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STABILITY OF QUASI-LINEAR DIFFERENTIAL EQUATIONS
WITH TRANSITION CONDITIONS

WEIZHEN FENG, YUBIN LIU

Abstract. This paper investigates the stability of quasi-linear differential

equations on certain time scales with transition condition (DETC). We estab-

lish Sufficient conditions for stability and illustrate our results with examples.

1. Introduction

The study of quasi-linear systems is valuable because it is an important transition
from linear systems to nonlinear systems. B. Liu [3] introduced the stability of a
class of quasi-linear impulsive hybrid systems by using the methods of Lyapunov
functions and the linearization technique. Y. Liu [4] gained sufficient conditions of
the exponential stability of a class of quasi-linear switched systems by using the
Cauchy matrices of its corresponding linear systems.

Differential equations on certain time scales with transition conditions (DETS)
are in some sense more general than dynamic equations on time scales. Akhmet [1]
investigated DETS on the basic of reduction to the impulsive differential equations
(IDE). A special transformation (ψ-substitution) was used in [1] which allowed the
reduced IDE to inherit all similar properties of the corresponding DETC.

In this paper, we make an attempt to investigate the stability of the DETC

y′ = A(t)y + f(t, y) +AiY (t2i+1), t ∈ [t2i+1, t2i+2], t ≥ t0,

y(t2i+1) = Biy(t2i) + Ji(y(t2i)) + y(t2i), t2i ≥ t0,

y(t0) = y0, t0 ∈ T0,

(1.1)

where the time scale T0 =
⋃+∞

i=0 [t2i−1, t2i], ti < ti+1, t−1 < 0 < t0, limi→+∞ ti =
+∞, and the derivative is one sided at the boundary points of T0,

Y (t2i+1) =

{
y0, t2i+1 < t0 < t2i+2,

y(t2i+1), t2i+1 ≥ t0 .
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Note that (1.1) is more general than

y∆ = A(t)y + f(t, y), t ∈ T0, (1.2)

since this equation can be written as

y′ = A(t)y + f(t, y), t ∈ [t2i+1, t2i+2], t ≥ t0,

y(t2i+1) = [A(t2i)y(t2i) + f(t2i, y(t2i))](t2i+1 − t2i) + y(t2i),

y(t0) = y0, t0 ∈ T0.

(1.3)

2. Preliminaries

Let Rn denote the n-dimensional real space and ‖A‖ the norm of an n × n

matrix A induced by the Euclidean vector norm, i.e. ‖A‖ = [λmax(ATA)]
1
2 . Let

R+ = [0,+∞), N+ = {1, 2, . . . } and N = {0} ∪N+.
In the following discussion, we suppose that:
(A1) A(t) ∈ C(T0,Rn×n); Bi, Ai ∈ Rn×n; f(t, y) ∈ C(T0 × Rn,Rn); Ji(y) ∈

C(Rn,Rn); f(t, 0) ≡ 0 and Ji(0) ≡ 0 for t ∈ T0 and i ∈ N .
The following conditions will be used in some theorems:

(H2) There exist δ∗ > 0, σi > 0 (i ∈ N) such that ‖Biy + Ji(y) + y‖ ≤ σi‖y‖
whenever ‖y‖ ≤ δ∗;

(H3) 0 < λ1 ≤ inf{t2i − t2i−1} ≤ supi∈N{t2i − t2i−1} = λ < +∞,

0 < λ3 ≤ inf{t2i+1 − t2i} ≤ sup
i∈N

{t2i+1 − t2i} = λ2 < +∞;

(H4) ‖f(t, y)‖ ≤ ‖F (t)‖ · ‖y‖, (t, y) ∈ T0 × Rn;
(H5) for all ε ≥ 0 there exists δ(ε) > 0, such that ‖f(t, y)‖ ≤ ε‖y‖ for all t ∈ T0

whenever ‖y‖ ≤ δ.
Without loss of generality, we assume t0 ∈ [t2m−1, t2m] and t0 ≥ 0. Denote
d(T0[t0, t]) = t − t2p+1 +

∑p
i=m+1(t2i − t2i−1) + (t2m − t0) for t ∈ [t2p+1, t2p+2],

and T0[a,+∞) = T0 ∩ [a,+∞).
A function y : [t0,+∞) ∩ T0 → Rn is said to be a solution of (1.1) if

(i) y(t0) = y0;
(ii) y′ = A(t)y + f(t, y) +AiY (t2i+1) if t ∈ [t2i+1, t2i+2] and t ≥ t0, i ∈ N ;
(iii) y(t2i+1) = Biy(t2i) + Ji(y(t2i)) + y(t2i), t2i ≥ t0, i ∈ N .
Denote the solution of (1.1) as y(t, t0, y0).

Definition 2.1 ([1]). The ψ-substitution on the set T ′0 = T0\
⋃+∞

i=0 {t2i−1} is defined
as

ψ(t) = t−
∑

0≤t2k<t

δk, t ∈ T ′0, t ≥ 0, (2.1)

where δk = t2k+1 − t2k.

Definition 2.2. (I) The zero solution of (1.1) is said to be uniformly stable, if
for all ε > 0, there exists δ(ε) > 0, such that for any t0 ∈ T0, ‖y0‖ < δ implies
‖y(t, t0, y0)‖ < ε for all t ∈ T0[t0,+∞);

(II) The zero solution of (1.1) is said to be uniformly attractive, if there exists
δ0 > 0, such for all ε > 0, there exists T (ε) > 0 such that for any t0 ∈ T0, ‖y0‖ < δ0
implies ‖y(t, t0, y0)‖ < ε for all t ∈ T0[t0 + T,+∞);

(III) The zero solution of (1.1) is said to be uniformly asymptotically stable if
the zero solution of (1.1) is uniformly stable and uniformly attractive;
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(IV) The zero solution of (1.1) is said to be exponentially stable, if there exists
α > 0 such that for all ε > 0, there exists δ(ε) > 0, such that for any t0 ∈ T0, ‖y0‖ <
δ implies ‖y(t, t0, y0)‖ < εe−α(t−t0) for all t ∈ T0[t0,+∞).

Let x(s+) = limh→0+ x(s+ h), x(s) = x(s−) = limh→0− x(s+ h).

Lemma 2.3 ([1]). ψ(t) is a one-to-one map, ψ(0) = 0, ψ(T ′0) = R. The inverse
transformation is

ψ−1(s) = s+
∑

0≤sk<s

δk, s ≥ 0, si = ψ(t2i), i ∈ N. (2.2)

Lemma 2.4 ([1]). ψ′(t) = 1 if t ∈ T ′0. d
ds (ψ−1(s)) = 1 if s 6= si, i ∈ N .

Lemma 2.5. If y(t) is the solution of (1.1), then x(s) = y(ψ−1(s)) is the solution
of

x′ = Ã(s)x+ f̃(s, x) +AiX̃(s+i ), s ∈ (si, si+1], s ≥ s0,

x(s+i ) = Bix(si) + Ji(x(si)) + x(si), si ≥ s0,

x(s0) = y0.

(2.3)

and vice versa, where Ã(s) = A(ψ−1(s)), f̃(s, x) = f(ψ−1(s), x), s0 = ψ(t0),

X̃(s+i ) =

{
y0, si < s0 < si+1,

x(s+i ), si ≥ s0,

x(s+i ) = y(t2i+1).

Lemma 2.6. The zero solution of (1.1) is uniformly stable if and only if the zero
solution of (2.3) is uniformly stable.

Lemma 2.7. Suppose that (H3) holds, then the zero solution of (1.1) is uniformly
asymptotically stable if the zero solution of (2.3) is uniformly asymptotically stable.

Proof. If the zero solution of (2.3) is uniformly attractive, then there exists a δ0 > 0
such that for all ε > 0, there exists T1(ε) > 0, such that ‖y0‖ < δ, t0 ∈ T0 implies

‖x(s, s0, y0)‖ < ε for all s ≥ s0 + T1. (2.4)

Hence, for the ε above, there exists a T = T1 + T1
λ1
λ2 > 0, such that t ∈ T0[t0 +

T,+∞) implies s = ψ(t) ≥ s0 + T1; that is,

‖y(t, t0, y0)‖ = ‖x(s, s0, y0)‖ < ε for all t ∈ T0[t0 + T,+∞) \ {t2i+1}, s = ψ(t),

and

‖y(t2i+1, t
0, y0)‖ = ‖x(s+i , s

0, y0)‖ = lim
h→0+

‖x(si + h, s0, y0)‖ ≤ ε. (2.5)

Therefore, the zero solution of (1.1) is uniformly attractive.
By the above conclusion and Lemma 2.6, we can get that the zero solution of

(1.1) is uniformly asymptotically stable. �

Lemma 2.8. Suppose that (H3) holds, then the zero solution of (1.1) is exponen-
tially stable if the zero solution of (2.3) is exponentially stable.
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Proof. If the zero solution of (2.3) is exponentially stable, then there exists α > 0
such that for all ε > 0 there exists δ(ε) > 0, such that ‖y0‖ < δ implies

‖x(s, s0, y0)‖ ≤ εe−α(s−s0) for s ≥ s0. (2.6)

For t ≥ t0, t ∈ [t2(m+p)−1, t2(m+p)], by (H3), we have

d(T0[t0, t]) ≥ pλ1 =
pλ1

(p+ 1)λ+ pλ2
[(p+ 1)λ+ pλ2] ≥ l(t− t0), (2.7)

where l = pλ1
(p+1)λ+pλ2

. Hence, for the above ε, and ‖y0‖ < δ, we have

‖y(t, t0, y0)‖ ≤ εe−αd(T0[t
0,t]) ≤ εe−αl(t−t0), t ∈ T0[t0,+∞); (2.8)

that is, the zero solution of (1.1) is exponentially stable. �

Denote Y (t, τ), X(s, γ) as the Cauchy matrices of y′ = A(t)y and x′ = Ã(s)x
respectively. It is easy to verify that Y (t, τ) = X(s, γ) where t = ψ−1(s), τ =
ψ−1(γ) when γ 6= si, t = ψ−1(s) and τ = t2i+1 when γ = si. Consider

y′ = A(t)y, t ∈ [t2i+1, t2i+2], t ≥ t0,

y(t2i+1) = Biy(t2i) + y(t2i), t2i ≥ t0,

y(t0) = y0

(2.9)

and
x′ = Ã(s)x, s 6= si, s ≥ s0,

x(s+i ) = (Bi + I)x(si), si ≥ s0,

x(s0) = y0.

(2.10)

It is easy to verify that the solution of (2.9), for t ∈ [t2p+1, t2p+2], is

y(t) = Y (t, t2p+1)(Bp + I)[
p∏

k=m+1

Y (t2k, t2k−1)(Bk−1 + I)]Y (t2m, t
0)y0, (2.11)

and the solution of (2.10), for s ∈ (sp, sp+1], is

x(s) = X(s, s+p )(Bp + I)[
p∏

k=m+1

X(sk, sk−1)(Bk−1 + I)]X(sm, s
0)y0. (2.12)

Denote

E(t, t0) = Y (t, t2p+1)(Bp + I)[
p∏

k=m+1

Y (t2k, t2k−1)(Bk−1 + I)]Y (t2m, t
0),

E1(s, s0) = X(s, s+p )(Bp + I)[
p∏

k=m+1

X(sk, sk−1)(Bk−1 + I)]X(sm, s
0).

3. Stability

Lemma 3.1. The zero solution of (2.9) is uniformly stable if and only if E(t, t0)
is uniformly bounded on T0 with respect to t0.

The above lemma follows from (2.11); so we omit the proof.

Theorem 3.2. Assume that
(i) the zero solution of (2.9) is uniformly stable;
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(ii) (H4) is satisfied and there exists a β ≥ 0 such that for all τ ∈ T0,∫
T0[τ,+∞)

‖F (t)‖dt ≤ β;
(iii) Ai = 0, Ji(y) ≡ 0 for all y ∈ Rn, i ∈ N .

Then the zero solution of (1.1) is uniformly stable.

Proof. By (i), Lemma 2.5 and Lemma 3.1, we can get that there exists an M > 0
such that ‖E1(t, τ)‖ ≤M for t, τ ∈ T0, t ≥ τ .

We are going to prove that the zero solution of (2.3) is uniformly stable. It is
important that under (iii), (2.3) can be re-written

x′ = Ã(s)x+ f̃(s, x(s)), s ∈ (si, si+1], s ≥ s0,

x(s+i ) = Bix(si) + x(si), si ≥ s0,

x(s0) = y0.

(3.1)

For s ∈ (s0, sm], the solution of (3.1) is

x(s) = X(s, s0+)y0 +
∫ s

s0
X(s, τ)f̃(τ, x(τ))dτ,

x(s+m) = (Bm + I)X(sm, s
0+)y0 +

∫ sm

s0
(Bm + I)X(sm, τ)f̃(τ, x(τ))dτ .

For s ∈ (sm, sm+1],

x(s) = X(s, s+m)x(s+m) +
∫ s

sm

X(s, τ)f̃(τ, x(τ))dτ

= X(s, s+m)(Bm + I)X(sm, s
0+)y0

+
∫ sm

s0
X(s, s+m)(Bm + I)X(sm, τ)f̃(τ, x(τ))dτ +

∫ s

sm

X(sm, τ)f̃(τ, x(τ))dτ

= E1(s, s0+)y0 +
∫ sm

s0
E1(s, τ)f̃(τ, x(τ))dτ +

∫ s

sm

E1(s, τ)f̃(τ, x(τ))dτ

= E1(s, s0+)y0 +
∫ s

s0
E1(s, τ)f̃(τ, x(τ))dτ .

By (3.1), the above equality, and mathematical induction, we conclude easily that

x(s) = E1(s, s0+)y0 +
∫ s

s0
E1(s, τ)f̃(τ, x(τ))dτ, s ≥ s0. (3.2)

Therefore,

‖x(s)‖ ≤M‖y0‖+M

∫ s

s0
‖F (τ)‖ · ‖x(τ)‖dτ. (3.3)

By the Bellman inequality,

‖x(s)‖ ≤M‖y0‖ exp(
∫ s

s0
‖F (τ)‖dτ) ≤M‖y0‖eβ , (3.4)

which leads to that the solution y(t) of (1.1) satisfies

‖y(t)‖ ≤Meβ‖y0‖.
which yields that the zero solution of (1.1) is uniformly stable. The proof is com-
plete. �

Theorem 3.3. Assume that (H2), (H3), (H5) hold and
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(i) there exist M,α > 0 such that supt∈[t2i−1,t2i] ‖Y (t, t2i−1)‖ ≤M ,
supt∈[t2i−1,t2i] ‖A(t)‖ ≤ α, i ∈ N ;

(ii) there exist µ, σ > 0 such that ‖Ai‖ ≤ µ, σi ≤ σ for i ∈ N and M(1+λµ)σ ≤
q < 1.

Then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. From (H5) there exists δ1 > 0 such that

‖f̃(t, x)‖ ≤ ‖x‖, whenever ‖x‖ < δ1. (3.5)

We claim that there exists δ2 > 0 such that the solution of (2.3) satisfies

‖x(s)‖ < δ1, s ∈ (s0, sm] if ‖x(s0+)‖ < δ2, (3.6)

and
‖x(s)‖ < δ1, s ∈ (sk, sk+1] whenever ‖x(s+k )‖ < δ2, k ≥ m, (3.7)

where δ2(1 + λµ) exp[(1 + α)λ] ≤ δ1. Note that x(s0+) = x(s0) if s0 ∈ (si, si+1),
and x(s0+) = (Bi + I)x(s0) if s0 = si, i ∈ N .

Otherwise, if (3.6) is not true, there must exists τ0 ∈ (s0, sm] such that ‖x(τ0)‖ =
δ1 while ‖x(s)‖ < δ1 for all s ∈ (s0, τ0]. Then, ‖f̃(s, x(s))‖ ≤ ‖x(s)‖ for all
s ∈ (s0, τ0].

For any s ∈ (s0, τ0], it is true that

x(s) = x(s0+) +
∫ s

s0
[Ã(r)x(r) + f̃(r, x(r)) +Am−1x(s0+)]dr,

which implies

‖x(s)‖ ≤ ‖x(s0+)‖(1 + λµ) +
∫ s

s0
(1 + α)‖x(r)‖dr. (3.8)

By the Bellman inequality, for s ∈ (s0, τ0],

‖x(s)‖ ≤ ‖x(s0+)‖(1 + λµ) exp[(1 + α)λ]; (3.9)

that is,
‖x(s)‖ ≤ δ2(1 + λµ) exp[(1 + α)λ] < δ1,

which contradicts the fact that ‖x(τ0)‖ = δ1. Hence, (3.6) is true. Similarly, we
can get that (3.7) is true. Thus, if ‖x(s+k )‖ < δ2, then

‖x(s)‖ ≤ ‖x(s+k )‖(1 + λµ) exp[(1 + α)λ], s ∈ (sk, sk+1], k ≥ m. (3.10)

For a given ε0: 0 < ε0 < min{1 − q, 1−q
σ }, we choose ε1: 0 < ε1 < 1 such that

ε1Mλ(1 + λµ) exp[(1 + α)λ] ≤ ε0. By (H5) there exists a δ3: 0 < δ3 < min{δ1, δ∗}
such that ‖f̃(s, x)‖ ≤ ε1‖x‖ whenever ‖x‖ < δ3.

By a proof similar to the above discussion, we can obtain 0 < δ4 < δ2 such
that ‖x(s)‖ ≤ δ3, s ∈ (s0, sm], and (3.9) holds for s ∈ (s0, sm] if ‖x(s0+)‖ ≤ δ4.
We can also get that, for k ≥ m, ‖x(s)‖ ≤ δ3, s ∈ (sk, sk+1] and (3.10) holds for
s ∈ (sk, sk+1] whenever ‖x(s+k )‖ ≤ δ4.

Denote δ5 : 0 < δ5 < min{δ4, δ4
σ }. Let ‖y0‖ < δ5. Then ‖x(s0+)‖ < δ4. From

(2.3) we get that for s ∈ (s0, sm],

x(s) = X(s, s0+)x(s0+) +
∫ s

s0
X(s, τ)[f̃(τ, x(τ)) +Am−1x(s0+)]dτ

= [X(s, s0+) +
∫ s

s0
X(s, τ)dτ ·Am−1]x(s0+) + ∆s,
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where ∆s =
∫ s

s0 X(s, τ)f̃(τ, x(τ))dτ .
That ‖y0‖ < δ5 and that (3.9) holds for s ∈ (s0, sm] leads us to

∆s ≤Mε1

∫ s

s0
‖x(τ)‖dτ ≤ ‖x(s0+)‖ ·Mε1(1 + µλ) exp[(1 + α)λ]λ ≤ ε0‖x(s0+)‖

for s ∈ (s0, sm]. Hence, for s ∈ (s0, sm],

‖x(s)‖ ≤ (M + ε0 +Mµλ)‖x(s0+)‖. (3.11)

Therefore,
‖x(s+m)‖ = ‖Bmx(sm) + Jm(x(sm)) + x(sm)‖

≤ σ(M + ε0 +Mµλ)‖x(s0+)‖
≤ (q + σε0)‖x(s0+)‖ < δ4.

(3.12)

From (2.3) we obtain that for s ∈ (sm, sm+1],

x(s) = [X(s, s+m) +
∫ s

sm

X(s, τ)dτ ·Am]x(s+m) + ∆s, (3.13)

∆s =
∫ s

sm
X(s, τ)f̃(τ, x(τ))dτ , s ∈ (sm, sm+1].

As for (3.11), we can get that, for s ∈ (sm, sm+1],

‖x(s)‖ ≤ (M + ε0 +Mµλ)‖x(s+m)‖, (3.14)

‖x(s+m+1)‖ ≤ (q + σε0)‖x(s+m)‖ < δ4. (3.15)

By mathematical induction, for s ∈ (sk, sk+1], we obtain

‖x(s+k )‖ < δ4, ‖x(s)‖ ≤ (M + ε0 +Mµλ)‖x(s+k )‖, (3.16)

‖x(s+k+1)‖ ≤ (q + σε0)‖x(s+k )‖ < δ4, k ≥ m. (3.17)

Hence,
‖x(s+k )‖ ≤ (q + σε0)k−m+1‖x(s0+)‖, k ≥ m. (3.18)

Since for each ε > 0, there exists N1 ∈ N+ such that n ≥ N1 implies (q+σε0)n < ε,
there exists T1 = N1λ such that for any ‖y0‖ < δ5, s0 ∈ T0, sk ≥ s0 + T1,

‖x(s+k )‖ < δ5ε, and ‖x(s)‖ ≤ (M + ε0 +Mµλ)δ5ε, s ∈ (sk, sk+1];

that is, the zero solution of (2.3) is uniformly attractive.
Form (3.12),(3.18), we conclude that

‖x(s+k )‖ ≤ ‖x(s0+)‖. (3.19)

Therefore, for each ε > 0, there exists 0 < δ < min{δ5, ε}, such that ‖y0‖ < δ
implies

‖x(s+k )‖ ≤ (1 + σ)ε, k ≥ m,

and
‖x(s)‖ ≤ (1 + σ)(M + ε0 +Mµλ)ε, s ∈ [s0,+∞) ∪ T0; (3.20)

that is, the zero solution of (2.3) is uniformly stable.
Summing up the above discussion, we can get that the zero solution of (2.3)

is uniformly asymptotically stable. Hence, by Lemma 2.7, we get that the zero
solution of (1.1) is uniformly asymptotically stable. �

Theorem 3.4. Assume that (H2), (H3), (H5) hold and for k ∈ N ,
(i) There exist M,α > 0 such that ‖Y (t, s)‖ ≤Me−α(t−s), t2k−1 ≤ s ≤ t ≤ t2k;
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(ii) there exist σ, β > 0 such that σk ≤ σ, β < α, and
σkM(1 + 1

α )e−(α−β)(t2k−t2k−1) ≤ 1;
(iii) ‖Ak‖ ≤ e−αλ.

Then the zero solution of (1.1) is exponentially stable.

Proof. At first, we investigate the solution of (2.3),

x(s) =


X(s, s+p )x(s+p ) +

∫ s

sp
X(s, τ)f̃(τ, x(τ))dτ

+x(s+p )
∫ s

sp
X(s, τ)dτ ·Ap, s ∈ (sp, sp+1], p ≥ m,

X(s, s0+)x(s0+) +
∫ s

s0 X(s, τ)f̃(τ, x(τ))dτ
+x(s0+)

∫ s

s0 X(s, τ)dτ ·Am−1, s ∈ (s0, sm] .
(3.21)

Case I: M > 1. Let M ′ = max{1, σ}, ε0 > 0 such that ε0M ′M2(1 + 1
α ) < β.

(H5) yields that there exists a δ(ε0) > 0 which ensure ‖f̃(s, x)‖ ≤ ε0‖x‖ whenever
‖x‖ < δ and s ∈ T0.

For ‖y0‖ < δ
2MM ′2(1+ 1

α )
(which ensure ‖x(s0+)‖ < δ

2MM ′(1+ 1
α )

), there exists T1 :

s0 +T1 < sm, such that ‖x(s)‖ < δ for s ∈ (s0, s0 +T1]. Hence, for s ∈ (s0, s0 +T1],

‖x(s)‖ ≤ ‖X(s, s0)‖ · ‖x(s0+)‖+
∫ s

s0
‖X(s, τ)‖ · ‖f̃(τ, x(τ))‖dτ

+ ‖Am−1‖ · ‖x(s0+)‖
∫ s

s0
‖X(s, τ)‖dτ

≤Me−α(s−s0)‖x(s0+)‖+
∫ s

s0
Me−α(s−τ)ε0‖x(τ)‖dτ

+ e−αλ‖x(s0+)‖
∫ s

s0
Me−α(s−τ)dτ

≤M(1 +
1− e−αλ

α
)e−α(s−s0)‖x(s0+)‖+Mε0

∫ s

s0
e−α(s−τ)‖x(τ)‖dτ

≤M(1 +
1
α

)e−β(s−s0)‖x(s0+)‖+M ′M2ε0(1 +
1
α

)
∫ s

s0
e−β(s−τ)‖x(τ)‖dτ ;

(3.22)
that is,

‖x(s)‖eβs ≤M(1 +
1
α

)eβs0
‖x(s0+)‖+M ′M2ε0(1 +

1
α

)
∫ s

s0
eβτ‖x(τ)‖dτ. (3.23)

By the Bellman inequality, for s ∈ (s0, s0 + T1],

‖x(s)‖ ≤M(1 +
1
α

)e−[β−ε0M ′M2(1+ 1
α )](s−s0)‖x(s0+)‖, (3.24)

which leads to

‖x(s)‖ < δ

2
for s ∈ (s0, s0 + T1]. (3.25)

We claim that
‖x(s)‖ < δ for s ∈ (s0, sm]. (3.26)

In fact, if (3.26) is not true, there exists s′ ∈ (s0+T1, sm], such that ‖x(s′)‖ = δ and
‖x(s)‖ < δ for s ∈ (s0, s′). As above, we can prove that (3.24) holds for s ∈ (s0, s′];
that is, ‖x(s)‖ < δ

2 for s ∈ (s0, s′). Hence, ‖x(s′)‖ = lims→s′− ‖x(s)‖ ≤ δ
2 < δ,
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which is a contradiction to that ‖x(s′)‖ = δ. (3.26) leads us to that (3.22) is true
for s ∈ (s0, sm].

Also (3.26) yields that (3.24) is true for s ∈ (s0, sm]. Therefore, ‖x(sm)‖ ≤ δ
2M ′ ,

and

‖x(s+m)‖ = ‖Bmx(sm) + Jm(x(sm)) + x(sm)‖ ≤ σm‖x(sm)‖ ≤ δ

2
. (3.27)

So, there exists T2 : sm + T2 < sm+1, such that ‖x(s)‖ < δ for s ∈ (sm, sm + T2].
Since (3.22) holds for s ∈ (s0, sm], for s ∈ (sm, sm + T2],

‖x(s)‖ ≤ ‖X(s, sm)‖ · ‖x(s+m)‖+
∫ s

sm

‖X(s, τ)‖ · ‖f̃(τ, x(τ))‖dτ

+ ‖Am‖ · ‖x(s+m)‖
∫ s

sm

‖X(s, τ)‖dτ

≤ [Me−α(s−sm) + e−αλM

∫ s

sm

e−α(s−τ)dτ ]‖x(s+m)‖

+ ε0M

∫ s

sm

e−α(s−τ)‖x(τ)‖dτ

≤ σmM(1 +
1
α

)e−α(s−sm)[M(1 +
1
α

)e−α(sm−s0)‖x(s0+)‖

+ ε0M

∫ sm

s0
e−α(sm−τ)‖x(τ)‖dτ ] +Mε0

∫ s

sm

e−α(s−τ)‖x(τ)‖dτ

= σmM
2(1 +

1
α

)2e−α(s−s0)‖x(s0+)‖

+ σmM
2(1 +

1
α

)ε0
∫ sm

s0
e−α(s−τ)‖x(τ)‖dτ +Mε0

∫ s

sm

e−α(s−τ)‖x(τ)‖dτ.

Hence, for s ∈ (sm, sm + T2],

‖x(s)‖ ≤M(1 +
1
α

)e−β(s−s0)‖x(s0+)‖+M ′M2ε0(1 +
1
α

)
∫ s

s0
e−β(s−τ)‖x(τ)‖dτ.

(3.28)
Hence, for s ∈ (sm, sm + T2], (3.24) holds. So, ‖x(s)‖ < δ for s ∈ (sm, sm + T2].
Similarly, we can prove that ‖x(s)‖ < δ for s ∈ (sm, sm+1] and (3.24) holds for
s ∈ (sm, sm+1].

Suppose that for ‖y0‖ < δ
2MM ′2(1+ 1

α )
, (3.24) holds for s ∈ (s0, sk], k ≥ m. Then

by (3.24), we have ‖x(sk)‖ < δ
2M ′ . Hence, ‖x(s+k )‖ ≤ σk‖x(sk)‖ < δ/2. There

must be an H1 > 0 : sk + H1 < sk+1, such that ‖x(s)‖ < δ for s ∈ (sk, sk + H1].
Therefore, for s ∈ (sk, sk +H1],

‖x(s)‖

≤M(1 +
1
α

)e−α(s−sk)‖x(s+k )‖+Mε0

∫ s

sk

e−α(s−τ)‖x(τ)‖dτ

≤M(1 +
1
α

)e−α(s−sk)σk[M(1 +
1
α

)e−α(sk−sk−1)‖x(s+k−1)‖

+Mε0

∫ sk

sk−1

e−α(sk−τ)‖x(τ)‖dτ ] +Mε0

∫ s

sk

e−α(s−τ)‖x(τ)‖dτ

≤ σkM
2(1 +

1
α

)2e−α(s−sk−1)‖x(s+k−1)‖
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+ σkM
2(1 +

1
α

)ε0
∫ sk

sk−1

e−α(s−τ)‖x(τ)‖dτ +Mε0

∫ s

sk

e−α(s−τ)‖x(τ)‖dτ

≤M(1 +
1
α

)e−β(s−sk−1)‖x(s+k−1)‖+M ′M2(1 +
1
α

)ε0
∫ s

sk−1

e−β(s−τ)‖x(τ)‖dτ

≤M(1 +
1
α

)e−β(s−sk−1)[M(1 +
1
α

)e−α(sk−1−sk−2)‖x(s+k−2)‖

+Mε0

∫ sk−1

sk−2

e−α(sk−1−τ)‖x(τ)‖dτ ] +M ′M2(1 +
1
α

)ε0
∫ s

sk−1

e−β(s−τ)‖x(τ)‖dτ

≤ σk−1M
2(1 +

1
α

)2e−β(s−sk−1)−α(sk−1−sk−2)‖x(s+k−2)‖

+M ′M2(1 +
1
α

)ε0
∫ sk−1

sk−2

e−β(s−τ)‖x(τ)‖dτ

+M ′M2(1 +
1
α

)ε0
∫ s

sk−1

e−β(s−τ)‖x(τ)‖dτ

≤M(1 +
1
α

)e(α−β)(sk−1−sk−2)−β(s−sk−1)−α(sk−1−sk−2)‖x(s+k−2)‖

+M ′M2(1 +
1
α

)ε0
∫ s

sk−2

e−β(s−τ)‖x(τ)‖dτ

≤M(1 +
1
α

)e−β(s−sk−2)‖x(s+k−2)‖+M ′M2(1 +
1
α

)ε0
∫ s

sk−2

e−β(s−τ)‖x(τ)‖dτ

≤ · · · ≤M(1 +
1
α

)e−β(s−s0)‖x(s0+)‖+M ′M2(1 +
1
α

)ε0
∫ s

s0
e−β(s−τ)‖x(τ)‖dτ

So, for s ∈ (sk, sk+H1], (3.24) holds, which implies that ‖x(s)‖ < δ for s ∈ (s0, sk+
H1]. Similarly, we can prove that ‖x(s)‖ < δ for s ∈ (s0, sk+1] and (3.28) holds for
s ∈ (s0, sk+1]. Therefore (3.24) holds for s ∈ (s0, sk+1]. By mathematical induction,
we can conclude that ‖y0‖ < δ

2MM ′2(1+ 1
α )

leads to (3.24) holds for s ∈ (s0,+∞).

Case II: M ≤ 1. Let 0 < ε0 <
β

M ′(1+ 1
α )

. We can get

‖x(s)‖ ≤ (1 +
1
α

)e−(β−ε0M ′(1+ 1
α ))(s−s0)‖x(s0+)‖.

Summing up the above discussion, we can conclude that no matter if M > 1 or
M ≤ 1, there exists a γ(M,M ′, α) > 0, such that

‖x(s)‖ ≤M ′(1 +
1
α

)e−γ(s−s0)‖y0‖, s ≥ s0.

Therefore, the zero solution of (2.3) is exponentially stable. By Lemma 2.8, we can
conclude that the zero solution of (1.1) is exponentially stable. �

4. Examples

As a first example consider the equation

y′ = Ay + f(t, y), t ∈ [2k + 1, 2k + 2]

y(2k + 1) = By(2k) + y(2k), k ∈ N
(4.1)

where A,B ∈ Rn×n, ‖f(t, y)‖ ≤ F (t) · ‖y‖,
∫ +∞
0

F (t)dt < +∞.
(i) If e‖A‖ · ‖B + I‖ ≤ 1, then the zero solution of (4.1) is uniformly stable.
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(ii) If
min{Re(λj) : λj is an eigenvalue of A} = −α < 0 (4.2)

and e−α‖B + I‖ ≤ 1, then the zero solution of (4.1) is uniformly stable.
As a second example consider the equation

y′ = Ay + f(t, y) + CY (2k + 1), t ∈ [2k + 1, 2k + 2]

y(2k + 1) = By(2k) + y(2k), k ∈ N
(4.3)

where A,B ∈ Rn×n, f(t, y) satisfies (H5) (for example, f(t, y) = (y2
1 , . . . , y

2
n)T ).

(i) If e‖A‖ · (1+‖C‖)‖B+I‖ ≤ q < 1, then the zero solution of (4.3) is uniformly
stable.

(ii) If (4.2) holds, e−α(1 + ‖C‖)‖B + I‖ ≤ q < 1, then the zero solution of (4.3)
is uniformly stable.

(iii) If (4.2) holds, e−α(1 + 1
α )‖B + I‖ ≤ q < 1 and ‖C‖ ≤ e−α, then the zero

solution of (4.3) is exponentially stable.
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