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UNIQUE SOLVABILITY FOR A SECOND ORDER NONLINEAR
SYSTEM VIA TWO GLOBAL INVERSION THEOREMS

ROBERT DALMASSO

Abstract. In this paper we use two global inversion theorems to establish the
existence and uniqueness for a nonlinear second order homogeneous Dirichlet

system.

1. Introduction

Let n ≥ 1 and let f = (f1, . . . , fn) : [0, 1] × Rn → Rn be a continuous function.
We consider the system

u′′(x) + f(x, u(x)) = 0 , 0 ≤ x ≤ 1,

u(0) = u(1) = 0 .
(1.1)

We first introduce some notations:

‖u‖ = max
1≤j≤n

(|uj |), u = (u1, . . . , un) ∈ Rn ,

M(n) is the space of n×n matrices with real entries and ρ(M) is the spectral radius
of M ∈ M(n),

‖M‖ = max
1≤j≤n

n∑
k=1

|mjk|, M = (mjk)1≤j,k≤n ∈ M(n) ,

‖y‖p = (
∫ 1

0

|y(t)|p dt)1/p, y ∈ Lp(0, 1) , 1 ≤ p < +∞ ,

‖y‖∞ = ess sup
(0,1)

|y|, y ∈ L∞(0, 1) ,

‖y‖p = max
1≤j≤n

(‖yj‖p), y = (y1, . . . , yn) ∈ Lp((0, 1), Rn) , 1 ≤ p ≤ +∞,

Rn
+ = {x = (x1, . . . , xn) ∈ Rn; xj ≥ 0 , j = 1, . . . , n} .

Recently the author proved the following theorem.

Theorem 1.1 ([4]). Assume that the partial derivatives ∂fj/∂uk exist and are
continuous on [0, 1]×Rn for j, k = 1, . . . , n. Let Λ = (λjk)1≤j,k≤n : R+ → M(n) be
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a continuous map with λjk nondecreasing and bounded for j, k = 1, . . . , n. Assume
that ∣∣ ∂fj

∂uk
(x, u)

∣∣ ≤ λjk(‖u‖) ∀ (x, u) ∈ [0, 1]× Rn , 1 ≤ j, k ≤ n , (1.2)

ρ(Λ(t)) < π2 ∀ t ≥ 0 , (1.3)∫ +∞

0

det(π2I − Λ(t)) dt = +∞ . (1.4)

Then the boundary value problem (1.1) has a unique solution.

The purpose of this paper is to improve and complement Theorem 1.1. We have
the following results.

Theorem 1.2. Assume that the partial derivatives ∂fj/∂uk exist and are contin-
uous on [0, 1] × Rn for j, k = 1, . . . , n. Let Λ = (λjk)1≤j,k≤n : R+ → M(n) be a
continuous map with λjk nondecreasing for j, k = 1, . . . , n. Assume that (1.2) and
(1.3) hold and that ∫ +∞

0

dt

‖(π2I − Λ(t))−1‖
= +∞ . (1.5)

Then the boundary value problem (1.1) has a unique solution.

Theorem 1.3. Assume that the partial derivatives ∂fj/∂uk exist and are continu-
ous on [0, 1]× Rn for j, k = 1, . . . , n. Let b ∈ Rn

+ and let A = (ajk)1≤j,k≤n : R+ →
M(n) be a continuous map with ajk nondecreasing for j, k = 1, . . . , n. Assume that

ujfj(x, u) ≤
n∑

k=1

ajk(‖u‖)|ujuk|+ bj |uj | , (1.6)

for all (x, u) ∈ [0, 1]× Rn, 1 ≤ j ≤ n,

ρ(A(t)) < π2 ∀ t ≥ 0 , (1.7)

lim
t→+∞

t

‖(π2I −A(t))−1‖
= +∞ . (1.8)

Let Λ = (λjk)1≤j,k≤n : R+ → M(n) be a continuous map with λjk nondecreasing
for j, k = 1, . . . , n. Assume that (1.2) and (1.3) hold. Then the boundary value
problem (1.1) has a unique solution.

In Section 2 we recall some results from the theory of nonnegative matrices. We
also give two global inversion theorems. We prove Theorem 1.2 in Section 3 and
Theorem 1.3 in section 4. Finally in Section 5 we conclude with some examples.

2. Preliminaries

We begin with some results from the theory of nonnegative matrices. We refer
the reader to [1] for proofs.

Definition 2.1. A ∈ M(n) is called Rn
+-monotone if Ax ∈ Rn

+ implies x ∈ Rn
+.

N = (njk)1≤j,k≤n is nonnegative if njk ≥ 0 for j, k = 1, . . . , n.

Theorem 2.2 ([1, p. 113]). A ∈ M(n) is Rn
+-monotone if and only if A is non-

singular and A−1 is nonnegative.
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Theorem 2.3 ([1, p. 113]). Let A = αI − N where α ∈ R and N ∈ M(n) is
nonnegative. Then the following are equivalent:

(i) A is Rn
+-monotone;

(ii) ρ(N) < α.

Remark 2.4. With the notations of Theorem 2.3, assume that (i) (or (ii)) holds.
Then det A > 0.

The proof of Theorem 1.2 makes use of the following global inversion theorem of
Hadamard-Lévy type established by M. Rǎdulescu and S. Rǎdulescu [5, Theorem
2].

Theorem 2.5. Let (Y,N0) be a Banach space and let L : D(L) → Y be a linear
operator with closed graph, where D(L) is a linear subspace of Y . Then D(L) is a
Banach space with respect to the norm defined by

N1(u) = N0(u) + N0(Lu) , u ∈ D(L) .

Further, let K : (Y,N0) → (Y,N0) be a C1 map and let X be a linear subspace of
D(L) which is closed in the norm N1. Consider the nonlinear map S : (X, N1) →
(Y, N0) defined by S = L − K, and assume that S is a local diffeomorphism. If
there exists a continuous map c : R+ → R?

+ such that∫ +∞

0

c(t) dt = +∞ ,

N0(S′(u)(h)) ≥ c(N0(u))N0(h) ∀u , h ∈ X ,

then S is a global diffeomorphism.

The proof of Theorem 1.3 makes use of the Banach-Mazur-Caccioppoli global
inversion theorem ([2], [3] and [6]).

Theorem 2.6. Let E and F be two Banach spaces. Then S : E → F is a global
homeomorphism if and only if S is a local homeomorphism and a proper map.

3. Proof of Theorem 1.2

We begin with two lemmas.

Lemma 3.1. Let w ∈ C1([0, 1], R) be such that w(0) = w(1) = 0. Then

‖w′‖2 ≥ π‖w‖2 and ‖w′‖2 ≥ 2‖w‖∞ .

The first inequality is known as the Wirtinger inequality and the second inequal-
ity is known as the Lees inequality.

Lemma 3.2. Let

X = {h ∈ C2([0, 1], Rn); h(0) = h(1) = 0} ,

and let V = (vjk)1≤j,k≤n : [0, 1] → M(n) be a continuous map. Assume that there
exists N = (njk)1≤j,k≤n ∈ M(n) such that ρ(N) < π2 and

|vjk(x)| ≤ njk ∀x ∈ [0, 1] , 1 ≤ j, k ≤ n .

If T : X → C([0, 1], Rn) is the operator defined by

T (h)(x) = h′′(x) + V (x)h(x) , h ∈ X , x ∈ [0, 1] ,
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then
‖T (h)‖∞ ≥ 2

π‖(π2I −N)−1‖
‖h‖∞ ∀ h ∈ X .

Proof. Let h = (h1, . . . , hn) ∈ X and let j ∈ {1, . . . , n}. Integrating by parts we
get ∫ 1

0

hj(x)T (h)j(x) dx =
∫ 1

0

hj(x)(h′′j (x) +
n∑

k=1

vjk(x)hk(x)) dx

= −
∫ 1

0

h′j(x)2 dx +
n∑

k=1

∫ 1

0

vjk(x)hj(x)hk(x) dx .

Then using the Cauchy-Schwarz inequality and Lemma 3.1 we can write

‖hj‖2‖T (h)j‖2 ≥ −
∫ 1

0

hj(x)T (h)j(x) dx

= ‖h′j‖2
2 −

n∑
k=1

∫ 1

0

vjk(x)hj(x)hk(x) dx

≥ π‖hj‖2‖h′j‖2 −
n∑

k=1

njk‖hj‖2‖hk‖2

≥ π‖hj‖2‖h′j‖2 −
1
π

n∑
k=1

njk‖hj‖2‖h′k‖2 ,

from which we deduce that

‖T (h)j‖2 ≥ π‖h′j‖2 −
1
π

n∑
k=1

njk‖h′k‖2 , (3.1)

for j = 1, . . . , n. Let a, b denote the vectors

a = (‖h′j‖2)1≤j≤n and b = (π‖T (h)j‖2)1≤j≤n .

Inequality (3.1) can be written

b− (π2I −N)a ∈ Rn
+ .

Theorem 2.3 implies that π2I − N is Rn
+-monotone. Then using Theorem 2.2 we

obtain
(π2I −N)−1b− a ∈ Rn

+ , (3.2)
which implies that

π‖(π2I −N)−1‖ ‖T (h)‖2 ≥ ‖h′j‖2 ,

for j = 1, . . . , n. Using Lemma 3.1 and the fact that ‖T (h)‖2 ≤ ‖T (h)‖∞ we deduce
that

‖T (h)‖∞ ≥ 2
π‖(π2I −N)−1‖

‖h‖∞ ,

and the lemma is proved. �

Now we can complete the proof of Theorem 1.2. Let Y = C([0, 1], Rn) be
equipped with the sup norm ‖.‖∞ and let L : D(L) → Y be the linear operator
defined by

Lu = u′′ , u ∈ D(L) ,
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where D(L) = C2([0, 1], Rn). Since L has closed graph, it follows from Theorem
2.5 that D(L) is a Banach space with respect to the norm N1 defined by

N1(u) = ‖u‖∞ + ‖Lu‖∞ , u ∈ D(L) .

Let K : (Y, ‖.‖∞) → (Y, ‖.‖∞) be given by

K(u)(x) = −f(x, u(x)) , u ∈ Y , x ∈ [0, 1] .

The regularity assumptions on f imply that K is of class C1. The set X = {u ∈
D(L);u(0) = u(1) = 0} is a closed subspace of D(L) in the norm N1. Let S = L−K.
Clearly S : (X, N1) → (Y, ‖.‖∞) is of class C1. Let u ∈ X be fixed and let
V = (vjk)1≤j,k≤n : [0, 1] → M(n) be such that

vjk(x) =
∂fj

∂uk
(x, u(x)) , x ∈ [0, 1] , 1 ≤ j, k ≤ n .

We have
S′(u)(h)(x) = h′′(x) + V (x)h(x) , h ∈ X , x ∈ [0, 1] .

Also (1.2) implies

|vjk(x)| ≤ λjk(‖u‖∞) ∀x ∈ [0, 1] , 1 ≤ j, k ≤ n .

Then using Lemma 3.2, we get

‖S′(u)(h)‖∞ ≥ 2
π‖(π2I − Λ(‖u‖∞))−1‖

‖h‖∞ ∀h ∈ X . (3.3)

Let Q : X → Y be defined by

Q(h)(x) = −V (x)h(x) , h ∈ X , x ∈ [0, 1] .

The operator L : X → Y is one to one and onto. We have S′(u) = L − Q =
L(I − L−1Q). By (3.3) ker(S′(u)) = {0}. Then ker(I − L−1Q) = {0}. Since
L−1 : (Y, ‖.‖∞) → (X, ‖.‖∞) is compact, L−1Q is compact too. By the Fredholm
alternative we obtain that I−L−1Q is onto. Therefore S′(u) : (X, N1) → (Y, ‖.‖∞)
is an invertible operator. By the local inversion theorem we have that S is a local
diffeomorphism. Now let

c(t) =
2

π‖(π2I − Λ(t))−1‖
, t ≥ 0 .

This function satisfies the hypotheses of Theorem 2.5. Therefore S is a global
diffeomorphism and consequently the equation Su = 0 has a unique solution u ∈ X.
This is also the unique solution of the boundary value problem (1.1).

4. Proof of Theorem 1.3

We keep the notations introduced in Section 3. In the same way we show that
S : (X, N1) → (Y, ‖ · ‖∞) is a local diffeomorphism. Now let u = (u1, . . . , un) ∈ X
and let j ∈ {1, . . . , n}. Integrating by parts we get∫ 1

0

uj(x)S(u)j(x) dx =
∫ 1

0

uj(x)(u′′j (x) + fj(x, u(x)) dx

= −
∫ 1

0

u′j(x)2 dx +
∫ 1

0

uj(x)fj(x, u(x)) dx .
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Then using the Cauchy-Schwarz inequality, (1.6) and Lemma 3.1 we can write

‖uj‖2‖S(u)j‖2 ≥ −
∫ 1

0

uj(x)S(u)j(x) dx

≥ ‖u′j‖2
2 −

n∑
k=1

∫ 1

0

ajk(‖u(x)‖)|uj(x)uk(x)| dx− bj

∫ 1

0

|uj(x)| dx

≥ ‖u′j‖2
2 −

n∑
k=1

ajk(‖u‖∞)‖uj‖2‖uk‖2 − bj‖uj‖2

≥ π‖uj‖2‖u′j‖2 −
1
π

n∑
k=1

ajk(‖u‖∞)‖uj‖2‖u′k‖2 − bj‖uj‖2 ,

from which we deduce that

‖S(u)j‖2 ≥ π‖u′j‖2 −
1
π

n∑
k=1

ajk(‖u‖∞)‖u′k‖2 − bj , (4.1)

for j = 1, . . . , n. Let r, s and b denote the vectors

r = (‖u′j‖2)1≤j≤n , s = (π‖S(u)j‖2)1≤j≤n, b = (πbj)1≤j≤n.

Inequality (4.1) can be written as

s− (π2I −A(‖u‖∞))r + b ∈ Rn
+ .

Theorem 2.3 implies that π2I − A(‖u‖∞) is Rn
+-monotone. Then using Theorem

2.2 we obtain
(π2I −A(‖u‖∞))−1(s + b)− r ∈ Rn

+ , (4.2)
which implies that

π‖(π2I −A(‖u‖∞))−1‖(‖S(u)‖2 + ‖b‖) ≥ ‖u′j‖2 ,

for j = 1, . . . , n. Using Lemma 3.1 and the fact that ‖S(u)‖2 ≤ ‖S(u)‖∞ we deduce
that

‖S(u)‖∞ ≥ 2‖u‖∞
π‖(π2I −A(‖u‖∞))−1‖

− ‖b‖ . (4.3)

We shall prove that (4.3) implies that S : (X, N1) → (Y, ‖.‖∞) is a proper map.
Let (un)n∈N be a sequence in X and v ∈ Y such that S(un) → v as n → +∞.
(1.8) and (4.3) imply that there exists a constant M > 0 such that ‖un‖∞ ≤ M
for every n ∈ N. Since K : (X, N1) → (Y, ‖.‖∞) is a compact operator, it follows
that the sequence (K(un))n∈N contains a convergent subsequence. Without loss
of generality we may assume that (K(un))n∈N is convergent to w ∈ Y . Letting
n → +∞ in the equality

un = L−1S(un) + L−1K(un) ,

we obtain
lim

n→+∞
‖un − L−1(v)− L−1(w)‖∞ = 0 . (4.4)

Then we have

lim
n→+∞

‖L(un)− L(L−1(v) + L−1(w))‖∞

= lim
n→+∞

‖(S(un)− v) + (K(un)− w)‖∞ = 0 .
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From this equality and (4.4), we deduce that

lim
n→+∞

N1(un − L−1(v + w)) = 0 .

Therefore S : (X, N1) → (Y, ‖·‖∞) is a proper map. Using Theorem 2.6 we conclude
that S is a global homeomorphism and consequently the equation Su = 0 has a
unique solution u ∈ X. This is also the unique solution of the boundary value
problem (1.1).

5. Examples

In this section we give two examples to illustrate Theorems 1.2 and 1.3. Define
a, h : R → R+ by

a(t) =

{
0 if t ≤ 1 ,

1− 1
tα if t ≥ 1

and h(t) =
∫ t

1

a(s) ds , t ∈ R ,

where α > 0.

Example 5.1. Let n = 2. We set

f1(x, u) = π2h(u1) + g1(x), f2(x, u) = |u1|β + π2h(u2) + g2(x) ,

for (x, u) ∈ [0, 1]× R2. β > 1 is a constant and g1, g2 ∈ C([0, 1], R). Then we can
take

a11 = a22 = π2a , a12 = 0 , a21(t) = tβ−1 , t ≥ 0 ,

bj = ‖gj‖∞ , j = 1, 2 ,

λ11 = λ22 = π2a , λ12 = 0 , λ21(t) = βtβ−1, t ≥ 0 .

We easily verify that ρ(A(t)) = ρ(Λ(t)) = π2a(t) < π2 for t ≥ 0,

t

‖(π2I −A(t))−1‖
=

π4t1−α

π2 + tα+β−1
for t ≥ 1 ,

‖(π2I − Λ(t))−1‖ =
tα

π2
+

β

π4
t2α+β−1 for t ≥ 1 .

Note that a21 and λ21 are unbounded. If 2α + β < 2 we can use either Theorem
1.2 or Theorem 1.3. Now let 2α < 1 and β = 2(1− α). Then Theorem 1.2 applies
but Theorem 1.3 does not apply.

Example 5.2. Let n = 2. We set

f1(x, u) = π2h(u1) + g1(x), f2(x, u) = cos |u1|β + π2h(u2) + g2(x) ,

for (x, u) ∈ [0, 1]× R2. β > 1 is a constant and g1, g2 ∈ C([0, 1], R). Then we can
take

a11 = a22 = π2a , a12 = a21 = 0 , b1 = ‖g1‖∞ , b2 = 1 + ‖g2‖∞ ,

λ11 = λ22 = π2a , λ12 = 0 , λ21(t) = βtβ−1, t ≥ 0 .

We easily verify that ρ(A(t)) = ρ(Λ(t)) = π2a(t) < π2 for t ≥ 0,

t

‖(π2I −A(t))−1‖
=

t1−α

π2
for t ≥ 1 ,

‖(π2I − Λ(t))−1‖ =
tα

π2
+

β

π4
t2α+β−1 for t ≥ 1 .
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Notice that λ21 is unbounded. If 2α + β ≤ 2, then Theorem 1.2 and Theorem 1.3
apply. If 2α + β > 2 and α < 1, Theorem 1.3 still applies but not Theorem 1.2.

We conclude this paper with the following remark.

Remark 5.3. With the notations of Theorems 1.2 and 1.3, assume that λjk are
bounded for j, k = 1, . . . , n. Then (1.4) implies (1.5). Indeed we have

(π2I − Λ(t))−1 =
1

det(π2I − Λ(t))
B(t), t ≥ 0 ,

where B(t) ∈ M(n) is nonnegative and det(π2I − Λ(t)) > 0 (see Remark 2.4).
Since λjk are bounded for j, k = 1, . . . , n, there exists a constant d > 0 such that
‖B(t)‖ ≤ d for all t ≥ 0. Then we can write

1
‖(π2I − Λ(t))−1‖

=
det(π2I − Λ(t))

‖B(t)‖
≥ 1

d
det(π2I − Λ(t)) , t ≥ 0 ,

and our claim follows.

It is easily seen that (1.5) does not imply (1.4) in general. Indeed let

λ11(t) = λ22(t) = π2(1− 1
t
) , t ≥ 1

and λ12 = λ21 = 0. Then we have
1

‖(π2I − Λ(t))−1‖
=

π2

t
and det(π2I − Λ(t)) =

π4

t2
, t ≥ 1 .
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