(x) v_{0}(x) d x \tag{2.7}
\end{equation*}
$$

(see, for instance [6]). Thus in this paper, for problem (2.5), we suppose that for given $\lambda>0, \delta$ satisfies (2.6), which implies that problem (2.5) has a solution $\psi$. Without loss of generality, we may suppose that $\psi>0$. Indeed, when $\psi$ is a solution of 2.5), we see that $\psi+C$ is also a solution of 2.5 for any constant $C>0$. The function $\psi$ will be used later to construct supersolutions and subsolutions of 1.1 (1.3) for getting the asymptotic behavior of solutions. The function $v_{0}(x)$ does not change sign in $\Omega$. We shall suppose that $v_{0}(x)>0$ in $\Omega$. If $a_{i}(x)=0$, then the operator $L$ is self-adjoint and $v_{0}(x)=1$.

Theorem 2.3. (i) Suppose that $I(a, b)>0$ and $\lim _{s \rightarrow 0} \frac{h(s) \varphi^{\prime \prime}(s)}{\varphi^{\prime}(s)}=0$. If $u \in$ $Z_{p}$ is a positive solution of (1.1)-(1.3), then

$$
\lim _{t \rightarrow \infty} u(x, t)=0
$$

uniformly in $x \in \bar{\Omega}$.
(ii) Moreover if there exists a positive constant $c_{2}$ such that

$$
\lim _{s \rightarrow \infty} \frac{\operatorname{sh}(H(s))}{H(s) \varphi^{\prime}(H(s))} \leq c_{2}
$$

we have $u(x, t)=H\left(c_{f g} t\right)(1+o(1))$ as $t \rightarrow \infty$, where $c_{f g}=\frac{I(a, b)}{\int_{\Omega} v_{0}(x) d x}$.
Proof. (i) Put $w(x, t)=\beta(t)+\psi(x) h(\beta(t))$, where $\beta(t)$ and $\psi(x)$ are solutions of 2.3 and 2.5 respectively for $\lambda \leq \frac{I(a, b)}{2 \int_{\Omega} v_{0}(x) d x}$, which implies that $\delta>0$. A straightforward computation reveals that

$$
\begin{aligned}
& \frac{\partial \varphi(w)}{\partial t}-L w+f(x, t, w) \\
& =h(\beta(t))(-\lambda-L \psi)-\lambda h(\beta(t)) h^{\prime}(\beta(t)) \psi(x)+f(x, t, \beta(t))+\psi(x) h(\beta(t)) f_{x, t}^{\prime}(y) \\
& \quad-\lambda \psi(x) \frac{h^{2}(\beta(t)) \varphi^{\prime \prime}(z)}{\varphi^{\prime}(\beta(t))}-\lambda \psi^{2}(x) \frac{h^{2}(\beta(t)) h^{\prime}(\beta(t)) \varphi^{\prime \prime}(z)}{\varphi^{\prime}(\beta(t))}, \\
& \qquad \frac{\partial w}{\partial N}+g(x, t, w)=h(\beta(t)) \frac{\partial \psi}{\partial N}+g(x, t, \beta(t))+\psi(x) h(\beta(t)) g_{x, t}^{\prime}(l), \\
& \text { with }\{l, y, z\} \in[\beta(t), \beta(t)+\psi(x) h(\beta(t))] \text {. It follows from 2.5) that } \\
& \frac{\partial \varphi(w)}{\partial t}-L w+f(x, t, w) \\
& =\left(\delta-\varepsilon_{f} a(x)\right) h(\beta(t))-\lambda h(\beta(t)) h^{\prime}(\beta(t)) \psi(x)+f(x, t, \beta(t))+\psi(x) h(\beta(t)) f_{x, t}^{\prime}(y) \\
& \quad-\lambda \psi(x) \frac{h^{2}(\beta(t)) \varphi^{\prime \prime}(z)}{\varphi^{\prime}(\beta(t))}-\lambda \psi^{2}(x) \frac{h^{2}(\beta(t)) h^{\prime}(\beta(t)) \varphi^{\prime \prime}(z)}{\varphi^{\prime}(\beta(t))}, \\
& \quad \frac{\partial w}{\partial N}+g(x, t, w)=\left(\delta-\varepsilon_{g} b(x)\right) h(\beta(t))+g(x, t, \beta(t))+\psi(x) h(\beta(t)) g_{x, t}^{\prime}(l) .
\end{aligned}
$$

Since $f_{x, \infty}^{\prime}(0)=g_{x, \infty}^{\prime}(0)=0, \lim _{s \rightarrow 0} \frac{h(s) \varphi^{\prime \prime}(s)}{\varphi^{\prime}(s)}=0$, using Remark 2.1, there exists $t_{1} \geq 0$ such that

$$
\begin{gathered}
\frac{\partial \varphi(w)}{\partial t}-L w+f(x, t, w)>0 \quad \text { in } \Omega \times\left(t_{1}, \infty\right) \\
\frac{\partial w}{\partial N}+g(x, t, w)>0 \quad \text { on } \partial \Omega \times\left(t_{1}, \infty\right)
\end{gathered}
$$

Let $k>1$ be large enough that

$$
u\left(x, t_{1}\right)<k w\left(x, t_{1}\right) \quad \text { in } \bar{\Omega} .
$$

Since $f_{x, t}(s)$ and $g_{x, t}(s)$ are convex with $f_{x, t}(0)=g_{x, t}(0), \varphi(s)$ is concave and $w_{t} \leq 0$, we get

$$
\begin{gathered}
\frac{\partial \varphi(k w)}{\partial t}-L k w+f(x, t, k w)>0 \quad \text { in } \Omega \times\left(t_{1}, \infty\right) \\
\frac{\partial k w}{\partial N}+g(x, t, k w)>0 \quad \text { on } \partial \Omega \times\left(t_{1}, \infty\right)
\end{gathered}
$$

It follows from Comparison Lemma 2.1 that

$$
u\left(x, t_{1}+t\right)<k w\left(x, t_{1}+t\right) \quad \text { in } \Omega \times(0, \infty)
$$

Since $\lim _{t \rightarrow \infty} w(x, t)=0$ uniformly in $x \in \bar{\Omega}$, we have the result.
The proof of Theorem 2.3 (ii) is based on the following lemmas:

Lemma 2.4. Under the hypotheses of Theorem 2.3 (i), if $u \in Z_{p}$ is a positive solution of problem (1.1)-1.3, then for any $\varepsilon>0$ small enough, there exist $\tau$ and $T$ such that

$$
u(x, t+\tau) \leq \beta_{1}(t+T)+\psi_{1}(x) h\left(\beta_{1}(t+T)\right)
$$

where $\beta_{1}(t)$ and $\psi_{1}(x)>0$ are solutions of 2.3 and 2.5 respectively for $\lambda=$ $c_{f g}-\frac{\varepsilon}{2}$.

Proof. Put

$$
w_{1}(x, t)=\beta_{1}(t)+\psi_{1}(x) h\left(\beta_{1}(t)\right) .
$$

Since $c_{f g}=I(a, b) / \int_{\Omega} v_{0}(x) d x$, it follows that

$$
\delta=\frac{\varepsilon \int_{\Omega} v_{0}(x) d x}{2\left(\int_{\Omega} v_{0}(x) d x+\int_{\partial \Omega} v_{0}(x) d x\right)},
$$

which implies that for any $\varepsilon>0$ small enough $\delta>0$ and as in the proof of Theorem 2.3 (i), there exists $T \geq 0$ such that

$$
\begin{gathered}
\frac{\partial \varphi\left(w_{1}\right)}{\partial t}-L w_{1}+f\left(x, t, w_{1}\right)>0 \quad \text { in } \Omega \times(T, \infty) \\
\frac{\partial w_{1}}{\partial N}+g\left(x, t, w_{1}\right)>0 \quad \text { on } \partial \Omega \times(T, \infty)
\end{gathered}
$$

Since $\lim _{t \rightarrow \infty} u(x, t)=0$ uniformly in $x \in \bar{\Omega}$, there exists a $\tau>T$ such that

$$
u(x, \tau)<w_{1}(x, T) \quad \text { in } \bar{\Omega}
$$

Set $z_{1}(x, t)=w_{1}(x, T-\tau+t)$ in $\bar{\Omega} \times(\tau, \infty)$. We have

$$
\begin{aligned}
z_{1}(x, \tau) & =w_{1}(x, T)>u(x, \tau) \quad \text { in } \bar{\Omega} \\
\frac{\partial \varphi\left(z_{1}\right)}{\partial t} & =\frac{\partial \varphi\left(w_{1}\right)}{\partial t} \quad \text { in } \Omega \times(\tau, \infty) \\
L z_{1} & =L w_{1} \quad \text { in } \Omega \times(\tau, \infty) \\
\frac{\partial z_{1}}{\partial N} & =\frac{\partial w_{1}}{\partial N} \quad \text { on } \partial \Omega \times(\tau, \infty)
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{\partial \varphi\left(z_{1}\right)}{\partial t}-L z_{1}+f\left(x, t, z_{1}\right)>0 \quad \text { in } \Omega \times(\tau, \infty) \\
\frac{\partial z_{1}}{\partial N}+g\left(x, t, z_{1}\right)>0 \quad \text { on } \partial \Omega \times(\tau, \infty) \\
z_{1}(x, \tau)>u(x, \tau) \quad \text { in } \bar{\Omega}
\end{gathered}
$$

It follows from Comparison Lemma 2.1 that

$$
u(x, t+\tau) \leq w_{1}(x, t+T)=\beta_{1}(t+T)+\psi_{1}(x) h\left(\beta_{1}(t+T)\right)
$$

which yields the result.
Lemma 2.5. Under the hypotheses of Theorem 2.3 (i), if $u \in Z_{p}$ is a positive solution of (1.1)-(1.3), then for any $\varepsilon>0$ small enough, there exists $T_{2}$ such that

$$
u(x, t+\tau) \geq \beta_{2}\left(t+T_{2}\right)+\psi_{2}(x) h\left(\beta_{1}\left(t+T_{2}\right)\right)
$$

where $\beta_{2}(t)$ and $\psi_{2}(x)>0$ are solutions of 2.3 and 2.5 respectively for $\lambda=$ $c_{f g}+\frac{\varepsilon}{2}$.

Proof. Put

$$
w_{2}(x, t)=\beta_{2}(t)+\psi_{1}(x) h\left(\beta_{2}(t)\right)
$$

Since $c_{f g}=\frac{I(a, b)}{\int_{\Omega} v_{0}(x) d x}$, it follows that

$$
\delta=\frac{-\varepsilon \int_{\Omega} v_{0}(x) d x}{2\left(\int_{\Omega} v_{0}(x) d x+\int_{\partial \Omega} v_{0}(x) d x\right)},
$$

which implies that for any $\varepsilon>0$ small enough $\delta<0$. As in the proof of Theorem 2.3 (i), $w_{2}$ satisfies

$$
\begin{aligned}
& \frac{\partial \varphi\left(w_{2}\right)}{\partial t}-L w_{2}+f\left(x, t, w_{2}\right) \\
& =\left(\delta-\varepsilon_{f} a(x)\right) h\left(\beta_{2}(t)\right) \\
& \quad-\left(c_{f g}+\frac{\varepsilon}{2}\right) h\left(\beta_{2}(t)\right) h^{\prime}\left(\beta_{2}(t)\right) \psi(x)+f\left(x, t, \beta_{2}(t)\right)+\psi(x) h\left(\beta_{2}(t)\right) f_{x, t}^{\prime}\left(y_{2}\right) \\
& \quad-\left(c_{f g}+\frac{\varepsilon}{2}\right) \psi(x) \frac{h^{2}(\beta(t)) \varphi^{\prime \prime}\left(z_{2}\right)}{\varphi^{\prime}(\beta(t))}-\left(c_{f g}+\frac{\varepsilon}{2}\right) \psi^{2}(x) \frac{h^{2}(\beta(t)) h^{\prime}(\beta(t)) \varphi^{\prime \prime}\left(z_{2}\right)}{\varphi^{\prime}(\beta(t))} \\
& \frac{\partial w_{2}}{\partial N}+g\left(x, t, w_{2}\right)=\left(\delta-\varepsilon_{g} b(x)\right) h\left(\beta_{2}(t)\right)+g\left(x, t, \beta_{2}(t)\right)+\psi(x) h\left(\beta_{2}(t)\right) g_{x, t}^{\prime}\left(l_{2}\right)
\end{aligned}
$$

with $\left\{y_{2}, z_{2}, l_{2}\right\} \in\left[\beta_{2}(t), \beta_{2}(t)+\psi_{2}(x) h\left(\beta_{2}(t)\right)\right]$. Since $f_{x, \infty}^{\prime}(0)=g_{x, \infty}^{\prime}(0)=0$, $\lim _{s \rightarrow 0} \frac{h(s) \varphi^{\prime \prime}(s)}{\varphi^{\prime}(s)}=0$, using Remark 2.1, for any $\varepsilon>0$ small enough, there exists $T_{1}>0$ such that

$$
\begin{gathered}
\frac{\partial \varphi\left(w_{2}\right)}{\partial t}-L w_{2}+f\left(x, t, w_{2}\right)<0 \quad \text { in } \Omega \times\left(T_{1}, \infty\right) \\
\frac{\partial w_{2}}{\partial N}+g\left(x, t, w_{2}\right)<0 \quad \text { on } \partial \Omega \times\left(T_{1}, \infty\right)
\end{gathered}
$$

Since $\lim _{t \rightarrow \infty} w_{2}(x, t)=0$ uniformly for $x \in \bar{\Omega}$, then there exists a $T_{2}>T_{1}$ such that

$$
u(x, \tau)>w_{2}\left(x, T_{2}\right) \quad \text { in } \bar{\Omega}
$$

Set

$$
z_{2}(x, t)=w_{2}\left(x, T_{2}-\tau+t\right) \quad \text { in } \bar{\Omega} \times(\tau, \infty)
$$

We get

$$
\begin{aligned}
z_{2}(x, \tau) & =w_{2}\left(x, T_{2}\right)<u(x, \tau) \quad \text { in } \bar{\Omega}, \\
\frac{\partial \varphi\left(z_{2}\right)}{\partial t} & =\frac{\partial \varphi\left(w_{2}\right)}{\partial t} \quad \text { in } \Omega \times(\tau, \infty) \\
L z_{2} & =L w_{2} \quad \text { in } \Omega \times(\tau, \infty) \\
\frac{\partial z_{2}}{\partial N} & =\frac{\partial w_{2}}{\partial N} \quad \text { on } \partial \Omega \times(\tau, \infty)
\end{aligned}
$$

Hence, we find that

$$
\begin{gathered}
\frac{\partial \varphi\left(z_{2}\right)}{\partial t}-L z_{2}+f\left(x, t, z_{2}\right)<0 \quad \text { in } \Omega \times\left(T_{2}, \infty\right) \\
\frac{\partial z_{2}}{\partial N}+g\left(x, t, z_{2}\right)<0 \quad \text { on } \partial \Omega \times\left(T_{2}, \infty\right) \\
z_{2}(x, \tau)<u(x, \tau) \quad \text { in } \bar{\Omega}
\end{gathered}
$$

It follows from Comparison Lemma 2.1 that

$$
u(x, t+\tau) \leq w_{2}(x, t+T)=\beta_{2}(t+T)+\psi_{2}(x) h\left(\beta_{2}(t+T)\right)
$$

which gives the result.
Lemma 2.6. Let $\beta(t, \lambda)$ be a solution of Problem 2.3. Then
(i) for $\gamma>0$,

$$
\lim _{t \rightarrow \infty} \frac{\beta(t+\gamma, \lambda)}{\beta(t, \lambda)}=1
$$

(ii) if $\lim _{s \rightarrow \infty} \frac{s h(H(s))}{H(s) \varphi^{\prime}(H(s))} \leq c_{2}$ and $\alpha>0$, then

$$
\begin{align*}
& 1 \geq \lim _{t \rightarrow \infty} \sup \frac{\beta(t, \lambda+\alpha)}{\beta(t, \lambda)} \geq \lim _{t \rightarrow \infty} \inf \frac{\beta(t, \lambda+\alpha)}{\beta(t, \lambda)} \geq 1-\frac{c_{2} \alpha}{\lambda}  \tag{2.8}\\
& 1 \leq \lim _{t \rightarrow \infty} \inf \frac{\beta(t, \lambda-\alpha)}{\beta(t, \lambda)} \leq \lim _{t \rightarrow \infty} \sup \frac{\beta(t, \lambda-\alpha)}{\beta(t, \lambda)} \leq 1+\frac{2 c_{2} \alpha}{\lambda} \tag{2.9}
\end{align*}
$$

for $\alpha$ small enough.
Proof. (i) Since $\beta_{\lambda}(t)=\beta(t, \lambda)$ is decreasing and convex,

$$
\beta(t, \lambda)-\gamma \lambda \frac{h(\beta(t, \lambda))}{\varphi^{\prime}(\beta(t, \lambda))} \leq \beta(t+\gamma, \lambda) \leq \beta(t, \lambda)
$$

which implies $\lim _{t \rightarrow \infty} \frac{\beta(\gamma+t, \lambda)}{\beta(t, \lambda)}=1$ because $\lim _{s \rightarrow 0} \frac{h(s)}{s \varphi^{\prime}(s)}=0$.
(ii) We have

$$
1 \geq \frac{\beta(t, \lambda+\alpha)}{\beta(t, \lambda)}=\frac{H(\lambda t+\alpha)}{H(\lambda t)} \geq \frac{H(\lambda t)-\alpha t \frac{h(H(\lambda t))}{\varphi^{\prime}(H(\lambda t))}}{H(\lambda t)} .
$$

Since $\lim _{s \rightarrow \infty} \frac{h(H(s))}{H(s) \varphi^{\prime}(H(s))} \leq c_{2}$, we obtain 2.8). We also get by means of 2.8) the following inequalities:

$$
1 \leq \lim _{t \rightarrow \infty} \inf \frac{\beta(t, \lambda-\alpha)}{\beta(t, \lambda)} \leq \lim _{t \rightarrow \infty} \sup \frac{\beta(t, \lambda-\alpha)}{\beta(t, \lambda)} \leq \frac{1}{1-\frac{c_{2} \alpha}{\lambda-\alpha}} \leq 1+\frac{2 c_{2} \alpha}{\lambda}
$$

which yields 2.9.
Proof of Theorem 2.3 (ii). From Lemmas 2.4, 2.5 and 2.6, for any $\varepsilon>0$ small enough, we have

$$
1-k_{1} \varepsilon \leq \lim _{t \rightarrow \infty} \inf \frac{u(x, t)}{\beta(t)} \leq \lim _{t \rightarrow \infty} \sup \frac{u(x, t)}{\beta(t)} \leq 1+k_{2} \varepsilon
$$

where $k_{1}$ and $k_{2}$ are two positive constants. Consequently

$$
u(x, t)=\beta(t)(1+o(1)) \quad \text { as } \quad t \rightarrow \infty
$$

which gives the result.
Remark 2.7. Let $\varphi(u)=u^{m}, f(x, t, u)=a_{1}(x, t) u^{p}, g(x, t, u)=b_{1}(x, t) u^{q}$ with $0<m \leq 1, \inf \{p, q\}>1$. Assume that $\lim _{t \rightarrow \infty} a_{1}(x, t)=a(x), \lim _{t \rightarrow \infty} b_{1}(x, t)=$ $b(x)$,

$$
\varepsilon_{q} \int_{\partial \Omega} b(x) d s+\varepsilon_{p} \int_{\Omega} a(x) d x>0
$$

where $\varepsilon_{p}=0, \varepsilon_{q}=1$ if $p>q, \varepsilon_{p}=1, \varepsilon_{q}=0$ if $p<q$ and $\varepsilon_{p}=1, \varepsilon_{q}=1$ if $p=q$. If $u \in Z_{p}$ is a positive solution of Problem (1.1) (1.3), then $u$ tends to zero as $t \rightarrow \infty$ uniformly in $x \in \bar{\Omega}$. Moreover

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{u(x, t)}{t^{-\frac{1}{\inf \{p, q\}-m}}} \\
& =\left(\frac{\inf \{p, q\}-m}{m \int_{\Omega} v_{0}(x) d x}\left[\varepsilon_{q} \int_{\partial \Omega} v_{0}(x) b(x) d s+\varepsilon_{p} \int_{\Omega} v_{0}(x) a(x) d x\right]\right)^{\frac{1}{m-\inf \{p, q\}}} .
\end{aligned}
$$

Acknowledgments. The authors want to thank the anonymous referee for the throughout reading of the manuscript and several suggestions that help us improve the presentation of the paper.

## References

[1] V. N Arefiev and V. A. Kondratiev; Asymptotic behavior of solutions of second boundary value problem of nonlinear equations, Differential Equations, 29 (1993), 1835-1846.
[2] T. K. Boni; Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre, C.R.A.S, Serie I, 326 (1998), 317-322.
[3] T. K. Boni; On the blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order, Asympt. Anal., 21 (1999), 187-208.
[4] T. K. Boni; On asymptotic behavior of solutions for some semilinear parabolic and elliptic equations of second order with nonlinear boundary conditions, Nonl. Anal. TMA., 45 (2001), 895-908.
[5] R. Dautray and J.L. Lions; Analyse mathematique et calcul numerique pour les sciences et techniques, Tome 2, collection commissariat de l'energie atomique, Masson, paris, (1985).
[6] V. A. Kondratiev and O. A. Oleinik; On asymptotic of solutions second order elliptic equations in cylindrical domains, Diff. Equation Appl., 22 (1996), 160-173.
[7] V. A. Kondratiev and L. Veron; Asymptotic behavior of solutions of nonlinear parabolic or elliptic equations, Asympt. Anal., 14 (1997), 160-173.
[8] O. A. Ladyzenskaya, V. A. Solonnikov, and N. N. Ural'ceva; Linear and quasilinear equations of parabolic type, Trans. Math. Monogr., 23, AMS, Providence, RI, (1988) (English translation from Russian 1967).
[9] M. H. Protter and H. F. Weinberger; Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, (1967).
[10] L. Veron; Equations d'evolution semi-lineares du second ordre dans $L^{1}$, Rev. Roumaine Math. Pures Appl., XXXVII (1982), 95-123.
[11] W. Walter; Differential-und Integral-Ungleichungen, Springer, Berlin, (1964).
Théodore K. Boni
Institut National Polytechnique Houphout-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Côte d'Ivoire

E-mail address: theokboni@yahoo.fr
Diabate Nabongo
Université d'Abobo-Adjamé, UFR-SFA, Département de Mathématiques et Informatiques, 16 BP 372 Abidjan 16, Côte d'Ivoire

E-mail address: nabongo_diabate@yahoo.fr


[^0]:    2000 Mathematics Subject Classification. 35B40, 35B50, 35K60.
    Key words and phrases. Parabolic boundary value problem; asymptotic behavior; nonlinear boundary conditions.
    © 2008 Texas State University - San Marcos.
    Submitted December 4, 2007. Published January 17, 2008.

