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LARGE TIME BEHAVIOR OF SOLUTIONS TO SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN

MILAN MEDVEĎ, EVA PEKÁRKOVÁ

Abstract. We study asymptotic properties of solutions for certain second-

order differential equation with p-Laplacian. The main purpose is to investi-
gate when all global solutions behave at infinity like nontrivial linear functions.

Making use of Bihari’s inequality and its Dannan’s version, we obtain results

for differential equations with p-Laplacian analogous which extend those known
in the literature concerning ordinary second order differential equations.

1. Introduction

In this paper, we study asymptotic properties of the second-order differential
equation with p-Laplacian

(|u′|p−1u′)′ + f(t, u, u′) = 0, p ≥ 1. (1.1)

In the sequel, it is assumed that all solutions of (1.1) are continuously extendable
throughout the entire real axis. We refer to such solutions as to global solutions.
We shall prove sufficient conditions under which all global solutions are asymptotic
to at + b, as t → +∞, where a, b are real numbers. The problem for ordinary
second order differential equations without p-Laplacian has been studied by many
authors, e. g. by Cohen [6], Constantin [7], Dannan [8], Kusano and Trench
[9, 10], Rogovchenko [13], Rogovchenko [14], Tong [15] and Trench [16]. Our results
are more close to those obtained in the papers [13, 14]. The main tool of the
proofs are the Bihari’s and Dannan’s integral inequalities. We remark that sufficient
conditions on the existence of global solutions for second order differential equations
and second order functional-differential equations with p-Laplacian are proved in
the papers [1, 2, 3, 4, 11]. Many references concerning differential equations with
p-Laplacian can be found in the paper by Rachunková, Staněk and Tvrdý [12],
where boundary value problems for such equations are treated.

Let
u(t0) = u0, u′(t0) = u1, (1.2)

where u0, u1 ∈ R be initial condition for solutions of (1.1).
We say that a solution u(t) of (1.1) possesses the property (L) if u(t) = at+b+o(t)

as t→∞, where a, b are real constants.
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2. Main results

Theorem 2.1. Let p ≥ 1, r > 0 and t0 > 0. Suppose that the following conditions
are satisfied:

(1) f(t, u, v) is a continuous function in D = {(t, u, v) : t ∈< t0,∞), u, v ∈ R},
where t0 > 0

(2) There exist continuous functions h, g : R+ =< 0,∞) → R+ such that

|f(t, u, v)| ≤ h(t)g
([ |u|

t

]r
)
|v|r, (t, u, v) ∈ D,

where for s > 0 the function g(s) is positive and nondecreasing,∫ ∞

t0

h(s)ds <∞,

and if we denote

G(x) =
∫ x

t0

ds
sr/pg(sr/p)

,

then

G(∞) =
∫ ∞

t0

ds
sr/pg(sr/p)

=
p

r

∫ ∞

a

τ
p
r−1dτ
τg(τ)

= ∞,

where a = (t0)r/p.
Then any global solution u(t) of the equation (1) possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Let u(t) be a solution of
(1.1), (1.2). Then

(u′(t))p ≤ |u′(t)|p−1u′(t) ≤ c2 +
∫ t

1

|f(s, u(s), u′(s))|ds, (2.1)

where c2 = |u1|p. Let w(t) be the right-hand side of inequality (2.1). Then

u′(t) ≤ w(t)1/p

and

u(t) ≤ c1 +
∫ t

1

w(s)1/pds ≤ c1 + (t− 1)w(t)1/p ≤ t[c1 + w(t)1/p], (2.2)

where c1 = |u0|, i.e.
u(t) ≤ t[c1 + w(t)1/p], t ≥ 1.

Applying the inequality (A+ B)p ≤ 2p−1(Ap + Bp), A,B ≥ 0 and the assumption
(2) of Theorem 2.1 we obtain from (2.2):( |u(t)|

t

)p

≤ 2p−1cp1 + 2p−1w(t)

≤ 2p−1cp1 + 2p−1
(
c2 +

∫ t

0

h(s)g
([ |u(s)|

s

]r
)
|u′(s)|r

)
ds.

(2.3)

Let
d = 2p−1(cp1 + c2), H(t) = 2p−1h(t). (2.4)

Then ( |u(t)|
t

)p

≤ d+
∫ t

1

H(s)g
([ |u(s)|

s

]r
)
|u′(s)|rds := z(t); (2.5)
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i.e., ( |u(t)|
t

)r

≤ z(t)r/p.

From the assumption (2) of Theorem 2.1 and the inequality (2.1) it follows

|u′(t)|p ≤ up
1 +

∫ t

1

h(s)g
([ |u(s)|

s

]r
)
|u′(s)|rds ≤ z(t);

i.e. we have

|u′(t)|p ≤ z(t).

Since g(s) is nondecreasing, the inequality (2.3) yields

g
([ |u(t)|

t

]r
)
≤ g(z(t)r/p)

and so we conclude for t ≥ 1,

z(t) ≤ d+
∫ t

1

H(s)g(z(t)r/p)z(t)r/pds.

From the assumption (2) of Theorem 2.1 it follows that the inverse G−1 of G is
defined on the interval (G(+0),∞). Applying the Bihari theorem (see [5]) we obtain

z(t) ≤ G−1
(
G(d) + 2p−1

∫ ∞

1

h(s)ds
)

:= K <∞.

Therefore the inequality (2.4) yields

|u′(t)| ≤ L := K1/p

and from (2.3) we have

|u(t)|
t

≤ L.

Since ∫ t

1

|f(s, u(s), u′(s))|ds ≤
∫ t

1

h(s)g(
( |u(s)|

s

)r

)|u′(s)|rds ≤ z(t) ≤ K

for t ≥ 1, the integral
∫∞
1
|f(s, u(s), u′(s))|ds exists. From (2.5) it follows that

there exists a ∈ R such that

lim
t→∞

u′(t) = a.

By the l’Hospital rule, we can conclude that

lim
t→∞

u(t)
t

=
u1 +

∫ t

1
u′(τ)dτ
t

= lim
t→∞

u′(t) = a.

Therefore there exist b ∈ R such that u(t) = at+ b+ o(t). �
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Example 1. Let t0 = 1, p ≥ r > 0,

f(t, u, u′) = η(t)t1−αe−t
(u
t

)p−r

ln
[
2 +

( |u|
t

)r]
(u′)r, t ≥ 1, (2.6)

where 0 < α < 1, η(t) is a continuous function on interval 〈1,∞) with K =
supt≥1 |η(t)| <∞.

The function f(t, u, u′) can be written in the form

f(t, u, u′) = h(t)g
(
[
u

t
]r

)
(u′)r, (2.7)

where h(t) = η(t)t1−αe−t, g(u) = u
p
r−1 ln(2 + |u|). Obviously g(u) is positive,

continuous and nondecreasing function,
∫∞
1
|h(s)|ds < KΓ(α) = K

∫∞
0
s1−αe−sds

and ∫ ∞

1

τ
p
r−1dτ
τg(τ)

=
∫ ∞

1

dτ
τ ln(2 + τ)

>

∫ ∞

1

dτ
(2 + τ) ln(2 + τ)

= ∞. (2.8)

Thus we have proved that all conditions of Theorem 1 are satisfied. This means that
for every solution u(t) of the initial value problem (1.1), (1.2) there exist numbers
a, b such that u(t) = at+ b+ o(t) as t→∞.

Theorem 2.2. Let p ≥ 1, r > 0 and t0 > 0. Suppose the following conditions are
satisfied:

(1) The function f(t, u, v) is continuous in D = {(t, u, v) : t ∈< t0,∞), u, v ∈
R},

(2) There exist continuous functions h1, h2, h3, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h1(t)g1
([ |u|

t

]r
)

+ h2(t)g2(|v|r) + h3(t), (t, u, v) ∈ D,

where Hi :=
∫∞

t0
hi(s)ds < ∞, i = 1, 2, 3, for s > 0 the functions g1(s),

g2(s) are nondecreasing and if

G(x) =
∫ x

t0

ds
g1(sr/p) + g2(sr/p)

then

G(∞) =
∫ ∞

t0

ds
g1(sr/p) + g2(sr/p)

=
p

r

∫ ∞

a

τ
p
r−1dτ

g1(τ) + g2(τ)
= ∞,

where a = (t0)r/p.

Then any global solution u(t) of the equation (1) possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. By the standard existence
results, it follows from the continuity of the function f that equation (1.1) has
solution u(t) corresponding to the initial data u(1) = u0, u′(1) = u1. Two times of
integration (1.1) from 1 to t, yields for t ≥ 1

(u′(t))p ≤ |u′(t)|p−1u′(t) = up
1 −

∫ t

1

f(s, u(s), u′(s))ds, (2.9)

u(t) ≤ u0 + (t− 1)
[
up

1 −
∫ t

1

f(s, u(s), u′(s))ds
]1/p

. (2.10)
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It follows from (2.9) and (2.10) that for t ≥ 1,

|u′(t)| ≤ w(t)1/p,

|u(t)| ≤ t
(
c1 + w(t)1/p

)
,

where c1 = |u0|, c2 = |u1|p, w(t) = c2 +
∫ t

1
|f(s, u(s), u′(s))|ds. Using the assump-

tion (2) we obtain for t ≥ 1

|u′(t)| ≤
[
c2 +

∫ t

1

h1(s)g1
([ |u(s)|

s

]r
)
ds

+
∫ t

1

h2(s)g2(|u′(s)|r)ds+
∫ t

1

h3(s)ds
]1/p

,

|u(t)|
t

≤ c1 +
[
c2 +

∫ t

1

h1(s)g1
([ |u(s)|

s

]r
)
ds

+
∫ t

1

h2(s)g2(|u′(s)|r)ds+
∫ t

1

h3(s)ds
]1/p

.

Applying the inequality (A+B)p ≤ 2p−1(Ap +Bp), where A,B ≥ 0, we obtain( |u(t)|
t

)p ≤ d+
∫ t

1

H1(s)g1
([ |u(s)|

s

]r
)
ds

+
∫ t

1

H2(s)g2(|u′(s)|r)ds+
∫ t

1

H3(s)ds.
(2.11)

where d = 2p−1(cp1 + c2), Hi(t) = 2p−1hi(t), i = 1, 2, 3. Denote by z(t) the right-
hand side inequality (2.11)

|u′(t)|r ≤ z(t)r/p,
( |u(t)|

t

)r

≤ z(t)r/p. (2.12)

Since the function g1(s) and g2(s) are nondecreasing for s > 0, we obtain

g1

(
|u′(t)|r

)
≤ g1

(
z(t)r/p

)
, g1

([ |u(t)|
t

]r)
≤ g2

(
z(t)r/p

)
.

Thus, for t ≥ 1,

z(t) ≤ d+
∫ t

1

H1(s)g1(z(s)r/p)ds+
∫ t

1

H2(s)g2(z(s)r/p)ds+
∫ t

1

H3(s)ds. (2.13)

Furthermore, due to evident inequality

H1(s)g1(z(s)r/p) +H2(s)g2(z(s)r/p) ≤ (H1(s) +H2(s))(g1(z(s)r/p) + g2(z(s)r/p))
(2.14)

By (2.14), we have

z(t) ≤ d+ H̄3 +
∫ t

1

(H1(s) +H2(s))(g1(z(s)r/p) + g2(z(s)r/p))ds;

i.e.,

z(t) ≤ d+ 2p−1h̄3 + 2p−1

∫ t

1

(h1(s) + h2(s))(g1(z(s)r/p) + g2(z(s)r/p))ds. (2.15)

Applying Bihari’s inequality (see [5]) to (2.15), we obtain, for t ≥ 1,

z(t) ≤ G−1
(
G(d+ 2p−1h̄3) + 2p−1

∫ t

1

(h1(s) + h2(s))ds
)
,
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where

G(x) =
∫ x

1

ds
g1(sr/p) + g2(sr/p)

,

and G−1(x) is the inverse function for G(x) defined for x ∈ (G(+0),∞). Note that
G(+0) < 0, and G−1(x) is increasing.

Now, let
K = G(d+ 2p−1h̄3) + 2p−1(h̄1 + h̄2) <∞.

Since G−1(x) is increasing, we have

z(t) ≤ G−1(K) <∞;

so it yields
|u(t)|
t

≤ G−1(K), |u′(t)| ≤ G−1(K).

Using assumption (2) of the Theorem 2.2, we have∫ t

1

|f(s, u(s), u′(s))|ds ≤ h1(t)g1
([ |u|

t

]r
)

+ h2(t)g2(|u′(s)|r) + h3(t)

≤ z(t) ≤ G−1(K),

where t ≥ 1, the integral
∫ t

1
|f(s, u(s), u′(s))|ds converges, and there exists an a ∈ R

such that
lim

t→∞
u′(t) = a.

�

Example 2. Let t0 = 1, p ≥ r > 0,

f(t, u, v) = η1(t)t1−α1e−t
(u
t

)p−r ln
[
2 +

(u
t

)r]
+ η2(t)t1−α2e−tvp−r ln(3 + vr) + η3(t)t1−α3e−t

where 0 < αi < 1, ηi(t) are continuous functions on [1,∞), Ki = supt≥1 |ηi(t)| <∞,
i = 1, 2, 3. Then f(t, u, u′) can be written as

f(t, u, v) = h1(t)g1
(
[
u

t
]r

)
+ h2(t)g2(vr) + h3(t),

where hi(t) = ηi(t)t1−αie−t, i = 1, 2, 3, g1(u) = u
p
r ln(2 + u), g2(u) = u

p
r ln(2 + u).

Then
|f(t, u, v)| ≤ |h1(t)|g1

(
[
u

t
]r

)
+ |h2(t)|g2(|v|r) + |h3(t)|,

where (t, u, v) ∈ D = {(t, u, v) : t ∈ 〈1,∞), u, v ∈ R}, |hi(t)| ≤ KiΓ(αi), i = 1, 2, 3
and obviously we have

G(∞) =
∫ ∞

1

τ
p
r−1dτ

g1(τ) + g2(τ)

=
∫ ∞

1

τ
p
r−1dτ

τ
p
r [ln(2 + τ) + ln(3 + τ)]

≥ 1
2

∫ ∞

1

dτ
(3 + τ) ln(3 + τ)

= ∞.

This means that all assumptions of Theorem 2.2 are satisfied and thus any global
solution u(t) of the equation (1) possesses the property (L).

Theorem 2.3. Let t0 > 0. Suppose that the following assumptions hold:
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(i) there exist nonnegative continuous function h1, h2, g1, g2 : R+ → R+ such
that

|f(t, u, v)| ≤ h1(t)g1
([ |u|

t

]r
)

+ h2(t)g2(|v|r);

(ii) for s > 0 the function g1(s), g2(s) are nondecreasing, and

g1(αu) ≤ ψ1(α)g1(u), g2(αu) ≤ ψ2(α)g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for
α ≥ 1;

(iii)
∫∞

t0
hi(s)ds = Hi <∞, i = 1, 2.

Assume that there exists a constant K ≥ 1 such that

K−1(ψ1(K) + ψ2(K))2p−1(H1 +H2) ≤
∫ +∞

t0

ds
g1(sr/p) + g2(sr/p)

=
p

r

∫ +∞

a

τ
p
r−1dτ

g1(τ) + g2(τ)
,

where a = (t0)r/p. Then any global solution u(t) of the equation (1.1) with initial
data u(t0) = u0, u′(t0) = u1 such that (|u0| + |u1|)p ≤ K possesses the property
(L).

Proof. Without loss of generality we may assume t0 = 1. Arguing in the same way
as in Theorem 2.1, we obtain by assumption (i) of Theorem 2.3

|u′(t)| ≤
[
|u1|p +

∫ t

1

h1(s)g1
(
[
u(s)
s

]r
)
ds+

∫ t

1

h2(s)g2(|u′(s)|r)ds
]1/p

(2.16)

|u(t)|
t

≤ |u0|+
[
|u1|p +

∫ t

1

h1(s)g1
(
[
u(s)
s

]r
)
ds+

∫ t

1

h2(s)g2(|u′(s)|r)ds
]1/p

(2.17)

where t ≥ 1.( |u(t)|
t

)p

≤ K + 2p−1
( ∫ t

1

h1(s)g1
(
[
u(s)
s

]r
)
ds+

∫ t

1

h2(s)g2(|u′(s)|r)ds
)
, (2.18)

where K = 2p−1(|u0|p + |u1|p) ≥ (|u0| + |u1|)p. Denoting by z(t) the right-hand
side of inequality (2.18) we have by (2.16) and (2.18)

|u′(t)|r ≤ z(t)r/p,
( |u(t)|

t

)r

≤ z(t)r/p. (2.19)

Since the function g1(s), g2(s) are nondecreasing for s > 0, for t ≥ 1, (2.19) yields

z(t) ≤ K + 2p−1
( ∫ t

1

h1(s)g1
(
z(s)r/p

)
ds+

∫ t

1

h2(s)g2(z(s)r/p)
)
ds. (2.20)

By assumption (ii) of Theorem 2.3, the functions g1(u), g2(u) belong to the class H.
Furthermore, if g1(u) and g2(u) belong to the class H with corresponding multiplier
function ψ1(α), ψ2(α) respectively, then the sum g1(u) + g2(u). Applying Bihari’s
Theorem (see [5]) to (2.20), we have for t ≥ 1

z(t) ≤ KW−1(K−1(ψ1(K) + ψ2(K)))2p−1

∫ t

1

(h1(s) + h2(s))ds, (2.21)

where

W (u) =
∫ u

1

ds
g1

(
sr/p

)
+ g2

(
sr/p

) ,
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and W−1(u) is inverse function for W (u). Inequality (2.21) holds for all t ≥ 1
because

(K−1(ψ1(K) + ψ2(K))2p−1(H1 +H2) = L <∞.

Since W−1(u) is increasing, we get

z(t) ≤ KW−1(L) <∞,

so it follows from (2.19), (2.20) that
|u(t)|
t

≤ KW−1(L), |u′(t)| ≤ KW−1(L).

The rest of the proof is similar to that of Theorem 2.2 and thus it is omitted. �

Example 3. Let t0 > 0. Consider (1.1) with p ≥ 1, p
q = 2,

f(t, u, v) = h1(t)u2 = h2(t)v2, (2.22)

where h1(t) = η1(t)
t2 t1−α1e−t, h2(t) = η2(t)t1−α2e−t, 0 < αi ≤ 1, ηi(t), i = 1, 2 are

continuous functions on the interval 〈0,∞) with Ki = supt≥t0 |ηi(t)| < ∞. Then
we can write

f(t, u, v) = η1(t)t1−α1e−t
(u
t

)2 + η2(t)t1−α2e−tv2 (2.23)

and
|f(t, u, u′)| ≤ K1Γ(α1)g1(u) +K2Γ(α2)g2(u′), (2.24)

where g1(u) = u2, g2(u′) = (u′)2 . The functions g1, g2 satisfy the condition (ii) of
Theorem 2.3 with ψ1(α) = ψ2(α) = α2 and∫ ∞

t0

τ
p
r−1dτ

g1(τ) + g2(τ)
=

∫ ∞

t0

dτ
τ

= ∞. (2.25)

Thus all assumptions of Theorem 2.3 are satisfied and therefore any global solution
u(t) of the equation (1.1) (independently on the initial values u0, u1) possesses the
property (L).

Theorem 2.4. Let t0 > 0. Suppose that the assumptions (i) and (iii) of Theorem
2.3 hold, while (ii) is replaced by

(ii’) for s > 0 the functions g1(s), g2(s) are nonnegative, continuous and non-
decreasing, g1(0) = g2(0) = 0 and satisfy a Lipschitz condition

|g1(u+ v)− g1(u)| ≤ λ1v, |g2(u+ v)− g2(u)| ≤ λ2v,

where λ1, λ2 are positive constants.
Then any global solution u(t) of (1.1) with initial data u(t0) = u0, u′(t0) = u1 such
that |u0|p + |u1|p ≤ K possesses property (L).

Proof. Applying [8, Corollary 2] to (2.20), we have for t ≥ 1

z(t) ≤ K + 2p−1

∫ t

t0

(h1(s) + h2(s))(g1(K) + g2(K))

× exp
(
2p−1

∫ t

t0

(λ1 + λ2)(h1(τ) + h2(τ))dτ
)
ds

≤ K + 2p−1(H1 +H2)(g1(K) + g2(K)) exp
(
2p−1(λ1 + λ2)(H1 +H2)

)
< +∞.

The proof can be completed with the same argument as in Theorem 2.2. �
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Theorem 2.5. Let t0 > 0. Suppose that there exist continuous functions h, g1, g2 :
R+ → R+ such that

|f(t, u, v)| ≤ h(t)g1
([ |u|

t

]r
)
g2(|v|r),

where for s > 0 the functions g1(s), g2(s) are nondecreasing;∫ ∞

t0

h(s)ds <∞,

and if we denote

G(x) =
∫ x

t0

ds
g1(sr/p)g2(sr/p)

then G(+∞) = p
r

∫∞
a

τ
p
r
−1

g1(τ)g2(τ)dτ = +∞, where a = (t0)
r
p . Then any global solu-

tion u(t) of the equation (1.1) possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Arguing as in the proof
of Theorem 2.2, we obtain for t ≥ 1

|u′(t)| ≤
[
|u1|p +

∫ t

1

h(s)g1
(
[
u(s)
s

]r
)
g2(|u′(s)|r)ds

]1/p

,

|u(t)|
t

≤ |u0|+
[
|u1|p +

∫ t

1

h(s)g1
(
[
u(s)
s

]r
)
g2(|u′(s)|r)ds

]1/p

,( |u(t)|
t

)p

≤ C + 2p−1

∫ t

1

h(s)g1
(
[
u(s)
s

]r
)
g2(|u′(s)|r)ds,

(2.26)

where C = 2p−1(|u0|p + |u1|p) ≥ (|u0| + |u1|)p. Denoting by z(t) the right-hand
side of inequality (2.26) and using the assumptions of the Theorem 2.5, we have for
t ≥ 1

z(t) ≤ 1 + C + 2p−1

∫ t

1

h(s)g1(zr/p)g2(zr/p)ds. (2.27)

Applying Bihari’s inequality (see [5]) to (2.27), for t ≥ 1, we obtain

z(t) ≤ G−1
(
G(1 + C) + 2p−1

∫ t

1

h(s)ds
)
≤ G−1(K),

where

G(w) =
∫ w

1

ds
g1(sr/p)g2(sr/p)

,

and G−1(w) is the inverse function for G(w). The function G−1(w) is defined for
w ∈ (G(+0),∞), where G(+0) < 0, it is increasing, and

K = G(1 + C) + 2p−1

∫ ∞

1

h(s)ds <∞.

The rest of proof is similar that of Theorem 2.2 and thus is omitted. �
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Example 4. Let t0 = 1, p ≥ r > 0,

f(t, u, v) = η(t)t1−αe−t
[(u
t

)p−r

ln
[
2 +

(u
t

)r]] 3
4 ·

[
vp−r ln(2 + vr)

] 1
4
,

where η(t) is a continuous function on 〈1,∞) with K = supt∈〈1,∞) η(t) <∞. Let

g1(u) =
[
u

p
r−1 ln(2 + u)

]3/4

, g2(v) =
[
v

p
r−1 ln(2 + v)

]1/4

, h(t) = η(t)t1−αe−t.

Then
f(t, u, v) = h(t)g1

(
[
u

t
]r

)
g2(vr)

and

G(+∞) =
p

r

∫ ∞

1

τ
p
r−1

g1(τ)g2(τ)
dτ =

p

r

∫ ∞

1

dτ
τ ln(2 + τ)

>
p

r

∫ ∞

1

dτ
(2 + τ) ln(2 + τ)

= +∞.

Obviously |f(t, u, v)| can be estimated as in Theorem 2.5. Thus all assumptions of
Theorem 2.5 are satisfied and this means that any global solution of the equation
(1.1) possesses the property (L).

Theorem 2.6. Let t0 > 0. Suppose that the following conditions hold:
(i) there exist nonnegative continuous functions h, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g1
([ |u(t)|

t

]r)
g2(|v|r)

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing; and

g1(αu) ≤ ψ1(α)g1(u), g2(αu) ≤ ψ2(α)g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for α ≥ 1;
(iii)

∫∞
t0
h(s)ds = H < +∞.

Assume also that there exists a constant K ≥ 1 such that

K−1Hψ1(K)ψ2(K) ≤
∫ ∞

1

ds
g1(sr/p)g2(sr/p)

=
p

r

∫ ∞

a

τ
p
r−1dτ

g1(τ)g2(τ)
, (2.28)

where a = (t0)
r
p . Then any global solution u(t) of the equation (1.1) with initial

data u(t0) = u0, u
′(t0) = u1 such that 2p−1(|u0|p+|u1|p) ≤ K possesses the property

(L).

Proof. Without loss of generality we assume that t0 = 1. With the same argument
as in Theorem 2.2, for t ≥ 1, we have

|u′(t)| ≤
[
|u1|p +

∫ t

1

h(s)g1
([ |u(s)|

s

]r
)
g2(|u′(s)|r)ds

]1/p

,

|u(t)|
t

≤ |u0|+
[
|u1|p +

∫ t

1

h(s)g1
([ |u(s)|

s

]r
)
g2(|u′(s)|r)ds

]1/p

.

Applying the inequality (A+B)p ≤ 2p−1(Ap +Bp), A,B ≥ 0 we obtain( |u(t)|
t

)p

≤ 2p−1(|u0|p + |u1|p) + 2p−1
[ ∫ t

1

g1

([ |u(s)|
s

]r
)
g2(|u′(s)|r)ds

]
. (2.29)
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Denoting by z(t) the right-hand side of inequality (2.29), for t ≥ 1, we obtain

z(t) ≤ K +
∫ t

1

H(s)g1(z(s)r/p)g2(z(s)r/p)ds, (2.30)

where K = 2p−1(|u0|p + |u1|p) and H(t) = 2p−1h(t). Assumption (ii) implies that
the functions g1(u), g2(u) belong to the class H. Furthermore, it follows from [6,
Lemma 1] that if g1(u) and g2(u) belong to the class H with the corresponding
multiplier functions ψ1(α) and ψ2(α) respectively, then the product g1(u)g2(u)
also belongs to H and the corresponding multiplier function is ψ1(α)ψ2(α). Thus,
applying [8, Theorem 1] to (2.30), for t ≥ 1, we have

z(t) ≤ KW−1
(
K−1ψ1(K)ψ2(K)

∫ t

1

H(s)ds
)
, (2.31)

where

W (u) =
∫ u

1

ds
g1(sr/p)g2(sr/p)

, (2.32)

and W−1(u) is the inverse function for W (u). Evidently, inequality (2.31) holds for
all t ≥ 1 since by (2.28)

K−1ψ1(K)ψ2(K)
∫ t

1

H(s)ds ∈ Dom(W−1) (2.33)

for all t ≥ 1. The rest of the proof is analogous to that of Theorem 2.2 and is
omitted. �

Theorem 2.7. Let t0 > 0. Suppose that assumptions (i) and (iii) of Theorem 2.6
hold, while (ii) is replaced by

(ii’) for s > 0 the functions g1(s), g2(s) are continuous and nondecreasing,
g1(0) = g2(0) = 0, and satisfy a Lipschitz condition

|g1(u+ v)− g1(u)| ≤ λ1v, |g2(u+ v)− g2(u)| ≤ λ2v,

where λ1, λ2 are positive constants.

Then any global solution u(t) of the equation (1.1) with initial data u(t0) = u0,
u′(t0) = u1 such that |u0|p + |u1|p ≤ K possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Applying [8, Corollary 2]
to (2.30), we have for t ≥ 1

z(t) ≤ K + g1(K)g2(K)
∫ t

1

H(s) exp
(
λ1λ2

∫ t

1

H(τ)dτ
)
ds

≤ K + H̄g1(K)g2(K) exp (λ1λ2H̄) < +∞.

The proof of the above theorem can be completed with the same argument as in
Theorem 2.2. �
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[2] M. Bartušek, On singular solutions of a second order differential equations, Electronic Jour-

nal of Qualitaive Theory of Differential Equations, 8 (2006), 1–13.
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