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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO NONLINEAR
PARABOLIC EQUATION WITH NONLINEAR BOUNDARY

CONDITIONS

THÉODORE K. BONI, DIABATE NABONGO

Abstract. We show that solutions of a nonlinear parabolic equation of sec-

ond order with nonlinear boundary conditions approach zero as t approaches
infinity. Also, under additional assumptions, the solutions behave as a function

determined here.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Consider the
boundary value problem

∂ϕ(u)
∂t

− Lu+ f(x, t, u) = 0 in Ω× (0,∞), (1.1)

∂u

∂N
+ g(x, t, u) = 0 on ∂Ω× (0,∞), (1.2)

u(x, 0) = u0(x) in Ω, (1.3)

where

Lu =
n∑

i,j=1

∂

∂xj
(aij(x)

∂u

∂xi
) +

n∑
i=1

ai(x)
∂u

∂xi
,

∂u

∂N
=

n∑
i,j=1

cos(ν, xi)aij(x)
∂u

∂xj
.

Here the coefficients aij(x) ∈ C(Ω) satisfy the inequality

n∑
i,j=1

aij(x)ξiξj ≥ C|ξ|2 for ξ ∈ Rn, ξ 6= 0, C > 0,

aij(x) = aji(x), ν is the exterior normal unit vector on ∂Ω, fx,t(s) = f(x, t, s)
and gx,t(s) = g(x, t, s) are positive, increasing and convex functions for s ≥ 0 with
fx,t(0) = f ′x,t(0) = gx,t(0) = g′x,t(0) = 0. For positive values of s, ϕ(s) is a positive
and concave function. Throughout this paper, we assume the following condition:
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(H0) There exist functions f∗(s), g∗(s) of class C1([0,∞)), positive for positive
values of s such that for any α(t) tending to zero as t→∞,

lim
t→∞

f(x, t, α(t))
f∗(α(t))

= a(x), lim
t→∞

g(x, t, α(t))
g∗(α(t))

= b(x),

f∗
ϕ′

(0) =
g∗
ϕ′

(0) = (
f∗
ϕ′

)′(0) = (
g∗
ϕ′

)′(0) = 0,

where a(x) is a bounded nonnegative function in Ω and b(x) is a bounded
nonnegative function on ∂Ω.

Existence of positive classical solutions, local in time, was proved by Ladyzen-
skaya, Solonnikov and Ural’ceva in [9]. In this paper, we are dealing with the
asymptotic behavior as t→∞ of positive solutions of (1.1)–(1.3). The asymptotic
behavior of solutions for parabolic equations has been the subject of study of many
authors (see, for instance [1, 2, 3, 4, 6, 7, 10]. In particular, Kondratiev and Oleinik
[6] considered the problem

∂u

∂t
− Lu+ a|u|p−1u = 0 in Ω× (0,∞), (1.4)

∂u

∂N
= 0 on ∂Ω× (0,∞), (1.5)

u(x, 0) = u0(x) in Ω, (1.6)

where p > 1, and a is a positive constant. They proved that if u is a positive
solution of Problem (1.4)–(1.6), then

lim
t→∞

t
1

p−1u(x, t) =
(p− 1
|Ω|

∫
Ω

av1(x)dx
) −1

p−1
(1.7)

uniformly in x ∈ Ω, where v1(x) is a positive solution of the boundary value problem

L∗(v) = 0 in Ω

∂v

∂N
=

n∑
i=1

ai(x) cos(ν, xi)v on ∂Ω,
(1.8)

with

L∗(v) =
n∑

i,j=1

∂

∂xi
(aij(x)

∂v

∂xj
)−

n∑
i,j=1

∂

∂xi
(ai(x)v).

Notice that Problem (1.8) is the adjoint of the Neumann problem for the operator
L. The same result with v1(x) = 1, a = a(x) has been also obtained in [2] and
[7] in the case where a(x) is a bounded function in Ω and ai(x) = 0 (i = 1, . . . , n)
(i.e. the operator L is self-adjoint). In [4], the second author has shown similar
results about the asymptotic behavior of solutions for another particular case of
Problem (1.1)–(1.3) which corresponds to this last for ai(x) = 0 (i = 1, . . . , n),
ϕ(u) = u, f(x, t, u) = a(x)f∗(u), g(x, t, u) = b(x)g∗(u). Our aim in this paper
is to generalize the above results, describing the asymptotic behavior of solutions
for Problem (1.1)–(1.3). Our paper is written in the following manner. Under
some conditions, we obtain in the next section the asymptotic behavior of positive
solutions for Problem (1.1)–(1.3).
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Introduce the function class Zp defined as follows: u ∈ Zp if u is continuous in
G, ∂u

∂xi
∈ G′ and ∂u

∂t , ∂2u
∂xi∂xj

∈ G, where G = Ω × (0,∞), G′ = Ω × (0,∞), and G

is the closure of G.

2. Asymptotic behavior

In this section, we show that under some assumptions, any positive solution
u ∈ Zp of Problem (1.1)–(1.3) tends to zero as t→∞ uniformly in x ∈ Ω. We also
describe its asymptotic behavior as t → ∞. The following lemma will be useful
later.

Lemma 2.1. Let u, v ∈ Zp satisfying the following inequalities

∂ϕ(u)
∂t

− Lu+ f(x, t, u) >
∂ϕ(v)
∂t

− Lv + f(x, t, v) in Ω× (0,∞),

∂u

∂N
+ g(x, t, u) >

∂v

∂N
+ g(x, t, v) on ∂Ω× (0,∞),

u(x, 0) > v(x, 0) in Ω.

Then we have u(x, t) > v(x, t) in Ω× (0,∞).

Proof. The function w(x, t) = u(x, t) − v(x, t) is continuous in Ω × [0,∞). Then
its minimum value m is attained at a point (x0, t0) ∈ Ω × [0,∞]. If t0 = 0, then
m > 0. If 0 < t0 ≤ ∞, suppose that there exists t1 such that 0 < t1 ≤ t0 with
u(x, t) > v(x, t) for 0 ≤ t < t1 but u(x1, t1) = v(x1, t1) for some x1 ∈ Ω.
If x1 ∈ Ω then we have

∂ϕ(u)− ϕ(v)
∂t

(x1, t1) ≤ 0, Lw(x1, t1) ≥ 0, f(u(x1, t1)) = f(v(x1, t1)).

Consequently, we have a contradiction because

∂ϕ(u)− ϕ(v)
∂t

(x1, t1)− Lw(x1, t1) + [f(x1, t1, u(x1, t1))− f(x1, t1, v(x1, t1))] > 0.

Finally if x1 ∈ ∂Ω, then ∂w
∂N (x1, t1) ≤ 0. We have again an absurdity because of

the fact that
∂w

∂N
(x1, t1) + [g(x1, t1, u(x1, t1))− g(x1, t1, v(x1, t1))] > 0.

Therefore we have m > 0. �

For the limit of f∗(t)/g∗(t) as t→ 0, we have the following possibilities:

(P1) limt→0
f∗(t)
g∗(t)

= 0,

(P2) limt→0
f∗(t)
g∗(t)

= ∞,

(P3) limt→0
f∗(t)
g∗(t)

= C∗, where C∗ is a positive constant.

Let εf and εg be such that:

(H1) εf = 0, εg = 1 if (P1) is satisfied;
(H2) εf = 1, εg = 0 if (P2) is satisfied;

(H3) εf =
√

C∗
1+C∗

, εg =
√

C∗
1+C∗

if (P3) is satisfied.
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Assumption (P1) is always used with the coefficients εf , εg defined in (H1)–(H3).
The function

h(t) = εff∗(t) + εgg∗(t) (2.1)
is crucial for the study of asymptotic behavior of solutions. Let

G(s) =
∫ 1

s

ϕ′(t)dt
h(t)

(2.2)

and let H(s) be the inverse function of G(s). In this notation the initial-value
problem

ϕ′(β(t))β′(t) = −λh(β(t)), β(0) = 1 (λ > 0) (2.3)
has the unique solution β(t) = H(λt). It follows from h

ϕ′ (0) = ( h
ϕ′ )′(0) = 0 that

0 < h(t)
ϕ′(t) < t for 0 < t < δ (δ > 0) and hence

G(0) = ∞, G(1) = 0 and H(0) = 1, H(∞) = 0, (2.4)

which implies that β(∞) = 0. The function β(t) will be used later in the construc-
tion of supersolutions and subsolutions of (1.1)–(1.3) to obtain the asymptotic
behavior of solutions.

Remark 2.2. If (P1)–(P3) are satisfied, then

lim
t→∞

{−εfa(x) +
f(x, t, β(t))
h(β(t))

} = 0,

lim
t→∞

{−εgb(x) +
g(x, t, β(t))
h(β(t))

} = 0.

In the following theorems, we suppose that (P1) or (P2) or (P3) is satisfied.
Consider the boundary-value problem

−λ− Lψ = −εfa(x) + δ,
∂ψ

∂N
= −εgb(x) + δ. (2.5)

This problem has a solution if and only if

δ
( ∫

Ω

v0(x)dx+
∫

∂Ω

v0(x)ds
)

= I(a, b)− λ

∫
Ω

v0(x)dx, (2.6)

where v0(x) is a solution of Problem (1.8) and

I(a, b) = εg

∫
∂Ω

b(x)v0(x)ds+ εf

∫
Ω

a(x)v0(x)dx, (2.7)

(see, for instance [6]). Thus in this paper, for problem (2.5), we suppose that for
given λ > 0, δ satisfies (2.6), which implies that problem (2.5) has a solution ψ.
Without loss of generality, we may suppose that ψ > 0. Indeed, when ψ is a solution
of (2.5), we see that ψ + C is also a solution of (2.5) for any constant C > 0. The
function ψ will be used later to construct supersolutions and subsolutions of (1.1)–
(1.3) for getting the asymptotic behavior of solutions. The function v0(x) does not
change sign in Ω. We shall suppose that v0(x) > 0 in Ω. If ai(x) = 0, then the
operatorL is self-adjoint and v0(x) = 1.

Theorem 2.3. (i) Suppose that I(a, b) > 0 and lims→0
h(s)ϕ′′(s)

ϕ′(s) = 0. If u ∈
Zp is a positive solution of (1.1)–(1.3), then

lim
t→∞

u(x, t) = 0

uniformly in x ∈ Ω.
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(ii) Moreover if there exists a positive constant c2 such that

lim
s→∞

sh(H(s))
H(s)ϕ′(H(s))

≤ c2,

we have u(x, t) = H(cfgt)(1 + o(1)) as t→∞, where cfg = I(a,b)R
Ω v0(x)dx

.

Proof. (i) Put w(x, t) = β(t) + ψ(x)h(β(t)), where β(t) and ψ(x) are solutions
of (2.3) and (2.5) respectively for λ ≤ I(a,b)

2
R
Ω v0(x)dx

, which implies that δ > 0. A
straightforward computation reveals that

∂ϕ(w)
∂t

− Lw + f(x, t, w)

= h(β(t))(−λ− Lψ)− λh(β(t))h′(β(t))ψ(x) + f(x, t, β(t)) + ψ(x)h(β(t))f ′x,t(y)

− λψ(x)
h2(β(t))ϕ′′(z)
ϕ′(β(t))

− λψ2(x)
h2(β(t))h′(β(t))ϕ′′(z)

ϕ′(β(t))
,

∂w

∂N
+ g(x, t, w) = h(β(t))

∂ψ

∂N
+ g(x, t, β(t)) + ψ(x)h(β(t))g′x,t(l),

with {l, y, z} ∈ [β(t), β(t) + ψ(x)h(β(t))]. It follows from (2.5) that

∂ϕ(w)
∂t

− Lw + f(x, t, w)

= (δ − εfa(x))h(β(t))− λh(β(t))h′(β(t))ψ(x) + f(x, t, β(t)) + ψ(x)h(β(t))f ′x,t(y)

− λψ(x)
h2(β(t))ϕ′′(z)
ϕ′(β(t))

− λψ2(x)
h2(β(t))h′(β(t))ϕ′′(z)

ϕ′(β(t))
,

∂w

∂N
+ g(x, t, w) = (δ − εgb(x))h(β(t)) + g(x, t, β(t)) + ψ(x)h(β(t))g′x,t(l).

Since f ′x,∞(0) = g′x,∞(0) = 0, lims→0
h(s)ϕ′′(s)

ϕ′(s) = 0, using Remark 2.1, there exists
t1 ≥ 0 such that

∂ϕ(w)
∂t

− Lw + f(x, t, w) > 0 in Ω× (t1,∞),

∂w

∂N
+ g(x, t, w) > 0 on ∂Ω× (t1,∞).

Let k > 1 be large enough that

u(x, t1) < kw(x, t1) in Ω.

Since fx,t(s) and gx,t(s) are convex with fx,t(0) = gx,t(0), ϕ(s) is concave and
wt ≤ 0, we get

∂ϕ(kw)
∂t

− Lkw + f(x, t, kw) > 0 in Ω× (t1,∞),

∂kw

∂N
+ g(x, t, kw) > 0 on ∂Ω× (t1,∞).

It follows from Comparison Lemma 2.1 that

u(x, t1 + t) < kw(x, t1 + t) in Ω× (0,∞).

Since limt→∞ w(x, t) = 0 uniformly in x ∈ Ω, we have the result. �

The proof of Theorem 2.3 (ii) is based on the following lemmas:
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Lemma 2.4. Under the hypotheses of Theorem 2.3 (i), if u ∈ Zp is a positive
solution of problem (1.1)–(1.3), then for any ε > 0 small enough, there exist τ and
T such that

u(x, t+ τ) ≤ β1(t+ T ) + ψ1(x)h(β1(t+ T )),
where β1(t) and ψ1(x) > 0 are solutions of (2.3) and (2.5) respectively for λ =
cfg − ε

2 .

Proof. Put
w1(x, t) = β1(t) + ψ1(x)h(β1(t)).

Since cfg = I(a, b)/
∫
Ω
v0(x)dx, it follows that

δ =
ε
∫
Ω
v0(x)dx

2(
∫
Ω
v0(x)dx+

∫
∂Ω
v0(x)dx)

,

which implies that for any ε > 0 small enough δ > 0 and as in the proof of Theorem
2.3 (i), there exists T ≥ 0 such that

∂ϕ(w1)
∂t

− Lw1 + f(x, t, w1) > 0 in Ω× (T,∞),

∂w1

∂N
+ g(x, t, w1) > 0 on ∂Ω× (T,∞).

Since limt→∞ u(x, t) = 0 uniformly in x ∈ Ω, there exists a τ > T such that

u(x, τ) < w1(x, T ) in Ω.

Set z1(x, t) = w1(x, T − τ + t) in Ω× (τ,∞). We have

z1(x, τ) = w1(x, T ) > u(x, τ) in Ω,

∂ϕ(z1)
∂t

=
∂ϕ(w1)
∂t

in Ω× (τ,∞),

Lz1 = Lw1 in Ω× (τ,∞),
∂z1
∂N

=
∂w1

∂N
on ∂Ω× (τ,∞).

Therefore,

∂ϕ(z1)
∂t

− Lz1 + f(x, t, z1) > 0 in Ω× (τ,∞),

∂z1
∂N

+ g(x, t, z1) > 0 on ∂Ω× (τ,∞),

z1(x, τ) > u(x, τ) in Ω.

It follows from Comparison Lemma 2.1 that

u(x, t+ τ) ≤ w1(x, t+ T ) = β1(t+ T ) + ψ1(x)h(β1(t+ T )),

which yields the result. �

Lemma 2.5. Under the hypotheses of Theorem 2.3 (i), if u ∈ Zp is a positive
solution of (1.1)–(1.3), then for any ε > 0 small enough, there exists T2 such that

u(x, t+ τ) ≥ β2(t+ T2) + ψ2(x)h(β1(t+ T2)),

where β2(t) and ψ2(x) > 0 are solutions of (2.3) and (2.5) respectively for λ =
cfg + ε

2 .
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Proof. Put
w2(x, t) = β2(t) + ψ1(x)h(β2(t)).

Since cfg = I(a,b)R
Ω v0(x)dx

, it follows that

δ =
−ε

∫
Ω
v0(x)dx

2(
∫
Ω
v0(x)dx+

∫
∂Ω
v0(x)dx)

,

which implies that for any ε > 0 small enough δ < 0. As in the proof of Theorem
2.3 (i), w2 satisfies

∂ϕ(w2)
∂t

− Lw2 + f(x, t, w2)

= (δ − εfa(x))h(β2(t))

− (cfg +
ε

2
)h(β2(t))h′(β2(t))ψ(x) + f(x, t, β2(t)) + ψ(x)h(β2(t))f ′x,t(y2),

− (cfg +
ε

2
)ψ(x)

h2(β(t))ϕ′′(z2)
ϕ′(β(t))

− (cfg +
ε

2
)ψ2(x)

h2(β(t))h′(β(t))ϕ′′(z2)
ϕ′(β(t))

,

∂w2

∂N
+ g(x, t, w2) = (δ − εgb(x))h(β2(t)) + g(x, t, β2(t)) + ψ(x)h(β2(t))g′x,t(l2).

with {y2, z2, l2} ∈ [β2(t), β2(t) + ψ2(x)h(β2(t))]. Since f ′x,∞(0) = g′x,∞(0) = 0,

lims→0
h(s)ϕ′′(s)

ϕ′(s) = 0, using Remark 2.1, for any ε > 0 small enough, there exists
T1 > 0 such that

∂ϕ(w2)
∂t

− Lw2 + f(x, t, w2) < 0 in Ω× (T1,∞),

∂w2

∂N
+ g(x, t, w2) < 0 on ∂Ω× (T1,∞).

Since limt→∞ w2(x, t) = 0 uniformly for x ∈ Ω, then there exists a T2 > T1 such
that

u(x, τ) > w2(x, T2) in Ω.

Set
z2(x, t) = w2(x, T2 − τ + t) in Ω× (τ,∞).

We get

z2(x, τ) = w2(x, T2) < u(x, τ) in Ω,

∂ϕ(z2)
∂t

=
∂ϕ(w2)
∂t

in Ω× (τ,∞),

Lz2 = Lw2 in Ω× (τ,∞),
∂z2
∂N

=
∂w2

∂N
on ∂Ω× (τ,∞).

Hence, we find that

∂ϕ(z2)
∂t

− Lz2 + f(x, t, z2) < 0 in Ω× (T2,∞),

∂z2
∂N

+ g(x, t, z2) < 0 on ∂Ω× (T2,∞),

z2(x, τ) < u(x, τ) in Ω.
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It follows from Comparison Lemma 2.1 that

u(x, t+ τ) ≤ w2(x, t+ T ) = β2(t+ T ) + ψ2(x)h(β2(t+ T )),

which gives the result. �

Lemma 2.6. Let β(t, λ) be a solution of Problem (2.3). Then
(i) for γ > 0,

lim
t→∞

β(t+ γ, λ)
β(t, λ)

= 1 .

(ii) if lims→∞
sh(H(s))

H(s)ϕ′(H(s)) ≤ c2 and α > 0, then

1 ≥ lim
t→∞

sup
β(t, λ+ α)
β(t, λ)

≥ lim
t→∞

inf
β(t, λ+ α)
β(t, λ)

≥ 1− c2α

λ
, (2.8)

1 ≤ lim
t→∞

inf
β(t, λ− α)
β(t, λ)

≤ lim
t→∞

sup
β(t, λ− α)
β(t, λ)

≤ 1 +
2c2α
λ

, (2.9)

for α small enough.

Proof. (i) Since βλ(t) = β(t, λ) is decreasing and convex,

β(t, λ)− γλ
h(β(t, λ))
ϕ′(β(t, λ))

≤ β(t+ γ, λ) ≤ β(t, λ),

which implies limt→∞
β(γ+t,λ)

β(t,λ) = 1 because lims→0
h(s)

sϕ′(s) = 0.
(ii) We have

1 ≥ β(t, λ+ α)
β(t, λ)

=
H(λt+ α)
H(λt)

≥
H(λt)− αt h(H(λt))

ϕ′(H(λt))

H(λt)
.

Since lims→∞
h(H(s))

H(s)ϕ′(H(s)) ≤ c2, we obtain (2.8). We also get by means of (2.8) the
following inequalities:

1 ≤ lim
t→∞

inf
β(t, λ− α)
β(t, λ)

≤ lim
t→∞

sup
β(t, λ− α)
β(t, λ)

≤ 1
1− c2α

λ−α

≤ 1 +
2c2α
λ

,

which yields (2.9). �

Proof of Theorem 2.3 (ii). From Lemmas 2.4, 2.5 and 2.6, for any ε > 0 small
enough, we have

1− k1ε ≤ lim
t→∞

inf
u(x, t)
β(t)

≤ lim
t→∞

sup
u(x, t)
β(t)

≤ 1 + k2ε

where k1 and k2 are two positive constants. Consequently

u(x, t) = β(t)(1 + o(1)) as t→∞,

which gives the result. �

Remark 2.7. Let ϕ(u) = um, f(x, t, u) = a1(x, t)up, g(x, t, u) = b1(x, t)uq with
0 < m ≤ 1, inf{p, q} > 1. Assume that limt→∞ a1(x, t) = a(x), limt→∞ b1(x, t) =
b(x),

εq

∫
∂Ω

b(x)ds+ εp

∫
Ω

a(x)dx > 0 ,
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where εp = 0, εq = 1 if p > q, εp = 1, εq = 0 if p < q and εp = 1, εq = 1 if p = q. If
u ∈ Zp is a positive solution of Problem (1.1)–(1.3), then u tends to zero as t→∞
uniformly in x ∈ Ω. Moreover

lim
t→∞

u(x, t)

t−
1

inf{p,q}−m

=
( inf{p, q} −m

m
∫
Ω
v0(x)dx

[εq

∫
∂Ω

v0(x)b(x)ds+ εp

∫
Ω

v0(x)a(x)dx]
) 1

m−inf{p,q}
.
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