Electronic Journal of Differential Equations, Vol. 2008(2008), No. 102, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR A SINGULAR p-LAPLACIAN DIRICHLET PROBLEM

WENSHU ZHOU

Abstract

By a argument based on regularization technique, upper and lower solutions method and Arzelá-Ascoli theorem, this paper shows sufficient conditions of the existence of positive solutions of a Dirichlet problem for singular p-Laplacian.

1. Introduction

This paper shows the existence of positive solutions for the singular p-Laplacian equation

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}-\lambda \frac{\left|u^{\prime}\right|^{p}}{u^{m}}+f\left(t, u^{\prime}\right)=0, \quad 0<t<1 \tag{1.1}
\end{equation*}
$$

subject to Dirichlet boundary conditions

$$
\begin{equation*}
u(1)=u(0)=0 \tag{1.2}
\end{equation*}
$$

where $\phi_{p}(s)=|s|^{p-2} s, p>1, \lambda$ and m are positive constants, and f is a continuous function. We call $u \in C^{1}[0,1]$ is a solution if $u>0$ in $(0,1),\left|u^{\prime}\right|^{p-2} u^{\prime} \in C^{1}(0,1)$, and it satisfies $\sqrt{1.1}-\sqrt{1.2}$.

Such equation arises in the studies of some degenerate parabolic equations and in Non-Newtonian fluids; see [2, 3, 4, 5, 13]. The interesting feature of (1.1) is the lower term both is singular at $u=0$ and depends on the first derivative.

Recently, the one-dimensional singular p-Laplacian differential equations without dependence on the first derivative have been studied extensively, see [1, 7, 12] and references therein. When it depends on the first derivative, however, it has not received much attention, see [8, 9, 10, 11]. Recently, the authors 14], considered the equation

$$
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}-\lambda \frac{\left|u^{\prime}\right|^{p}}{u}+g(t)=0, \quad 0<t<1
$$

subject to $\sqrt{1.2}$), and proved, by the classical method of elliptic regularization, that the problem admits one positive solution if $p \geq 2, \lambda>0$ and $g \in C[0,1]$ with $g>0$ on $[0,1]$. In the present paper we extend the result and obtain the sufficient conditions of existence. Our argument is based on regularization technique, upper

[^0]and lower solutions method and Arzelá-Ascoli theorem. In addition, an example is also given to illustrate our main result.

2. Main Result

The following hypotheses will be adopted in this section:
(H1) $1 \leq m<p$.
(H2) $f(t, r)$ is a positive, continuous function in $[0,+\infty) \times \mathbb{R}$, and there exist constants $\alpha>0, \beta \in[0,1)$ such that $f(t, r) \leq \alpha+\beta|r|^{p-1}$, for all $(t, r) \in$ $[0,1] \times \mathbb{R}$.
(H3) $\lambda>\inf _{r \geq 1} H(r)$, where $H(r): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is defined by

$$
H(r)=\alpha r^{m-p}+\beta r^{m-1}
$$

Remark 2.1. Let $m \in(1, p)$ and define

$$
X_{0}=\left(\frac{\alpha(p-m)}{\beta(m-1)}\right)^{1 /(p-1)} ; \quad X_{*}= \begin{cases}X_{0}, & X_{0} \geq 1 \\ 1 . & X_{0}<1\end{cases}
$$

Then $\inf _{s \geq 1} H(s)=H\left(X_{*}\right)$. Indeed, since $\lim _{s \rightarrow 0^{+}} H(s)=\lim _{s \rightarrow+\infty} H(s)=+\infty$, $H(s)$ must reach a minimum at some $s \in(0, \infty)$ satisfying $H^{\prime}(s)=0$. Solving it gives $s=X_{0}$ and hence, $\inf _{s>0} H(s)=H\left(X_{0}\right)$. Since $H^{\prime}(s) \geq 0$ for all $s \geq X_{0}$, we see that $\inf _{s \geq 1} H(s)=H\left(X_{0}\right)$ if $X_{0} \geq 1$, and $\inf _{s \geq 1} H(s)=H(1)$ if $X_{0}<1$.

The main result of this paper is stated as follows.
Theorem 2.2. Under Assumptions (H1)-(H3), problem (1.1)-(1.2) has at least one solution.

Remark 2.3. If $m=1$ and $f \equiv 1$ (taking $\alpha=1, \beta=0$), then $\inf _{s \geq 1} H(s)=0$. Clearly, Theorem 2.2 is an extension of the corresponding result of [14].

Proof of Theorem 2.2, Let $\epsilon \in(0,1)$, and define $H_{\epsilon}(t, v, \xi):(0,1) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H_{\epsilon}(t, v, \xi)=\lambda \frac{|\xi|^{p}}{\left[I_{\epsilon}(v)\right]^{m}}-f(t, \xi)
$$

where $I_{\epsilon}(v)=v+\epsilon$ if $v \geq 0, I_{\epsilon}(v)=\epsilon$ if $v<0$. By (H2) and using the inequality: $a^{p-1} \leq a^{p}+1$, for all $a \geq 0$, we have

$$
\left|H_{\epsilon}(t, v, \xi)\right| \leq \frac{\lambda}{\epsilon^{m}}|\xi|^{p}+\alpha+\beta|\xi|^{p-1} \leq\left(\frac{\lambda}{\epsilon^{m}}+\alpha+\beta\right) \mathcal{H}(|\xi|)
$$

for all $(t, v, \xi) \in(0,1) \times \mathbb{R} \times \mathbb{R}$, where $\mathcal{H}(s)=1+s^{p}$ for $s \geq 0$. Denote $\mathfrak{M}=\{u \in$ $\left.C^{1}(0,1) ;\left|u^{\prime}\right|^{p-2} u^{\prime} \in C^{1}(0,1)\right\}$, and define $\mathscr{L}_{\epsilon}: \mathfrak{M} \rightarrow C(0,1)$ by

$$
\left(\mathscr{L}_{\epsilon} u\right)(t)=-\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+H_{\epsilon}\left(t, u, u^{\prime}\right), \quad 0<t<1 .
$$

Consider the problem:

$$
\begin{gather*}
\left(\mathscr{L}_{\epsilon} u\right)(t)=0, \quad 0<t<1, \tag{2.1}\\
u(1)=u(0)=0 .
\end{gather*}
$$

We call $u \in \mathfrak{M}$ is an upper solution (lower solution) of problem 2.1) if $\mathscr{L}_{\epsilon} u \geq 0$ (≤ 0) in $(0,1)$ and $u(t) \geq(\leq) 0$ for $t=0,1$.

We will apply the upper and lower solutions method (see [8, Theorem 1 and Remark 2.4]) to show the existence of solutions of problem 2.1). Obviously,
$\int_{0}^{+\infty} \frac{s^{p-1}}{\mathcal{H}(s)} d s=+\infty$, thus the condition [8, Eq. (2.3)] is satisfied. Then it suffices to find a lower solution and an upper solution to obtain a solution.

Let $\inf _{s \geq 1} H(s) \equiv \delta$. Then it follows from the definition of infimum and $\lambda>\delta$ that for $\delta_{0}=\frac{\lambda-\delta}{2}>0$, there exists $S^{*} \geq 1$ such that $H\left(S^{*}\right)<\delta+\delta_{0}<\lambda$.

Lemma 2.4. There exists a constant $\epsilon_{0} \in(0,1)$, such that for any $\epsilon \in\left(0, \epsilon_{0}\right)$, $U_{\epsilon}=S^{*}(t+\epsilon)$ is an upper solution of (2.1).

Proof. Noticing $U_{\epsilon} \geq \epsilon$ in $(0,1)$ and $m \geq 1$, we have

$$
\begin{aligned}
\mathscr{L}_{\epsilon} U_{\epsilon} & =-\left(\left|U_{\epsilon}^{\prime}\right|^{p-2} U_{\epsilon}^{\prime}\right)^{\prime}+\lambda \frac{\left|U_{\epsilon}^{\prime}\right|^{p}}{\left(U_{\epsilon}+\epsilon\right)^{m}}-f\left(t, U_{\epsilon}^{\prime}\right) \\
& =\frac{\lambda S^{* p-m}}{\left(t+\epsilon+\epsilon / S^{*}\right)^{m}}-f\left(t, S^{*}\right) \\
& \geq \frac{\lambda S^{* p-m}}{\left(1+\epsilon+\epsilon / S^{*}\right)^{m}}-\alpha-\beta S^{* p-1} \\
& =S^{* p-m}\left[\lambda-H\left(S^{*}\right)\right]+r_{\epsilon}, \quad 0<t<1
\end{aligned}
$$

where $r_{\epsilon}=\lambda S^{* p-m}\left[\left(1+\epsilon+\epsilon / S^{*}\right)^{-m}-1\right]$. Clearly, $r_{\epsilon} \rightarrow 0(\epsilon \rightarrow 0)$. Since $\lambda>H\left(S^{*}\right)$, there exists a constant $\epsilon_{0} \in(0,1)$, such that for any $\epsilon \in\left(0, \epsilon_{0}\right)$ there holds $S^{* p-m}\left[\lambda-H\left(S^{*}\right)\right]+r_{\epsilon} \geq 0$. So that we obtain $\mathscr{L}_{\epsilon} U_{\epsilon} \geq 0$ in $(0,1)$ for all $\epsilon \in\left(0, \epsilon_{0}\right)$. The lemma follows.

Lemma 2.5. Let $W=C \Phi^{\alpha}$, where $\alpha=\frac{p}{p-m}, \Phi(t)$ is defined by

$$
\Phi(t)=\frac{p-1}{p}\left[\left(\frac{1}{2}\right)^{p /(p-1)}-\left|\frac{1}{2}-t\right|^{p /(p-1)}\right], \quad 0 \leq t \leq 1
$$

and $C \in(0,1)$ such that $C \alpha<1$ and $(C \alpha)^{p-1}+\lambda C^{p-m} \alpha^{p} \leq \min _{[0,1] \times[-1,1]} f(s, r)$. Then W is a lower solution of problem 2.1).

Proof. It is easy to check that Φ has the following properties:
(a) $\Phi>0$ in $(0,1), \Phi \in C^{1}[0,1]$.
(b) $\left(\left|\Phi^{\prime}\right|^{p-2} \Phi^{\prime}\right)^{\prime}=-1$ in $(0,1), \Phi(1)=\Phi(0)=0$.
(c) $\Phi(t) \leq t,\left|\Phi^{\prime}(t)\right| \leq 1$, for all $t \in[0,1]$.

Using these properties of Φ, by some calculations, we have

$$
\begin{aligned}
\mathscr{L}_{\epsilon} W= & -\left(\left|W^{\prime}\right|^{p-2} W\right)^{\prime}+\lambda \frac{\left|W^{\prime}\right|^{p}}{(W+\epsilon)^{m}}-f\left(t, W^{\prime}\right) \\
\leq & -\left(\left|W^{\prime}\right|^{p-2} W\right)^{\prime}+\lambda \frac{\left|W^{\prime}\right|^{p}}{W^{m}}-f\left(t, W^{\prime}\right) \\
= & -(C \alpha)^{p-1} \Phi^{(\alpha-1)(p-1)}\left(\left|\Phi^{\prime}\right|^{p-2} \Phi^{\prime}\right)^{\prime} \\
& -(C \alpha)^{p-1}(\alpha-1)(p-1) \Phi^{(\alpha-1)(p-1)-1}\left|\Phi^{\prime}\right|^{p} \\
& +\lambda C^{p-m} \alpha^{p}\left|\Phi^{\prime}\right|^{p}-f\left(t, C \alpha \Phi^{\alpha-1} \Phi^{\prime}\right) \\
\leq & (C \alpha)^{p-1} \Phi^{(\alpha-1)(p-1)}+\lambda C^{p-m} \alpha^{p}\left|\Phi^{\prime}\right|^{p}-\min _{[0,1] \times[-1,1]} f(s, r) \\
\leq & (C \alpha)^{p-1}+\lambda C^{p-m} \alpha^{p}-\min _{[0,1] \times[-1,1]} f(s, r) \leq 0, \quad 0<t<1 .
\end{aligned}
$$

Thus the lemma follows.

According to [8, Theorem 1 and Remark 2.4], for fixed $\epsilon \in\left(0, \epsilon_{0}\right)$ problem 2.1) has a solution $u_{\epsilon} \in C^{1}[0,1]$ satisfying $\left|u_{\epsilon}^{\prime}\right|^{p-2} u_{\epsilon}^{\prime} \in C^{1}(0,1)$ and

$$
\begin{equation*}
U_{\epsilon} \geq u_{\epsilon} \geq W>0, \quad t \in(0,1) \tag{2.2}
\end{equation*}
$$

Hence u_{ϵ} satisfies

$$
\begin{equation*}
-\left(\left|u_{\epsilon}^{\prime}\right|^{p-2} u_{\epsilon}^{\prime}\right)^{\prime}+\lambda \frac{\left|u_{\epsilon}^{\prime}\right|^{p}}{\left(u_{\epsilon}+\epsilon\right)^{m}}-f\left(t, u_{\epsilon}^{\prime}\right)=0, \quad t \in(0,1) . \tag{2.3}
\end{equation*}
$$

Lemma 2.6. For all $\epsilon \in\left(0, \epsilon_{0}\right)$, we have

$$
\begin{equation*}
\left|u_{\epsilon}^{\prime}(t)\right| \leq\left[\alpha(1-\beta)^{-1}\right]^{1 /(p-1)}, \quad \forall t \in[0,1] . \tag{2.4}
\end{equation*}
$$

Proof. Noticing that $u_{\epsilon}(1)=u_{\epsilon}(0)=0$ and $u_{\epsilon} \geq 0$ on [0,1], we have

$$
\begin{equation*}
u_{\epsilon}^{\prime}(0) \geq 0 \geq u_{\epsilon}^{\prime}(1) \tag{2.5}
\end{equation*}
$$

From (2.3), we obtain

$$
\begin{equation*}
\left(\left|u_{\epsilon}^{\prime}\right|^{p-2} u_{\epsilon}^{\prime}\right)^{\prime}+\alpha+\beta\left|u_{\epsilon}^{\prime}\right|^{p-1} \geq 0, \quad t \in(0,1) \tag{2.6}
\end{equation*}
$$

Let $\chi=\phi_{p}\left(u_{\epsilon}^{\prime}\right)$. Then we obtain from (2.6), $\chi^{\prime}+\alpha+\beta|\chi| \geq 0, t \in(0,1)$; i.e., $\left(\int_{0}^{\chi(t)} \frac{1}{\alpha+\beta|s|} d s+t\right)^{\prime} \geq 0, t \in(0,1)$. This and 2.5) give $1 \geq \int_{0}^{\chi(t)} \frac{1}{\alpha+\beta|s|} d s+$ $t \geq 0, t \in[0,1]$, hence $\left|\int_{0}^{\chi(t)} \frac{1}{\alpha+\beta|s|} d s\right| \leq 1, t \in[0,1]$. Using the inequality: $\left|\int_{0}^{y} \frac{1}{\alpha+\beta|s|} d s\right| \geq \frac{|y|}{\alpha+\beta|y|}(y \in \mathbb{R})$, we deduce that $|\chi| \leq \alpha+\beta|\chi|, t \in[0,1]$; that is, $|\chi| \leq \alpha(1-\beta)^{-1}$ on $[0,1]$. The lemma is proved.
Lemma 2.7. For each $\delta \in(0,1 / 2)$, there exists a positive constant C_{δ} independent of ϵ, such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$

$$
\begin{equation*}
\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right| \leq C_{\delta}\left|t_{2}-t_{1}\right|^{\gamma}, \quad \forall t_{2}, t_{1} \in[\delta, 1-\delta], \tag{2.7}
\end{equation*}
$$

where $\gamma=1 /(p-1)$ if $p \geq 2 ; \gamma=1$ if $1<p<2$.
Proof. By 2.2 and 2.4, it is easy to derive from 2.3) that for any $\delta \in(0,1 / 2)$ there exists a constant $C_{\delta}>0$ independent of ϵ, such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$

$$
\begin{equation*}
\left|\left(\left|u_{\epsilon}^{\prime}\right|^{p-2} u_{\epsilon}^{\prime}\right)^{\prime}\right| \leq C_{\delta}, \quad \delta \leq t \leq 1-\delta \tag{2.8}
\end{equation*}
$$

Recalling the inequality (see [6]

$$
\left(|\eta|^{p-2} \eta-\left|\eta^{\prime}\right|^{p-2} \eta^{\prime}\right) \cdot\left(\eta-\eta^{\prime}\right) \geq \begin{cases}C_{1}\left|\eta-\eta^{\prime}\right|^{p}, & p \geq 2 \\ C_{2}\left(|\eta|+\left|\eta^{\prime}\right|\right)^{p-2}\left|\eta-\eta^{\prime}\right|^{2}, & 1<p<2\end{cases}
$$

for each $\eta \in \mathbb{R}$, where $C_{i}(i=1,2)$ are positive constants depending only on p, we derive, by 2.8), that if $p \geq 2$, then

$$
\begin{aligned}
\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right|^{p} & \leq C_{2}^{-1}\left[u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right] \cdot\left[\left|u_{\epsilon}^{\prime}\left(t_{2}\right)\right|^{p-2} u_{\epsilon}^{\prime}\left(t_{2}\right)-\left|u_{\epsilon}^{\prime}\left(t_{1}\right)\right|^{p-2} u_{\epsilon}^{\prime}\left(t_{1}\right)\right] \\
& \leq C_{\delta}\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right|\left|t_{2}-t_{1}\right|, \quad \forall t_{2}, t_{1} \in[\delta, 1-\delta],
\end{aligned}
$$

hence

$$
\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right| \leq C_{\delta}\left|t_{2}-t_{1}\right|^{1 /(p-1)}, \quad \forall t_{2}, t_{1} \in[\delta, 1-\delta],
$$

and if $p \in(1,2)$, then

$$
\begin{aligned}
& \left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right|^{2}\left[\left|u_{\epsilon}^{\prime}\left(t_{2}\right)\right|+\left|u_{\epsilon}^{\prime}\left(t_{1}\right)\right|\right]^{p-2} \\
& \leq C_{2}^{-1}\left[u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right] \cdot\left[\left|u_{\epsilon}^{\prime}\left(t_{2}\right)\right|^{p-2} u_{\epsilon}^{\prime}\left(t_{2}\right)-\left|u_{\epsilon}^{\prime}\left(t_{1}\right)\right|^{p-2} u_{\epsilon}^{\prime}\left(t_{1}\right)\right] \\
& \leq C_{\delta}\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right|\left|t_{2}-t_{1}\right|, \quad \forall t_{2}, t_{1} \in[\delta, 1-\delta] .
\end{aligned}
$$

Then, (2.4) yields

$$
\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right| \leq C_{\delta}\left|t_{2}-t_{1}\right|\left[\left|u_{\epsilon}^{\prime}\left(t_{2}\right)\right|+\left|u_{\epsilon}^{\prime}\left(t_{1}\right)\right|\right]^{2-p} \leq C_{\delta}\left|t_{2}-t_{1}\right|
$$

for all $t_{2}, t_{1} \in[\delta, 1-\delta]$. This completes the proof.
By (2.4) and (2.7) and using Arzelá-Ascoli theorem, there exist a subsequence of $\left\{u_{\epsilon}\right\}$, still denoted by $\left\{u_{\epsilon}\right\}$, and a function $u \in C^{1}(0,1) \cap C[0,1]$ such that, as $\epsilon \rightarrow 0$,

$$
\begin{gather*}
u_{\epsilon} \rightarrow u, \quad \text { uniformly in } C[0,1], \\
u_{\epsilon} \rightarrow u, \quad \text { uniformly in } C^{1}[\delta, 1-\delta], \tag{2.9}
\end{gather*}
$$

where $\delta \in(0,1 / 2)$, and hence from $u_{\epsilon}(1)=u_{\epsilon}(0)=\epsilon$ and (2.2) we derive that $u(1)=u(0)=0$, and $u(t) \geq C \Phi^{p /(p-m)}, t \in[0,1]$; therefore $u>0$ in $(0,1)$.

We now show that u satisfies (1.1). Integrating (2.3) over $\left(t_{0}, t\right)$ gives

$$
\left|u_{\epsilon}^{\prime}(t)\right|^{p-2} u_{\epsilon}^{\prime}(t)=\int_{t_{0}}^{t}\left(\lambda \frac{\left|u_{\epsilon}^{\prime}\right|^{p}}{\left(u_{\epsilon}+\epsilon\right)^{m}}-f\left(s, u_{\epsilon}^{\prime}\right)\right) d s+\left|u_{\epsilon}^{\prime}\left(t_{0}\right)\right|^{p-2} u_{\epsilon}^{\prime}\left(t_{0}\right),
$$

and letting $\epsilon \rightarrow 0$ and using Lebesgue's dominated convergence theorem yield

$$
\begin{equation*}
\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)=\int_{t_{0}}^{t}\left(\lambda \frac{\left|u^{\prime}\right|^{p}}{u^{m}}-f\left(s, u^{\prime}\right)\right) d s+\left|u^{\prime}\left(t_{0}\right)\right|^{p-2} u^{\prime}\left(t_{0}\right) . \tag{2.10}
\end{equation*}
$$

This shows that $\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t) \in C^{1}(0,1)$ and (1.1) is satisfied.
It remains to show that $u \in C^{1}[0,1]$. Integrating (2.3) over $(0,1)$ and using (2.4) and (2.5), we derive that

$$
\int_{0}^{1} \frac{\left|u_{\epsilon}^{\prime}\right|^{p}}{\left(u_{\epsilon}+\epsilon\right)^{m}} d t \leq \frac{1}{\lambda} \min _{[0,1] \times[-Y, Y]} f(t, r), \quad Y:=\left(\frac{\alpha}{1-\beta}\right)^{1 /(p-1)},
$$

and letting $\epsilon \rightarrow 0$ and using Fatou's lemma and (2.9), we obtain

$$
\int_{0}^{1} \frac{\left|u^{\prime}\right|^{p}}{u^{m}} d t \leq \frac{1}{\lambda} \min _{[0,1] \times[-Y, Y]} f(t, r) .
$$

So, $\frac{\left|u^{\prime}\right|^{p}}{u^{m}} \in L^{1}[0,1]$. By 2.10), the function $\omega(t)=\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)=\phi_{p}\left(u^{\prime}(t)\right)$ is absolutely continuous on $[0,1]$. Since $u^{\prime}(t)=\phi_{q}(\omega(t))\left(\frac{1}{p}+\frac{1}{q}=1\right), u^{\prime} \in C[0,1]$. The proof of Theorem 2.2 is complete.

Example. Let $\lambda>4 / 27$. Consider the problem

$$
\begin{gather*}
\left(\left|u^{\prime}\right|^{3} u^{\prime}\right)^{\prime}-\lambda \frac{\left|u^{\prime}\right|^{5}}{u^{2}}+\frac{\left(\frac{1}{2}+\frac{\sqrt{6}}{18}\left|u^{\prime}\right|^{2}\right)^{2}}{2 t+2 \cos t-1}+\frac{\sin (\pi t)}{\sqrt{4+\left|u^{\prime}\right|^{3}}}=0, \quad 0<t<1, \tag{2.11}\\
u(1)=u(0)=0 .
\end{gather*}
$$

Let $p=5, m=2$,

$$
f(t, r)=\frac{\left(\frac{1}{2}+\frac{\sqrt{6}}{18} r^{2}\right)^{2}}{2 t+2 \cos t-1}+\frac{\sin (\pi t)}{\sqrt{4+|r|^{3}}} .
$$

Since $(2 t+2 \cos t-1)^{\prime}=2(1-\sin t) \geq 0,1+2 \cos 1 \geq 2 t+2 \cos t-1 \geq 1$ for all $t \in[0,1]$ and hence, noticing $0 \leq \frac{\sin (\pi t)}{\sqrt{4+|r|^{3}}} \leq \frac{1}{2}$ for $(t, r) \in[0,1] \times \mathbb{R}$, we obtain

$$
\frac{1}{1+2 \cos 1}\left(\frac{1}{2}+\frac{\sqrt{6}}{18} r^{2}\right)^{2} \leq f(t, r) \leq\left(\frac{1}{2}+\frac{\sqrt{6}}{18} r^{2}\right)^{2}+\frac{1}{2},
$$

for $(t, r) \in[0,1] \times \mathbb{R}$. By the inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, we have

$$
f(t, r) \leq 1+\frac{1}{27} r^{4}, \quad(t, r) \in[0,1] \times \mathbb{R}
$$

Let $\alpha=1, \beta=\frac{1}{27}$. Then $X_{0}=3$, and therefore $X_{*}=3$ and $\inf _{s \geq 1} H(s)=$ $H\left(X_{*}\right)=H\left(X_{0}\right)=\frac{4}{27}$ (see Remark 2.1). Thus all assumptions of Theorem 2.2 are satisfied for any $\lambda>\frac{4}{27}$, so problem 2.11 has at least one solution.
Acknowledgments. The author wants to thank the anonymous referee for pointing out some errors on the original manuscript.

References

[1] R. P. Agarwal, H. Lü, D. O'Regan; Existence theorems for the one-dimensional singular pLaplacian equation with sign changing nonlinearities, Appl. Math. Comput. 1(143)(2003), 15-38.
[2] C. Astarita, G. Marrucci; Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974.
[3] G. I. Barenblatt, M. Bertsch, A. E. Chertock, V. M. Prostokishin; Self-similar intermediate asymptotic for a degenerate parabolic filtration-absorption equation, Proc. Nat. Acad. Sci. (USA), 18(2000), 9844-9848.
[4] M. Bertsch, R. Dal Passo, M. Ughi; Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc. 320(1990), 779-798.
[5] M. Bertsch, M. Ughi; Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal. TMA. 14(1990) 571-592.
[6] L. Damascelli; Comparison theorems for some quasilinear degenerate elliptic operations and applications to symmetry and monotonicity results, Ann. Ist. henri Poincaré, Analyse Nonlinèaire, 4(15)1998, 493-516.
[7] D. Jiang; Upper and lower solutions method and a singular boundary value problem, Zeitschrift fur Angewandte Mathematik und Mechanik, 7(82)(2002), 481-490.
[8] D. Jiang, W. Gao; Singular boundary value problems for the one-dimension p-Laplacian, J. Math. Anal. Appl. 270(2002), 561-581.
[9] H. Lu, D. O'Regan, R. P. Agarwal; Nonuniform nonresonance at the first eigenvalue of the one-dimensional singular p-Laplacian, Mem. Differential Equations Math. Phys. 34(2005), 97-114.
[10] D. O'Regan; Some general existence principles and results for $\left(\phi\left(y^{\prime}\right)\right)^{\prime}=q f\left(t, y, y^{\prime}\right), 0<t<1$, SIAM, J. Math. Anal. 24(1993), No.3, 648-668.
[11] Z. Wang, J. Zhang; Positive solutions for one-dimensional p-Laplacian boundary value problems with dependence on the first derivative, J. Math. Anal. Appl. 314(2006), 618-630.
[12] Q. Yao; Existence, multiplicity and infinite solvability of positive solutions for one-dimensional p-Laplacian, Acta Mathematica Sinica, 4(21)(2005), 691-698
[13] Z. Yao, W. Zhou; Nonuniqueness of solutions for a singular diffusion problem, J. Math. Anal. Appl. 325(2007), 183-204.
[14] Z. Yao, W. Zhou; Existence of positive solutions for the one-dimensional singular p-Laplacian, Nonlinear Anal. TMA. 68(2008), 2309-2318.

Wenshu Zhou
Department of Mathematics, Dalian Nationalities University, 116600, China
E-mail address: pdezhou@126.com, wolfzws@163.com

[^0]: 2000 Mathematics Subject Classification. 34B18.
 Key words and phrases. p-Laplacian; singularity; positive solution; regularization technique. © 2008 Texas State University - San Marcos.
 Submitted December 17, 2007. Published July 30, 2008.
 Supported by grants 20076209 from Dalian Nationalities University, and 10626056
 from Tianyuan Fund.

