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MULTIPLICITY RESULTS FOR FOURTH-ORDER
BOUNDARY-VALUE PROBLEM AT RESONANCE WITH

VARIABLE COEFFICIENTS

LING XU

Abstract. This paper studies the multiplicity of solutions for the fourth-order

boundary value problem at resonance with variable coefficients

u(4) + β(t)u′′ − λ1u = g(t, u) + h(t), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where β ∈ C[0, 1] with β(t) < π2 on [0, 1], g : [0, 1] × R → R is bounded
continuous function, h ∈ L2(0, 1) and λ1 > 0 is the first eigenvalue of the

associated linear homogeneous boundary value problem

u(4) + β(t)u′′ − λu = 0, t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

The proof of our main result is based on the connectivity properties of the
solution sets of parameterized families of compact vector fields.

1. Introduction

A beam is one of the basic structures for engineering construction, so it is quite
important to study beam equations in theory and practice. Generally, the deforma-
tions of an elastic beam can be described by the fourth-order ordinary differential
equation. According to the different suspensory conditions for two ends, there are
different fourth-order ordinary differential equations. Especially, the deformations
of an elastic beam in an equilibrium state, whose two ends are simply supported, can
be described by the fourth-order two-point ordinary differential equation boundary
value problem as follows

u(4) = f(t, u, u′′), t ∈ (0, 1), (1.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

where f : [0, 1] × R × R → R is continuous on [3, 4]. Owing to its importance in
physics, the existence of solutions and positive solutions to this problem have been
studied by many authors. See [3, 4, 5, 6, 7, 8, 10]. Our ideas arise from [5, 6, 8]. Liu
and Li [5, 6] studied the existence and multiplicity of solutions for the fourth-order
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boundary value problem with parameters

u(4) + ηu′′ − ξu = λf(t, u), t ∈ (0, 1), (1.3)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.4)

where f : [0, 1] × R → R is continuous, ξ, η and λ ∈ R are parameters. How-
ever, there are few papers concerning the existence of solutions for the fourth-order
boundary value problem with variable coefficients. Now, a question that naturally
arises is: are there any similar results happening to be the fourth-order boundary
value problem with variable coefficients? In 2006, Ma [8] investigated the exis-
tence of nodal solutions of the fourth-order two-point boundary value problem at
nonresonance with variable coefficient

u(4) + β(t)u′′ = a(t)f(u), t ∈ (0, 1), (1.5)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.6)

where β ∈ C[0, 1] with β(t) < π2 on [0, 1], a ∈ C[0, 1] with a ≥ 0 on [0, 1] and
a(t) 6≡ 0 on any subinterval of [0, 1], f ∈ C(R) satisfies f(u)u > 0 for all u 6= 0. But
so far, very few multiplicity results were established for the fourth-order boundary
value problem at resonance with variable coefficients.

In this paper, we consider nonexistence, existence and multiplicity of solutions
for the fourth-order boundary value problem at resonance with variable coefficients

u(4) + β(t)u′′ − λ1u = g(t, u) + h(t), t ∈ (0, 1), (1.7)

u(0) = u(1) = u′′(0) = u′′(1) = 0 (1.8)

under the following assumptions:

(H1) β ∈ C[0, 1] with β(t) < π2 on [0, 1];
(H2) g : [0, 1] × R → R is bounded continuous function; i.e., there exists a

constant M > 0 such that

|g(t, u| ≤ M, t ∈ [0, 1], u ∈ R.

Moreover, λ1 > 0 is the first eigenvalue of the associated linear homogeneous bound-
ary value problem

u(4) + β(t)u′′ − λu = 0, t ∈ (0, 1), (1.9)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (1.10)

Therefore, the problem (1.7)-(1.8) is at resonance. From Ma [8], the problem (1.9)-
(1.10) has an infinite sequence of positive eigenvalues

λ1 < λ2 < · · · < λk < · · · → ∞

and to each eigenvalue λk there corresponds an essential unique eigenfunction ϕk(t)
which has exactly k − 1 simple zeros in (0, 1) and is positive near 0; 0 and 1 are
also simple zeros of ϕk(t). In particular, the first eigenvalue λ1 there corresponds
the eigenfunction ϕ1(t) > 0 on (0, 1).

The proof of our main result is based upon the connectivity properties of the
solution sets of parameterized families of compact vector fields. It is a direct con-
sequence of Mawhin [9, Lemma 2.3].
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Theorem 1.1 ([9]). Let E be a Banach space and let C ⊂ E be a nonempty,
bounded, closed convex subset. Suppose that T : [a, b] × C → C is completely
continuous, then the set

S =
{
(λ, x) ∈ [a, b]× C : T (λ, x) = x

}
contains a closed connected subset Σ which connects {a} × C to {b} × C.

The rest of this paper is organized as follows. In Section 2, we give some notations
and statements. In Section 3, we establish the main result and provide the proof.
In addition, we give an example to explain our result.

2. Preliminaries

We shall use the following terms and notation. We need the Banach spaces
C[0, 1], C1[0, 1], C3[0, 1], L2(0, 1) equipped with the usual norms and the Sobolev
space W k,2(0, 1) consisting of functions u : [0, 1] → R such that u, . . . , u(k−1) are
absolutely continuous on [0, 1], and u(k) ∈ L2(0, 1) for k = 2, 4 equipped with the
usual norm. In particular, let the Banach space C[0, 1] be equipped with the norm
‖u‖∞ = max t ∈ [0, 1]|u(t)|. Denote by H the Banach space L2(0, 1) with the norm
‖u‖L2 =

( ∫ 1

0
|u(s)|2 ds

)1/2.
Define a linear operator L : D(L) ⊂ H → H by setting

D(L) =
{
u ∈ W 4,2(0, 1) : u(0) = u(1) = u′′(0) = u′′(1) = 0

}
and for u ∈ D(L),

Lu = u′′′′ + β(t)u′′ − λ1u.

Then

ker(L) = {u ∈ H : u(t) = cϕ1(t), c ∈ R},

Im(L) =
{
u ∈ H :

∫ 1

0

u(t)ϕ1(t) dt = 0
}
.

It follows that L is a Fredholm operator of index zero. Define continuous projectors

P : H → ker(L), (Pu)(t) = Γ0

( ∫ 1

0

u(s)ϕ1(s) ds
)
ϕ1(t), (2.1)

Q : H → Im(L), (Qu)(t) = u(t)− Γ0

( ∫ 1

0

u(s)ϕ1(s) ds
)
ϕ1(t), (2.2)

where Γ0 = 1
/ ∫ 1

0
ϕ2

1(t) dt > 0. It is easy to know ker(L) ∩ Im(L) = {0}, let
V = ker(L), V ⊥ = Im(L), hence H = V ⊕ V ⊥. Let LP := L|D(L)∩V ⊥ , then LP is
a one to one operator from D(L) ∩ V ⊥ to V ⊥. Define KP = L−1

P .
For every u ∈ D(L), we have the unique decomposition

u(t) = ρϕ1(t) + w(t), t ∈ [0, 1],

where ρ ∈ R and w ∈ V ⊥.
Similarly, for every h ∈ H, we also have the unique decomposition

h(t) = τϕ1(t) + e(t), t ∈ [0, 1],

where τ ∈ R and e ∈ V ⊥.
Let N : H → H be the nonlinear operator defined by

(Nu)(t) = g(t, u(t)), t ∈ [0, 1],
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then N is uniformly bounded and continuous [3]. With these considerations, the
problem (1.7)-(1.8) can be written in the form of the following equation in H:

Lu = Nu + h, u ∈ D(L), (2.3)

and by a solution of (1.7)-(1.8) it is meant a solution of (2.3). Now, (2.3) is
equivalent to the following system of equations

w(t) = KP [QN(ρϕ1(t) + w(t)) + e(t)], (2.4)

PN(ρϕ1(t) + w(t)) + τϕ1(t) = 0, (ρ ∈ R, w ∈ D(L) ∩ V ⊥). (2.5)

Denote by S ⊂ R× V ⊥ the solution set

S :=
{
(ρ,w) ∈ R× V ⊥ : w ∈ D(L), (ρ,w) satisfies (2.4)

}
. (2.6)

of equation (2.4). Clearly S = ∪ρ∈R({ρ}×Fρ), where Fρ =
{
w ∈ V ⊥ : w = Tρ(w)

}
and Tρ(w) = KP [QN(ρϕ1(t) + w(t)) + e(t)].

Combining (2.4) with (H2), we obtain there exists a constant M̃ > 0, indepen-
dent of ρ, such that

‖w‖L2 ≤ M̃, for all w ∈ V ⊥. (2.7)
From the compactness of KP and the continuity and uniform boundedness of N it
follows that each Tρ is compact and maps into the ball Bρ(0) =

{
w ∈ V ⊥ : ‖w‖L2 ≤

M̃
}
. Therefore, by Schauder’s fixed point theorem, each Fρ is nonempty so that

ProjR S = R and, in fact S ⊂ R × Bρ(0). Now, system (2.4)-(2.5) is equivalent to
solving the equation Φ(ρ,w) = τ in S where the mapping Φ : R×(D(L)∩V ⊥) → R,
is given by

Φ(ρ,w) = −Γ0

∫ 1

0

g(t, ρϕ1(t) + w(t))ϕ1(t) dt. (2.8)

It is clear that Φ is continuous and bounded.
In addition, we define W as the projection of S over V ⊥, that is

W :=
{
w ∈ V ⊥ : (ρ,w) ∈ S for some ρ ∈ R

}
. (2.9)

3. Main results

The main result is the following:

Theorem 3.1. Let (H1), (H2) hold, and e ∈ L2(0, 1). Assume that
(i) there exists a constant u∗ > 0 such that

g(t, u∗) > 0, t ∈ [0, 1].

(ii) g : [0, 1]× R → R satisfies

ug(t, u) ≥ 0, t ∈ [0, 1], u ∈ R.

(iii) limu→±∞ g(t, u) = 0 uniformly for t ∈ [0, 1].
Then, each Λh ⊂ R is a closed bounded set and contains a closed interval Λ∗h:
int Λ∗h 6= ∅, and problem (1.7)-(1.8) has

(a) no solution if τ 6∈ Λh;
(b) at least one solution if τ ∈ Λh;
(c) at least two solutions if τ ∈ Λ∗h ⊂ Λh.

We shall start with some preliminary results.

Lemma 3.2. For each w ∈ W , ‖w‖∞ ≤ ‖w′‖∞ ≤ ‖w′′‖∞ ≤ ‖w′′′‖∞.
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Proof. Since w ∈ W , we have w ∈ D(L) ∩ V ⊥, then

w(0) = w(1) = w′′(0) = w′′(1) = 0.

(1) From w′′(0) = 0, we have w′′(t) =
∫ t

0
w′′′(s) ds, t ∈ [0, 1], and so |w′′(t)| ≤∫ 1

0
|w′′′(s)|ds ≤ ‖w′′′‖∞. Thus ‖w′′‖∞ ≤ ‖w′′′‖∞.

(2) By w(0) = w(1), there is a ξ ∈ (0, 1) such that w′(ξ) = 0, and so −w′(t) =∫ ξ

t
w′′(s) ds, t ∈ [0, ξ]. Hence |w′(t)| ≤

∫ ξ

t
|w′′(s)|ds ≤

∫ 1

0
|w′′(s)|ds ≤ ‖w′′‖∞.

Similarly, for all t ∈ [ξ, 1], |w′(t)| ≤ ‖w′′‖∞. Thus, ‖w′‖∞ ≤ ‖w′′‖∞.
(3) Because of w(0) = 0, similar to (1), we obtain ‖w‖∞ ≤ ‖w′‖∞. �

Lemma 3.3. Let (H1), (H2) hold. Then W is a bounded set in C3[0, 1].

Proof. For every w ∈ W , by the definition of W , there exists (ρ,w) ∈ S such that

w(4) + β(t)w′′ − λ1w = QN(ρϕ1 + w) + e. (3.1)

Let z = w′′, f(t) = λ1w + QN(ρϕ1 + w) + e, this together with the boundary
condition, (3.1) is equivalent to the boundary value problem

z′′ + β(t)z = f(t), t ∈ (0, 1), (3.2)

z(0) = z(1) = 0. (3.3)

Combining (H2) with (2.7), there exists a constant M1 > 0 such that

‖f(t)‖L2 ≤ M1.

Moreover, by (H1) and the Sobolev imbedding theorem

z ∈ W 2,2(0, 1) ↪→↪→ C1[0, 1].

Then there exists a constant M2 > 0 such that

‖z′‖∞ ≤ M2.

Hence ‖w′′′‖∞ ≤ M2. From Lemma 3.2, we obtain

‖w‖∞ ≤ ‖w′‖∞ ≤ ‖w′′‖∞ ≤ ‖w′′′‖∞ ≤ M2.

Therefore, W is a bounded set in C3[0, 1]. �

Lemma 3.4. There exists α = α(W ) > 0 such that

ρϕ1(t) + w(t) ≥ 0, −ρϕ1(t) + w(t) ≤ 0 (3.4)

for all t ∈ [0, 1], ρ ≥ α and w ∈ W .

Proof. Since ϕ1(t) > 0 on (0, 1), and ϕ1(0) = ϕ1(1) = 0, we have ϕ′1(0) > 0,
ϕ′1(1) < 0. This combines with the fact that W is a bounded set in C1[0, 1], we
know there exists α > 0 such that

|w(t)| ≤ αϕ1(t), t ∈ [0, 1];

that is,
ρϕ1(t) + w(t) ≥ 0, −ρϕ1(t) + w(t) ≤ 0

for all t ∈ [0, 1], ρ ≥ α and w ∈ W . �

Lemma 3.5. Let (i), (ii) and (H2) hold. Then there exists α1 = α1(W ) > 0 such
that Φ(ρ,w) < 0 and Φ(−ρ,w) ≥ 0 for all ρ ≥ α1 and w ∈ W .
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Proof. Let α = α(W ) > 0 be given by Lemma 3.4 and take α0 > 0 so that
α0 maxt∈[0,1] ϕ1 −M3 > u∗, where M3 = supw∈W ‖w‖∞. Letting α1 = α + α0 we
have

ρϕ1(t) + w(t) ≥ α0ϕ1(t) ≥ 0, −ρϕ1(t) + w(t) ≤ −α0ϕ1(t) ≤ 0
for all t ∈ [0, 1], ρ ≥ α1 and w ∈ W . Hence

Φ(ρ,w) = −Γ0

∫ 1

0

g(t, ρϕ1(t) + w(t))ϕ1(t) dt ≤ 0, (3.5)

Φ(−ρ,w) = −Γ0

∫ 1

0

g(t,−ρϕ1(t) + w(t))ϕ1(t) dt ≥ 0 (3.6)

for all ρ ≥ α1 and w ∈ W .
Now, we will show that (3.5) has strict inequality. Since for each ρ ≥ α1 and

w ∈ W , the function ρϕ1(t) + w(t) = 0 if t = 0. Moreover, we have from the
definition of α1 that

ρϕ1(t0) + w(t0) ≥ α0ϕ1(t0)−M3 > u∗,

where ϕ1(t0) = maxt∈[0,1] ϕ1(t). Therefore, there is a t∗ ∈ (0, t0) such that ρϕ1(t∗)+
w(t∗) = u∗, Hence

g(t∗, ρϕ1(t∗) + w(t∗)) = g(t∗, u∗) > 0.

�

Proof of Theorem 3.1. As we already observed in Section 2, the problem (1.7)-(1.8)
is equivalent to the system (2.4)-(2.5) which in turn is equivalent to solving the
equation Φ(ρ,w) = τ in S, where Φ : R× (D(L) ∩ V ⊥) → R,

Φ(ρ,w) = −Γ0

∫ 1

0

g(t, ρϕ1(t) + w(t))ϕ1(t) dt

is a bounded continuous function. So the problem (1.7)-(1.8) has at least one
solution if τ ∈ Φ(S).

From Lemma 3.5, there exists α1 > 0 such that

Φ(ρ,w) < 0, (ρ,w) ∈ S, ρ ≥ α1, (3.7)

Φ(ρ,w) ≥ 0, (ρ,w) ∈ S, ρ ≤ −α1, (3.8)

which imply 0 ∈ Φ(S).
Combining (iii) with Lemma 3.4, we have

lim
|ρ|→∞,(ρ,w)∈S

Φ(ρ,w) = 0. (3.9)

We claim that Λh = Φ(S). Obviously, Λh is bounded. Now, we show that Λh =
Φ(S) is closed.

Let τ = limn→∞Φ(ρn, wn) with (ρn, wn) ∈ S. We assume τ 6= 0 since we already
know that 0 ∈ Λh. From (2.7) it follows that

wnj → w in H (3.10)

and wnj
→ w a.e. in (0, 1) for some subsequence {wnj

} of {wn}. On the other hand,
we must have {ρn} is bounded sequence, otherwise from (3.9), τ = 0. Therefore,
we may assume that {ρnj

} is convergent; i.e., ρnj
→ ρ, which together with (3.10)

gives (ρnj
, wnj

) → (ρ,w) in R× V ⊥. Hence, since S is closed and Φ is continuous,
we obtain (ρ,w) ∈ S and τ = Φ(ρ,w).
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Next, we will prove that (1.7)-(1.8) has at least two solutions if τ ∈ Λ∗h ⊂ Λh.
From (3.7), (3.8) and the fact that, by Theorem 1.1, S ⊂ R× Bρ(0) contains a

closed connected subset C−α1,α1 which joins {−α1} × Bρ(0) to {α1} × Bρ(0) we
conclude that Λh contains a interval [−β, 0], β > 0 is a constant.

Let Sσ = S ∩ ({σ} × Bρ(0)), σ ∈ R. Now, taking α1 > 0 as above we consider
ν1 = minΦ(C−α1,α1) and ν2 = maxΦ(C−α1,α1). Clearly ν1 < 0 ≤ ν2. From (3.7)
and (3.9), there exists γ > α1 such that ν1 < Φ(γ, w) < 0 for all w ∈ W . Setting
mγ = minΦ(Sγ),Mγ = maxΦ(Sγ), we have ν1 < mγ ≤ Mγ < 0 ≤ ν2. We further
choose δ > γ such that Mγ < Φ(δ, w) < 0 for all w ∈ W , hence

ν1 < mγ ≤ Mγ < mδ ≤ Mδ < 0 ≤ ν2, (3.11)

where mδ = minΦ(Sδ),Mδ = max Φ(Sδ). Finally, considering a closed connected
subset Cγ,δ which joins Sγ to Sδ and letting ν∗1 = minΦ(Cγ,δ), ν∗2 = max Φ(Cγ,δ)
we obtain

ν1 < ν∗1 ≤ max Φ(Cγ,δ ∩ Sγ) ≤ Mγ ,

mδ ≤ minΦ(Cγ,δ ∩ Sδ) ≤ ν∗2 < 0 ≤ ν2,

hence
ν1 < ν∗1 < ν∗2 < 0 ≤ ν2

since Mγ < mδ. In conclusion, setting Λ∗h = [ν∗1 , ν∗2 ] = Φ(Cγ,δ) we have Λ∗h ⊂
[ν1, ν2] = Φ(C−α1,α1) with Cγ,δ and C−α1,α1 disjoint by construction, that is, for
each τ ∈ Λ∗h, the problem (1.7)-(1.8) has at least two solutions; i.e., one in Cγ,δ and
the other in C−α1,α1 . �

Example. Consider the boundary value problem

u(4) + (sinπt)u′′ − λ1u = g(t, u) + cos t, t ∈ (0, 1), (3.12)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (3.13)

where g(t, u) : [0, 1]× R → R,

g(t, u) =

{
u, |u| ≤ 1;
1/u, |u| ≥ 1.

It is easy to check that (H1), (H2) and all the conditions of Theorem 3.1 are
satisfied. By Theorem 3.1, there exists a closed bounded set Λh ⊂ R, which contains
a closed interval Λ∗h: int Λ∗h 6= ∅ such that the problem (3.12)-(3.13) has:

(a) no solution if τ 6∈ Λh;
(b) at least one solution if τ ∈ Λh;
(c) at least two solutions if τ ∈ Λ∗h ⊂ Λh.
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