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UNIQUE SOLVABILITY FOR A SECOND ORDER NONLINEAR
SYSTEM VIA TWO GLOBAL INVERSION THEOREMS

ROBERT DALMASSO

ABSTRACT. In this paper we use two global inversion theorems to establish the
existence and uniqueness for a nonlinear second order homogeneous Dirichlet
system.

1. INTRODUCTION

Let n > 1 and let f = (f1,..., fn) : [0,1] x R® — R"™ be a continuous function.
We consider the system

o' (x)+ f(z,u(z)) =0, 0<xz<1, .
u(0) =u(l) =0 (L.1)
We first introduce some notations:
Hu” = 1rélja§n(|uj|)’ U = (ulv"'aun) eR"™,

M (n) is the space of n x n matrices with real entries and p(M) is the spectral radius
of M € M(n),

n

| M]| = @%; Imjil, M = (mjk)i<jr<n € M(n),

1
Iyl = ( / WOP )P, ye LP0,1), 1< p< +oo,

[Ylloo = eS(SSI)lp lyl, ye€L>(0,1),

)

lylly = max ([ly;llp), vy = (Y1, yn) € LP((0,1),R"), 1 < p < +oo,

1<j<n
R:]l-:{x:(xlvazn)ERn, I']ZO,]ZI,,TL}

Recently the author proved the following theorem.

Theorem 1.1 ([]). Assume that the partial derivatives Of;/Ouy exist and are
continuous on [0,1] x R™ for j,k =1,...,n. Let A = (N\j)1<jk<n : Ry — M(n) be
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a continuous map with \ji nondecreasing and bounded for j,k=1,...,n. Assume
that

of; , n .

!au (z,u)] < Nji(llull) ¥ (z,u) €[0,1] xR™, 1< j,k<n, (1.2)
k
p(A(t)) <7 Vt >0, (1.3)
+oo
/ det(n®I — A(t))dt = +oo. (1.4)
0

Then the boundary value problem (1.1) has a unique solution.

The purpose of this paper is to improve and complement Theorem [I.1] We have
the following results.

Theorem 1.2. Assume that the partial derivatives Of;/0u exist and are contin-
wous on [0,1] x R™ for j,k = 1,...,n. Let A = (Njr)i<jr<n : Ry — M(n) be a
continuous map with A nondecreasing for j,k =1,...,n. Assume that and
hold and that

/ m dat + (1.5)
= 0. .

o @I =A@)~

Then the boundary value problem (1.1) has a unique solution.

Theorem 1.3. Assume that the partial derivatives 0f;/0uy, exist and are continu-
ous on [0,1] x R™ for j,k=1,...,n. Let b € R} and let A = (aji)i1<jr<n : Ry —

M(n) be a continuous map with a;, nondecreasing for j,k=1,...,n. Assume that
uj fi(w,u) < age(lul)lwsu| + bslu;), (1.6)
k=1
for all (x,u) € 0,1 xR", 1 <j <mn,
p(A(t)) <7* Yt >0, (1.7)
t

I
o (72T — A[) 7]
Let A = (A\ji)i<jk<n : Ry — M(n) be a continuous map with \;; nondecreasing
for g,k =1,...,n. Assume that (1.2) and (1.3) hold. Then the boundary value
problem (1.1)) has a unique solution.

= +400. (1.8)

In Section 2 we recall some results from the theory of nonnegative matrices. We
also give two global inversion theorems. We prove Theorem [I.2] in Section 3 and
Theorem in section 4. Finally in Section 5 we conclude with some examples.

2. PRELIMINARIES

We begin with some results from the theory of nonnegative matrices. We refer
the reader to [I] for proofs.

Definition 2.1. A € M(n) is called R’} -monotone if Az € R’} implies z € R"}.
N = (njx)1<j k<n is nonnegative if n;p > 0 for j,k=1,...,n.

Theorem 2.2 ([I, p. 113]). A € M(n) is R’ -monotone if and only if A is non-
singular and A~ is nonnegative.
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Theorem 2.3 ([1, p. 113]). Let A = ol — N where € R and N € M(n) is
nonnegative. Then the following are equivalent:

(i) A is R" -monotone;
(ii) p(N) < a.

Remark 2.4. With the notations of Theorem assume that (i) (or (ii)) holds.
Then det A > 0.

The proof of Theorem makes use of the following global inversion theorem of
Hadamard-Lévy type established by M. Radulescu and S. Radulescu [5, Theorem
2].

Theorem 2.5. Let (Y, Ny) be a Banach space and let L : D(L) — Y be a linear
operator with closed graph, where D(L) is a linear subspace of Y. Then D(L) is a
Banach space with respect to the norm defined by

Ni(u) = No(u) + No(Lu), we D(L).

Further, let K : (Y, No) — (Y, Ng) be a C' map and let X be a linear subspace of
D(L) which is closed in the norm Ny. Consider the nonlinear map S : (X, Ny) —
(Y, Ny) defined by S = L — K, and assume that S is a local diffeomorphism. If
there exists a continuous map ¢ : Ry — R% such that

+oo
/ c(t) dt = 400,
0
No(S'(u)(h)) > c(No(u))No(h) Vu,heX,
then S is a global diffeomorphism.

The proof of Theorem [I.3] makes use of the Banach-Mazur-Caccioppoli global
inversion theorem ([2], [3] and [6]).

Theorem 2.6. Let E and F be two Banach spaces. Then S : E — F is a global
homeomorphism if and only if S is a local homeomorphism and a proper map.
3. PROOF OF THEOREM
We begin with two lemmas.

Lemma 3.1. Let w € C*([0,1],R) be such that w(0) = w(1) = 0. Then
lw'llz 2 wllwllz  and w2 = 2]jwllo -

The first inequality is known as the Wirtinger inequality and the second inequal-
ity is known as the Lees inequality.

Lemma 3.2. Let
X = {h € C*([0,1],R"); h(0) = h(1) = 0},

and let V- = (vjr)1<jk<n : [0,1] — M(n) be a continuous map. Assume that there
exists N = (nji)1<jk<n € M(n) such that p(N) < n% and

lvj(z)| <njr Vo €[0,1], 1 <j,k<n.
IfT: X — C([0,1],R™) is the operator defined by
T(h)(2) = W(x) + V(@)h(z), heX, zeo,1],



4 R. DALMASSO EJDE-2008/11

then

2
1T (h)]|oo > T Al YV heEX.

|| (w2l = N)=

Proof. Let h = (hq,...,h,) € X and let j € {1,...,n}. Integrating by parts we
get

/Olhj(x)T(h)j(x)dx/l )(h (x +Zv3k
/h’ dx—|—Z/ vk (z Yhi(x) d .

Then using the Cauchy-Schwarz inequality and Lemma [3.I] we can write

Il Tl = = [T ()5 (2) da
0
~ I - Z/ vl ) (z) d

> || By 21 ll2 — ankllhjllz\\hk\lz
k=1

= m|hll2llRj 2 — ank”h l2ll7 12

from which we deduce that
1T (h)jllz > 7[R}z — ank”h 2, (3.1)

for j=1,...,n. Let a, b denote the vectors
a=(|Ihjll2)1<j<n  and b= (7| T(h);ll2)1<j<n -
Inequality can be written
b— (m*I — N)a € RY..

Theorem implies that 721 — N is R’ -monotone. Then using Theorem we
obtain
(7?I = N)"'b—a cR", (3.2)
which implies that
(@1 = N)THHT ()2 = (1752
for j =1,...,n. Using Lemma[3.1)and the fact that ||T'(h)[|2 < ||T'(h)||s we deduce
that

2
T >
|| (h)HOO = 7TH(7TZI o N),1|| ||h||007

and the lemma is proved. ([l
Now we can complete the proof of Theorem Let Y = C([0,1],R") be
equipped with the sup norm ||.||s and let L : D(L) — Y be the linear operator

defined by
Lu=4v", weD(L),
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where D(L) = C?([0,1],R™). Since L has closed graph, it follows from Theorem
that D(L) is a Banach space with respect to the norm N; defined by
Ni(u) = |lulloo + [ILufloc,  we D(L).
Let K : (Y, .loc) = (Y, l-lo) be given by
K(u)(z) = —f(z,u(z)), weY,zel01].
The regularity assumptions on f imply that K is of class C!. The set X = {u €
D(L);u(0) = u(1) = 0} is a closed subspace of D(L) in the norm N;. Let S = L—K.

Clearly S : (X,N1) — (Y,]|.]ls) is of class C'. Let u € X be fixed and let
V = (vjk)i1<jk<n : [0,1] — M(n) be such that

vjp(z) = %(m,u(w)), z €[0,1], 1 <j,k<mn.
We have
S'(u)(h)(z) = h"(z) + V(z)h(z), heX,xzel0,1].
Also implies

ok (@)] < Ajk([[ulloe) Vo €[0,1], 1< g,k <n.

Then using Lemma [3.2] we get

, 2
150 = T — Al

Let Q : X — Y be defined by
Q(h)(z) = -V (x)h(z), heX,zel0,1].

The operator L : X — Y is one to one and onto. We have S'(u) = L — Q =
L(I — L7'Q). By ker(S’(u)) = {0}. Then ker(I — L7*Q) = {0}. Since
L7t (V). ]lso) — (X, ||.]lc) is compact, L~1Q is compact too. By the Fredholm
alternative we obtain that I — L™1Q is onto. Therefore S’ (u) : (X, N1) — (Y, ||.]|c0)
is an invertible operator. By the local inversion theorem we have that S is a local
diffeomorphism. Now let

_1H||h||oo VheX. (3.3)

2
0= qmEr—amy 20

This function satisfies the hypotheses of Theorem Therefore S is a global
diffeomorphism and consequently the equation Su = 0 has a unique solution v € X.
This is also the unique solution of the boundary value problem (1.1).

4. PROOF OF THEOREM [[3]

We keep the notations introduced in Section 3. In the same way we show that
S:(X,N1) — (Y, || l|lso) is a local diffeomorphism. Now let u = (u1,...,u,) € X
and let j € {1,...,n}. Integrating by parts we get

| w@s) ) do = [ o) @) + 1o, ule)) do

0 0
= - lu’-xzdx—l—/lu-(x)f-(m u(z)) dx
- /(; j( ) o J J ) .
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Then using the Cauchy-Schwarz inequality, (I.6) and Lemma [3.1] we can write
1
loll8G0) 1 > = [ @)S(0) (o) do
n 1 1
> [lujll3 — Z/O aji([lu(@)l)u; (x)ux (2)] dz — bj/o |uj(x)] d
k=1

> 113 =D ai(lulloo) g llollur 2 — bjlusllz
k=1

n
2 llugll2llujllz — — > agllllloo)lfugllzliugllz = blluslle

k=1
from which we deduce that
1 n
1S();ll2 = wlujll = — > agllulloo) uicllz = by, (4.1)
k=1
for j=1,...,n. Let r, s and b denote the vectors

r=(lujll2)1<j<ns s = (TISWjll2)1<i<n, b= (Thj)1<j<n.
Inequality (4.1) can be written as
s — (71 — A(||lullso))r + b € R .
Theorem implies that I — A(||ul|o) is R’ -monotone. Then using Theorem
2.2 we obtain
(%I — A(||lullo)) " (s +b) —r € RT, (4.2)
which implies that

| (w21 = A(llulloe)) M IS @)ll2 + [16]) > ]2,

for j = 1,...,n. Using Lemma[3.1]and the fact that ||S(u)||2 < [|S(u)|s we deduce
that 2l
Ul oo

150 2 ST — Al ]
We shall prove that implies that S : (X, N1) — (Y,].]|ls) is a proper map.
Let (un)nen be a sequence in X and v € Y such that S(u,) — v as n — +o0.
and imply that there exists a constant M > 0 such that ||up||ecc < M
for every n € N. Since K : (X, N1) — (Y, ].||oc) is a compact operator, it follows
that the sequence (K (uy))nen contains a convergent subsequence. Without loss
of generality we may assume that (K (u,))nen is convergent to w € Y. Letting
n — 400 in the equality

— ol (4.3)

Up = L71S(up) + L7 K (uy,),

we obtain
hI—P tn — L™ (v) — L7 (w)]|oo = 0. (4.4)
Then we have
lim [|L(un) — L(L™ (0) + L7 (w))]|oo

n—-+4oo

= lim[[(S(un) — v) + (K (un) — )l = 0.

n—-—4o0o
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From this equality and (4.4), we deduce that
lim Ni(u, — L™ v +w)) =0.
Therefore S : (X, N1) — (Y, |||l ) is a proper map. Using Theorem[2.6]we conclude

that S is a global homeomorphism and consequently the equation Su = 0 has a
unique solution v € X. This is also the unique solution of the boundary value

problem (1.1).

5. EXAMPLES

In this section we give two examples to illustrate Theorems and Define
a, h:R— R, by

ift <1 t
a(t)z{o Ml o h(t)z/a<s)ds, teR,
1

1-L ift>1

where a > 0.
Example 5.1. Let n = 2. We set
fil@,u) =7°h(u) + gi(x),  fola,u) = [ur]” + 72h(uz) + ga(2),

for (z,u) € [0,1] x R%2. B> 1is a constant and g1, go € C([0,1],R). Then we can
take

a1 =agy =7m2a, aip =0, an(t)=t"1 t>0,
bj = lgjllee, 3=1,2,
M1 =X =72a, M2=0, Ma(t)=ptP"1 t>0.
We easily verify that p(A(t)) = p(A(t)) = m2a(t) < w2 for t > 0,
" _ pigle
(721 = A@) =M 72 4 teth=t

tOl
|21 = A) M = = + %t?aﬂ?-l fort > 1.

for t>1,

Note that as; and A9y are unbounded. If 2o+ 8 < 2 we can use either Theorem
or Theorem Now let 2 < 1 and 8 = 2(1 — «). Then Theorem applies
but Theorem [I.3] does not apply.

Example 5.2. Let n = 2. We set
fi(z,u) = 7r2h(u1) +g1(x), fo(z,u) = cos |u1|5 + 7T2h(u2) + go(2),

for (x,u) € [0,1] x R2. 3> 1 is a constant and g1, g2 € C([0,1],R). Then we can
take

a1 =asp =7m’a, az=axn =0, b =|gillec, b2=1+]52]c0,
M1 =2 =7%a, M2=0, Mu(t)=pt""" t>0.
We easily verify that p(A(t)) = p(A(t)) = m2a(t) < 72 for t > 0,

t B tlfa
(721 — A@)~Y =2

fort>1,

t()ﬂ
(72T — A(t)7Y| = S+ %R“W—l fort > 1.
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Notice that Ag; is unbounded. If 2« + 3 < 2, then Theorem [I.2] and Theorem [I.3]
apply. If 2a + 3 > 2 and a < 1, Theorem still applies but not Theorem [1.2

We conclude this paper with the following remark.

Remark 5.3. With the notations of Theorems and assume that Aj; are
bounded for j, k =1,...,n. Then (1.4) implies (|1.5). Indeed we have

1
~ det(m2I — A(t))
where B(t) € M(n) is nonnegative and det(w2I — A(t)) > 0 (see Remark .

(21— A(t) ™ B(t), t=0,

Since \;j are bounded for j, k = 1,...,n, there exists a constant d > 0 such that
|B(t)|]| < d for all t > 0. Then we can write
1 det(7%] — A(2))

L qet(x? —
e R EC T A AN

and our claim follows.

It is easily seen that (1.5) does not imply (1.4]) in general. Indeed let
1
)\11(75):)\22(75):7'('2(1—%), ﬁZl

and A1z = Ag; = 0. Then we have
1 2 ot
H(ﬂ-2] _ A(t))_ln = — and det(wZI — A(t)) - t>1.
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