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ON STABILITY AND OSCILLATION OF EQUATIONS WITH A
DISTRIBUTED DELAY WHICH CAN BE REDUCED TO

DIFFERENCE EQUATIONS

ELENA BRAVERMAN, SERGEY ZHUKOVSKIY

Abstract. For the equation with a distributed delay

x′(t) + ax(t) +

Z 1

0
x(s + [t− 1])dR(s) = 0

we obtain necessary and sufficient conditions of stability, exponential stability

and oscillation. These results are applied to some particular cases, such as

integro-differential equations and equations with a piecewise constant argu-
ment. Well known results for equations with a piecewise constant argument

are obtained as special cases.

1. introduction

The study of equations with a piecewise constant delay was initiated in 1984 by
Cooke and Wiener [8] and was later continued in many other publications [1, 2, 11,
18, 33], some of these results are summarized in [14]. During the last two decades
this topic has been extensively studied, see [3, 4, 5, 6, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 34, 35, 36] and references therein. One of the reasons of such
interest is a hybrid character of such equations [4]: they incorporate properties
of continuous and discrete models. Moreover, a solution of an equation with a
piecewise constant argument at certain points also satisfies some difference equation.
Using this technique, the known results for delay equations were applied to delay
(high order) difference equations, see, for example, [9, 15, 19]. Another reason
for attention to equations with piecewise constant arguments is the following: such
equations are semidiscretizations of delay equations and thus are useful in numerical
applications [7, 12, 13, 16, 17].

We consider the equation with a distributed delay

x′(t) + ax(t) +
∫ 1

0

x(s + [t− 1])dR(s) = 0, (1.1)
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where R(s) : [0, 1] → R is a left-continuous function of bounded variation, a ∈
R. For example, if R(s) is differentiable, R′(s) = b(s), then (1.1) is the integro-
differential equation

x′(t) + ax(t) +
∫ 1

0

b(s)x(s + [t− 1])ds = 0. (1.2)

Let R(s) = bχ(α,1](s), where χ(a,b] is the characteristic function of the interval (a, b],
i.e., χ(a,b](x) = 1, if x ∈ (a, b] and χ(a,b](x) = 0, otherwise. Then (1.1) has the form

x′(t) + ax(t) + bx(α + [t− 1]) = 0, (1.3)

which involves equations

x′(t) + ax(t) + bx([t− 1]) = 0 (1.4)

and

x′(t) + ax(t) + bx([t]) = 0 (1.5)

as particular cases when α = 0 and α → 1, as well as equations where the piecewise
constant argument refers to the fractional points.

In spite of its “continuous” form, equation (1.1) incorporates properties of both
continuous and discrete systems, in the next section we will reduce its solution to
the solution of a specially constructed difference equation.

The paper is organized as follows. In Section 2 we present relevant definitions and
auxiliary results. In particular, we reduce (1.1) to a second order difference equa-
tion. Section 3 presents necessary and sufficient oscillation and stability conditions
for (1.1). The general results are applied to some special cases of integro-differential
equations and equations with piecewise constant arguments, which allows to deduce
some known results. Finally, Section 4 involves discussion and outlines some open
problems and possible generalizations of equation (1.1). Some long but straightfor-
ward proofs are presented in the Appendix.

2. Preliminaries and Solution Representation

We consider (1.1) with the initial condition

x(t) = ϕ(t), t ∈ [−1, 0], (2.1)

under the following assumptions:

(A1) R(s) : [0, 1] → R is a left-continuous function of bounded variation which
has a nonzero variation in [0, 1];

(A2) ϕ : [0, 1] → R is a Borel measurable bounded function such that the
Lebesgue Stiltjes integral

∫ 1

0
ϕ(s− 1)dR(s) exists (and is finite).

Definition 2.1. Function x(t) is a solution of (1.1), (2.1) if it satisfies (1.1) almost
everywhere for t ≥ 0 and (2.1) for t ∈ [−1, 0].
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Denote

xn = x(n), x−1 =
∫ 1

0

ϕ(s− 1)dR(s), (2.2)

Kn =
∫ 1

0

x(s + n)dR(s), K−1 =
∫ 1

0

ϕ(s− 1)dR(s), (2.3)

P (a) =
∫ 1

0

e−asdR(s), Q(a) =
∫ 1

0

1− e−as

a
dR(s). (2.4)

First, let us reduce the solution of (1.1) at integer points to a solution of a second
order difference equation. Let us notice that in the following we will understand
expressions at a = 0 as a limit; for example,

eak − 1
a

∣∣∣
a=0

= lim
a→0

eka − 1
a

= k = lim
a→0

1− e−ka

a
.

Lemma 2.2. (1) The solution of (1.1), (2.1) between integer points is

x(t) = xnea(n−t) +
ea(n−t) − 1

a
Kn−1, t ∈ [n, n + 1), (2.5)

with Kn, xn defined by (2.2), (2.3), n = 0, 1, 2, . . . .
(2) The solution of (1.1), (2.1) at integer points satisfies the second order dif-

ference equation

xn+2 − (e−a −Q(a))xn+1 +
(1− e−a

a
P (a)− e−aQ(a)

)
xn = 0, n ≥ −1. (2.6)

Proof. The first part is checked by a straightforward computation and leads to

xn+1 = e−axn −
(1− e−a

a

)
Kn−1,

Kn =
∫ 1

0

x(s + n)dR(s) =
∫ 1

0

(
xnea(n−s) +

ea(n−s) − 1
a

Kn−1

)
dR(s)

= xn

∫ 1

0

e−asdR(s)−Kn−1

∫ 1

0

1− e−as

a
dR(s) = P (a)xn −Q(a)Kn−1.

Hence, if we denote Yn = (xn,Kn−1)T , then Yn+1 = AYn, where

A =
[

e−a − 1−e−a

a
P (a) −Q(a)

]
.

Thus, xn satisfies the second order difference equation

xn+2 − tr(A)xn+1 + det(A)xn = 0;

since the trace of A is e−a − Q(a) and the determinant is 1−e−a

a P (a)− e−aQ(a),
we immediately obtain (2.6). �

Remark 2.3. By Lemma 2.2 the values of (1.1), (2.1) at integer points satisfy the
difference equation (2.6), with x0, x−1 defined in (2.2).

Let us also note that for any x0, x−1 there exists ϕ satisfying (A2) which leads
to these x0, x−1 in (2.2). Really, since R(s) has a nonzero variation, then there
exists a continuous function g : [−1, 0] → R such that

∫ 1

0
g(s− 1)dR(s) = c 6= 0.

Besides, R(s) is left continuous, so the relevant measure has no atom at x = 1, thus
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0
g1(s− 1)dR(s) =

∫ 1

0
g(s− 1)dR(s), where g1(s) coincides with g(s) everywhere

in [−1, 0] but probably at s = 0 (and the left integral always exists). Then

ϕ(s) =

{
x−1g(s)/c, s ∈ [−1, 0),
x0, s = 0,

leads to any prescribed x−1, x0.

Definition 2.4. A solution of (1.1) oscillates if it is neither eventually positive nor
eventually negative. Equation (1.1) is oscillatory if all its solutions oscillate.

A solution of (2.6) oscillates if the sequence {xn} is neither eventually positive
nor eventually negative. Equation (2.6) is oscillatory if all its solutions oscillate.

Corollary 1. Equation (1.1) is oscillatory if and only if (2.6) is oscillatory.

Proof. Obviously if a solution of (2.6) oscillates then the relevant solution of (1.1)
(with an appropriate initial function, see Remark 2.3) cannot be eventually positive
or negative. Let us notice that by (2.5) a solution of (1.1) increases in [n, n + 1)
if axn + Kn−1 < 0 and decreases if axn + Kn−1 > 0. Thus, if x(n), x(n + 1) have
the same sign, so are all the points between n and n + 1, hence oscillation of (1.1)
implies that (2.6) is also oscillating. �

According to (A2), the initial function is bounded, so we can define the sup-norm:

‖ϕ‖ = sup
t∈[−1,0]

|ϕ(t)|.

Definition 2.5. Equation (1.1) is stable if for any ε > 0 there exists δ > 0 such
that for any ϕ satisfying (A2) inequality ‖ϕ‖ < δ implies |x(t)| < ε for t ≥ 0. Equa-
tion (1.1) is asymptotically stable if it is stable and limt→∞ x(t) = 0 for any initial
conditions. Equation (1.1) is exponentially stable if there exist positive numbers
N, γ such that any solution satisfies

|x(t)| ≤ Ne−γt‖ϕ‖.

Eq. (2.6) is stable if for any ε > 0 there exists δ > 0 such that max{|x0|, |x−1|} <
δ implies |xn| < ε for any n ≥ 0. Equation (2.6) is asymptotically stable if it is
stable and limn→∞ xn = 0 for any initial conditions. Equation (2.6) is exponentially
stable if there exist positive numbers N, γ such that any solution satisfies

|xn| ≤ Ne−γn max{|x0|, |x−1|}.

Corollary 2. Equation (1.1) is stable (asymptotically stable, exponentially stable)
if and only if (2.6) is stable (asymptotically stable, exponentially stable).

Proof. As in the previous corollary, for any solution of (1.1), maxt∈[n,n+1] |x(t)| is
attained at the ends and equals either |x(n)| = |xn| or |x(n+1)| = |xn+1|. Thus any
type of stability of (1.1) is equivalent to the appropriate stability kind for (2.6). �

3. Stability and Oscillation Tests

In this section we will obtain necessary and sufficient conditions for oscillation,
stability and exponential stability of equation (1.1) with a distributed delay. In
the following we will also apply the well known result for second order difference
equations with constant coefficients (see, for example, [10, p. 53–65]).
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Lemma 3.1. A difference equation with constant coefficients

xn+1 − p1xn+1 + p2xn = 0, n = −1, 0, 1, . . . , (3.1)

is stable if both roots of the characteristic equation λ2−p1λ+p2 = 0 are in the unit
circle and is exponentially stable if the roots are inside the unit circle. The latter
condition is satisfied if |p1| < p2 + 1 < 2 and is also equivalent to the asymptotic
stability of (3.1). The former condition is satisfied if |p1| ≤ p2 + 1 ≤ 2.

Equation (3.1) is oscillatory if and only if its characteristic equation has no
positive roots, which is valid if either the discriminant is negative (p2

1 < 4p2) or all
coefficients are nonnegative (p1 ≤ 0, p2 ≥ 0).

Lemma 3.1 together with the form of (2.6) and Corollaries 1, 2 imply the fol-
lowing oscillation and stability tests for equation (1.1).

Theorem 3.2. Suppose (A1)-(A2) are satisfied. Equation (1.1) is oscillatory if
and only if at least one of the two following conditions holds:

1
4

(
e−a + Q(a)

)2
<

1− e−a

a
P (a), (3.2)

e−a ≤ Q(a) ≤ ea − 1
a

P (a). (3.3)

Proof. By Lemma 3.1 equation (2.6) is oscillatory if and only if either

1
4

(
e−a −Q(a)

)2
<

1− e−a

a
P (a)− e−aQ(a)

or

e−a ≤ Q(a) ≤ 1− e−a

a
eaP (a),

where the former inequality is equivalent to (3.2) and the latter to (3.3). �

Theorem 3.3. Suppose (A1)-(A2) are satisfied. Equation (1.1) is stable if and
only if ∣∣Q(a)− e−a

∣∣ ≤ 1− e−a

a
P (a)− e−aQ(a) + 1 ≤ 2 (3.4)

and is exponentially stable if and only if∣∣Q(a)− e−a
∣∣ <

1− e−a

a
P (a)− e−aQ(a) + 1 < 2. (3.5)

To illustrate Theorems 3.2, 3.3, let us consider two particular cases of (1.1).
First, let a, b ∈ R. Consider the integro-differential equation

x′(t) + ax(t) + b

∫ [t]

[t−1]

x(s)ds = 0, (3.6)

which is a special case of (1.1), with R(s) = bs. Then P (a), Q(a) in (2.4) have the
form

P (a) =
∫ 1

0

e−asbds = b
1− e−a

a
, Q(a) =

∫ 1

0

1− e−as

a
bds = b

a− 1 + e−a

a2
. (3.7)

The following results are corollaries of Theorems 3.2, 3.3, where P (a) and Q(a)
are substituted from (3.7). However, the straightforward computation is long and
thus is presented in the Appendix.

Theorem 3.4. The following two statements are equivalent.
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(1) Equation (3.6) is oscillatory.
(2) If a 6= 0 then

b > a2

(
|1− e−a| −

√
1− e−a − ae−a

a− 1 + e−a

)2

; (3.8)

if a = 0 then
b > 6− 4

√
2. (3.9)

The domain of parameters a, b where (3.6) oscillates is illustrated in Fig 1.

Figure 1. Illustration for the Theorem 3.4. The shaded area des-
ignates the set of parameters (a, b) where any solution of the initial
value problem (3.6), (2.1) oscillates.

Theorem 3.5. The following two statements are equivalent.
(1) Equation (3.6) is exponentially stable.
(2) If a < 0 then

−a < b <
a2

1− e−a − ae−a
; (3.10)

if a = 0 then
0 < b < 2; (3.11)

if a > 0 then

−a < b < min
{
− a2(1 + e−a)

2− 2e−a − ae−a − a
,

a2

1− e−a − ae−a

}
. (3.12)

Figure 2 illustrates Theorem 3.5. For any value of the parameters a, b such that
point (a, b) is in the grey area, equation (3.6) is exponentially stable. For any value
of the parameters a, b such that point (a, b) is in the white area the equation is
unstable and it is stable (but not exponentially) on the boundary.

Next, let R(s) be a step function R(s) = bχ(r,1](t), 0 ≤ r < 1. Then (1.1) has
the form

x′(t) + ax(t) + bx(r + [t− 1]) = 0, (3.13)
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Figure 2. The shaded area designates the set of parameters (a, b)
where (3.6) is exponentially stable, the equation is stable (but not
asymptotically) for values (a, b) on the boundary.

equations for r = 0 or r = 1 were considered in [1, 2, 8]. Then

P (a) = be−ar, Q(a) = b
1− e−ar

a
.

Thus, Theorems 3.2 and 3.3 immediately imply the following oscillation and stabil-
ity criteria for (3.13).

Equation (3.13) is oscillatory if at least one of the following two inequalities holds

1
4

(
e−a + b

1− e−ar

a

)2

< b
1− e−a

a
e−ar, (3.14)

e−a ≤ b
1− e−ar

a
≤ b

ea − 1
a

e−ar. (3.15)

Equation (3.13) is stable if and only if∣∣b1− e−ar

a
− e−a

∣∣ ≤ b
e−ar − e−a

a
+ 1 ≤ 2 (3.16)

and is exponentially stable if and only if∣∣b1− e−ar

a
− e−a

∣∣ < b
e−ar − e−a

a
+ 1 < 2. (3.17)

Theorem 3.6. Let 0 < r < 1. Equation (3.13) is oscillatory if and only if

b >
( a

1− e−ar

)2[√e−ar − e−a(r+1)

a
−

√
e−ar − e−a

a

]2

. (3.18)

Proof. Using (3.14), (3.15), we will obtain explicit conditions for b, if a is given.
Since 1−e−ar

a ≥ 0, then the left inequality in (3.15) becomes b ≥ ae−a

1−e−ar , while the
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right inequality b 1−ea(1−r)

a ≤ 0 is b ≥ 0. Thus, (3.15) has the form

b ≥ max
{
0,

ae−a

1− e−ar

}
=

ae−a

1− e−ar
.

Inequality (3.14) can be rewritten as a quadratic inequality in b:(1− e−ar

a

)2

b2 + 2
e−a − 2e−ar + e−a(r+1)

a
b + e−2a < 0. (3.19)

The discriminant of the above quadratic inequality in b is

D =
(e−a − 2e−ar + e−a(r+1))2 − (e−a − e−a(r+1))2

a2

= 4
e−ar − e−a(r+1)

a

e−ar − e−a

a

which is positive as a product of two positive factors. A solution of inequality (3.19)
is between the two roots b1 < b2 of the relevant quadratic equation, the largest of
them is

b2 =
( a

1− e−ar

)2[2e−ar − e−a − e−a(r+1)

a
+ 2

√
e−ar − e−a(r+1)

a

√
e−ar − e−a

a

]
=

( a

1− e−ar

)2[√e−ar − e−a(r+1)

a
+

√
e−ar − e−a

a

]2

,

similarly,

b1 =
( a

1− e−ar

)2[√e−ar − e−a(r+1)

a
−

√
e−ar − e−a

a

]2

(3.20)

is obviously nonnegative.
If b1 < b < b2, then (3.14) is satisfied. Let us demonstrate that b2 ≥ ae−a

1−e−ar , then
for b ≥ b2 inequality (3.15) is satisfied, thus for b > b1 all solutions are oscillatory.
Hence b > b1, where b1 is defined in (3.20), immediately implies oscillation condition
(3.18). Consider

b2 −
ae−a

1− e−ar

=
( a

1− e−ar

)2[(√
e−ar − e−a(r+1)

a
+

√
e−ar − e−a

a

)2

− e−a − e−a(r+1)

a

]
=

( a

1− e−ar

)2(√
e−ar − e−a(r+1)

a
+

√
e−ar − e−a

a
+

√
e−a − e−a(r+1)

a

)
×

(√
e−ar − e−a(r+1)

a
+

√
e−ar − e−a

a
−

√
e−a − e−a(r+1)

a

)
≥ 0

as a product of two nonnegative terms, the latter term is nonnegative since
√

x + y ≤√
x +

√
y for any nonnegative x, y. Consequently, (3.18) is necessary and sufficient

for oscillation, which completes the proof. �

Remark. However, Theorem 3.6 does not consider the cases r = 0, r → 1, which
correspond to equations (1.4) and (1.5), respectively. First, let r = 0. Then (3.15)



EJDE-2008/112 ON STABILITY AND OSCILLATION 9

is never valid (it involves e−a ≤ 0b = 0), we stay with (3.14) which has the form
1
4e−2a < b 1−e−a

a . Hence

b >
ae−2a

4(1− e−a)
=

ae−a

4(ea − 1)
,

which was obtained in [2] as a necessary and sufficient oscillation condition for (1.4).
If r → 1, then (3.15) tends to e−a ≤ b 1−e−a

a , while (3.14) has the form(
e−a + b

1− e−a

a

)2

< 4b
(1− e−a

a

)
e−a, or

(
e−a − b

1− e−a

a

)2

< 0,

which is impossible. The inequality b > a
ea−1 is sufficient for oscillation of (1.5), see

[1].
Now let us proceed to stability of (3.13).

Theorem 3.7. Let 0 < r < 1. Equation (3.13) is stable if and only if

−a ≤ b ≤ C, (3.21)

where

C =

{
min

{ a(1+e−a)
1+e−a−2e−ar , a

e−ar−e−a

}
, if 1+e−a−2e−ar

a > 0,

a
e−ar−e−a , if 1+e−a−2e−ar

a ≤ 0,
(3.22)

and is exponentially stable if and only if

−a < b < C. (3.23)

Proof. By (3.17) exponential stability is equivalent to the following inequalities

−b
e−ar − e−a

a
− 1 < b

1− e−ar

a
− e−a < b

e−ar − e−a

a
+ 1, (3.24)

b
e−ar − e−a

a
< 1. (3.25)

The latter inequality can be rewritten as b < a
e−ar−e−a , while the left inequality of

(3.24) is

b
1− e−a

a
> e−a − 1, or b >

e−a − 1
1− e−a

a = −a.

Further, consider the right inequality in (3.24) which is equivalent to

1 + e−a − 2e−ar

a
b < 1 + e−a. (3.26)

The right hand side is positive, so if the left hand side is nonpositive then (3.26)
holds. Thus, to prove that (3.23) is sufficient for exponential stability, it is enough
to consider the case 1+e−a−2e−ar

a < 0, b < 0. Since b > −a, then we deduce a < 0.
We have |b|/|a| < 1 and∣∣1 + e−a − 2e−ar

a
b
∣∣ =

∣∣ b

a

∣∣∣∣1 + e−a − 2e−ar
∣∣ <

∣∣1 + e−a − 2e−ar
∣∣ ≤ 1 + e−a,

since 2e−ar ≤ 2 for a > 0, r ≥ 0, which completes the proof for the exponential
stability. Stability is considered similarly. �

Remark. In the case r = 0 we have C = a
1−e−a ; the exponential stability condition

−a < b < a
1−e−a is well known for (1.4), see [8]. If r → 1, then C = a(1+e−a)

1−e−a and

the exponential stability condition −a < b < a(1+e−a)
1−e−a for (1.5) is also known [8].
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4. Discussion and Open Problems

We have obtained sharp oscillation and stability conditions for equation (1.1) and
some of its particular cases. After some straightforward computations, we have the
following relation between the properties of equations (3.6), (1.4) and (1.5).

(1) Exponential stability of (1.4) implies exponential stability of (1.5) and (3.6).
However, we cannot compare conditions of exponential stability of (1.5) and
(3.6). For example, if a = −1, b = 2, then equation (1.5) is exponentially
stable and (3.6) is not stable, while for a = 2, b = 6 equation (3.6) is
exponentially stable, unlike (1.5).

(2) Oscillation domains of (1.4), (1.5) and (3.6) in (a, b)-plane also cannot be
compared: for each pair of equations there are two examples when one
oscillates while the other does not for the same values of parameters a, b.

Let us discuss some possible applications and generalizations of our results, as
well as relevant open problems.

(1) Apply the results of the present paper to obtain sharp stability and oscil-
lation conditions for the equation

x′(t) + ax(t) +
k∑

j=1

bjx(αj + [t− 1]) = 0, 0 ≤ αj < 1, j = 1, . . . , k,

which is a partial case of (1.1) with R(s) =
∑k

j=1 bjχ(αj ,1](s).
(2) The present paper contains a comprehensive analysis of (1.1) which can

be reduced to an autonomous second order difference equation. Using the
same method, reduce

x′(t) + ax(t) +
∫ 1

0

x(s + [t− 1])dsR(t, s) = 0, (4.1)

to the second order nonautonomous difference equation: in (2.4) we will
have Pn(a), Qn(a) rather than P (a) and Q(a). Deduce sufficient stability,
oscillation and nonoscillation conditions for (4.1).

(3) Consider the equation, where the derivative depends on the solution in
some previous intervals

x′(t) + ax(t) +
k∑

j=1

∫ 1

0

x(s + [t− j])dsRj(s) = 0 (4.2)

and its nonautonomous version. Reduce (4.2) to a high order difference
equation, establish oscillation and stability conditions.

(4) Equations with piecewise constant delays are sometimes considered as a
semidiscretization of delay equations [12]. If (1.1) is a semidiscretization of
the integro-differential equation

x′(t) + ax(t) +
∫ 1

0

x(s + t− 1)dsR(s) = 0,

study the relation between oscillation and stability conditions of two equa-
tions. Consider a more accurate semidiscretization of type (4.2)

x′(t) + ax(t) +
k∑

j=1

∫ r

0

x
(
s + r

[ t− j

r

])
dsRj(s) = 0 (4.3)
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and study the convergence of solutions. If a = 0 and Rj(s) are step func-
tions then we obtain the well known convergence problem for a finite dif-
ference approximation.

5. Appendix

In the proof of Theorems 3.4 and 3.5 we will apply the following obvious result.

Lemma 5.1. For any real number x the following inequalities hold:
1. If x 6= 0 then (1− e−x)/x > 0;
2. If x 6= 0 then xe−x + e−x − 1 < 0;
3. If x < 0 then 2− xe−x − 2e−x − x > 0, if x > 0 then 2− xe−x − 2e−x − x < 0;
4. xe−x − 1 < 0;
5. If x < 0 then 1− xe−x − e−x − x > 0, if x > 0 then 1− xe−x − e−x − x < 0;
6. If x 6= 0 then e−x + x− 1 > 0.

Proof of Theorem 3.4. We recall that we have to prove that a solution of (3.6),
(2.1) oscillates for any initial function satisfying (A2) if and only if

b > a2

(
|1− e−a| −

√
1− e−a − ae−a

a− 1 + e−a

)2

, if a 6= 0,

and b > 6− 4
√

2, if a = 0.

First, consider a 6= 0. By Theorem 3.2, the solution of the initial value problem
(3.6), (2.1) oscillates for any ϕ if and only if either (3.2) or (3.3) holds. Substitute
P (a), Q(a) from (3.7) into (3.2), (3.3) and obtain that at least one of the following
two inequalities should hold:

b
1− e−a

a
>

a

4

(
e−a + b

a− 1 + e−a

a2

)2

/(1− e−a),

e−a ≤ b
a− 1 + e−a

a2
≤ b

1− e−a

a

ea − 1
a

.

The first inequality above is equivalent to

4b
(1− e−a

a

)2

>
(
e−a + b

a− 1 + e−a

a2

)2

which is a quadratic inequality in b

(a− 1 + e−a)2b2 + 2a2(e−a(a− 1 + e−a)− 2(1− e−a)2)b + (a2e−a)2 < 0.

The corresponding quadratic equation has the discriminant

4a4(e−a(a− 1 + e−a)− 2(1− e−a)2)2 − 4(a− 1 + e−a)2(a2e−a)2

= 4a4
[
e−2a(a− 1 + e−a)2 − 4(1− e−a)2(a− 1 + e−a)e−a + 4(1− e−a)4

− e−2a(a− 1 + e−a)2
]

= 16a4(1− e−a)2((1− e−a)2 − (a− 1 + e−a)e−a)

= 16a4(1− e−a)2 (1− e−a − ae−a).

Note that by Lemma 5.1, Part 2, we have 1 − e−a − ae−a > 0 for any a 6= 0.
Therefore, the quadratic equation has two real solutions, b1 < b2, given by the
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quadratic formula

b =
2a2 (2(1− e−a)2 − e−a(a− 1 + e−a))± 4a2|1− e−a|

√
1− e−a − ae−a

2(a− 1 + e−a)2

= a2 (1− e−a)2 + (1− e−a − ae−a)± 2|1− e−a|
√

1− e−a − ae−a

(a− 1 + e−a)2

= a2
( |1− e−a| ±

√
1− e−a − ae−a

a− 1 + e−a

)2

.

(5.1)

Then the solution b of the quadratic inequality satisfies b1 < b < b2.
Consider the second inequality of the system:

e−a ≤ b
a− 1 + e−a

a2
≤ b

1− e−a

a

ea − 1
a

if and only if
a2e−a ≤ b(a− 1 + e−a) ≤ b(ea + e−a − 2).

Since a−1+e−a > 0 by Lemma 5.1, Part 6, then the latter inequality is equivalent
to b ≥ a2e−a

a−1+e−a . Moreover, b(a− 1 + e−a) ≤ b (ea + e−a − 2) can be rewritten as
b(ea − a− 1) ≥ 0, which is equivalent to b ≥ 0, since ea − a− 1 > 0 by Lemma 5.1,
Part 6.

Lemma 5.1, Part 6, implies (a2e−a)/(a− 1 + e−a) > 0 for a 6= 0, so

e−a ≤ b
a− 1 + e−a

a2
≤ b

1− e−a

a

ea − 1
a

⇔ b ≥ a2e−a

a− 1 + e−a
.

Thus, the solution of the initial value problem (3.6), (2.1) oscillates for any ϕ if and
only if

either b1 < b < b2 or b ≥ (a2e−a)/(a− 1 + e−a),

where b1, b2 are defined in (5.1). To simplify this system let us prove that b2 >
a2e−a/(a− 1 + e−a). In fact,

b2 −
a2e−a

a− 1 + e−a
= a2

( |1− e−a|+
√

1− e−a − ae−a

a− 1 + e−a

)2

− a2e−a

a− 1 + e−a

= a2
(
|1− e−a|2 + 2|1− e−a|

√
1− e−a − ae−a + 1− e−a

− ae−a − e−a(1− e−a − ae−a)
)/(

1− e−a − ae−a
)2

≤ a2 |1− e−a|2 + 1− e−a − ae−a − e−a(1− e−a − ae−a)
(1− e−a − ae−a)2

= 2a2 1− e−a − ae−a

(a− 1 + e−a)2
.

By Lemma 5.1, Part 6, we have ea − a − 1 > 0 , so 2a2 1−e−a−ae−a

(a−1+e−a)2 > 0 and thus

b2 > a2e−a

a−1+e−a . Therefore, the oscillation condition becomes

b > a2
( |1− e−a| −

√
1− e−a − ae−a

a− 1 + e−a

)2

.

Next let a = 0. By Theorem 3.2, the solution of the initial value problem (3.6),
(2.1) oscillates for any ϕ if and only if either (3.2) or (3.3) holds. Substituting
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P (0) = b, Q(0) = b/2 from (3.7) into (3.2), (3.3), we obtain

b >
1
4
( b

2
+ 1

)2 or 1 ≤ b

2
≤ b

⇔ b2 − 12b + 4 < 0 or b ≥ 2

⇔ 6− 4
√

2 < b < 6 + 4
√

2 or b ≥ 2

⇔ b > 6− 4
√

2,

which completes the proof. �

Proof of Theorem 3.5. We remark that we have to prove that the exponential sta-
bility of (3.6) is equivalent to the following systems (in each of the three cases a < 0,
a = 0, a > 0):

b > −a and b <
a2

1− e−a − ae−a
if a < 0, (5.2)

0 < b < 2, if a = 0, (5.3)

b > −a, b < − a2(1 + e−a)
2− 2e−a − ae−a − a

, b <
a2

1− e−a − ae−a
if a > 0. (5.4)

First, consider a 6= 0. By Theorem 3.3, equation (3.6) is exponentially stable if
and only if inequalities (3.5) hold. After substituting P (a), Q(a) from (3.7) into
(3.5) we obtain

b
1− e−a

a
> −a

(
b
a− 1 + e−a

a2
+ 1

)
,

b
1− e−a

a
> a

(
b
a− 1 + e−a

a2
− 1

)1 + e−a

1− e−a
,

b
1− e−a

a
<

a

1− e−a

(
1 + e−ab

a− 1 + e−a

a2

)
,

which can be rewritten as

b
(1− e−a

a
+

a− 1 + e−a

a

)
> −a,

b
(1− e−a

a
− a− 1 + e−a

a
· 1 + e−a

1− e−a

)
> −a

1 + e−a

1− e−a
,

b
(1− e−a

a
− e−a(a− 1 + e−a)

a(1− e−a)

)
<

a

1− e−a
.

These inequalities can be simplified to the form

b > −a,

b
2− 2e−a − a− ae−a

a(1− e−a)
> −a

1 + e−a

1− e−a
,

b
1− e−a − ae−a

a(1− e−a)
<

a

1− e−a
.

(5.5)

Consider a < 0. For negative a we have 1 − e−a < 0 and a(1 − e−a) > 0.
Moreover, 2− 2e−a − a− ae−a > 0 and 1− e−a − ae−a > 0 by Lemma 5.1, Parts 3
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and 2. Inequalities (5.5) are equivalent to

b > −a,

b > − a2(1 + e−a)
2− 2e−a − ae−a − a

,

b <
a2

1− e−a − ae−a
.

To simplify this system let us compare −a and −(a2(1+e−a))/(2−2e−a−ae−a−a).
Since

− a2(1 + e−a)
2− 2e−a − ae−a − a

− (−a) = 2a
1− e−a − a− ae−a

2− 2e−a − ae−a − a
,

then by Lemma 5.1, Parts 3 and 5, a < 0 implies 1 − e−a − a − ae−a > 0 and
2 − 2e−a − ae−a − a > 0. Hence a 1−e−a−a−ae−a

2−2e−a−ae−a−a < 0 and − a2(1+e−a)
2−2e−a−ae−a−a < −a;

therefore,

b > −a,

b > − a2(1 + e−a)
2− 2e−a − ae−a − a

,

b <
a2

1− e−a − ae−a

is equivalent to

b > −a,

b <
a2

1− e−a − ae−a
.

Thus, if a < 0 then (3.6) is exponentially stable if and only if system (5.2) holds.
Consider a > 0. If a > 0 then 1 − e−a > 0 and a(1 − e−a) > 0. Moreover, by

Lemma 5.1, Parts 2 and 3, we have 2−ae−a−2e−a−a < 0 and 1−e−a−ae−a > 0.
Applying these inequalities, we obtain that (5.5) is equivalent to

b > −a,

b < − a2(1 + e−a)
2− 2e−a − ae−a − a

,

b <
a2

1− e−a − ae−a
.

So, if a > 0 then (3.6) is exponentially stable if and only if inequalities (5.4) hold.
Finally, let a = 0. By Theorem 3.3 equation (3.6) is exponentially stable if and

only if inequalities (3.5) hold. Substitute P (0) = b, Q(0) = b/2 from (3.7) into
(3.5):

b > 0, b > b− 2, b <
b

2
+ 1.

which can be rewritten as
b > 0, b < 2.

So, if a = 0 then (3.6) is exponentially stable if and only if inequalities (5.3)
hold. �
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[7] K. L. Cooke and I. Györi; Numerical approximation of solutions of delay differential equa-

tions on an infinite interval using piecewise constant arguments, in Advances in difference

equations, Comput. Math. Appl. 28 (1994), no. 1-3, 81–92.
[8] K. L. Cooke and J. Wiener; Retarded differential equations with piecewise constant delays,

J. Math. Anal. Appl. 99 (1984), 265–297.

[9] L. H. Erbe, H. Xia, J. S. Yu; Global stability of a linear nonautonomous delay difference
equation, J. Difference Equations Appl. 1 (1995), no. 2, 151-161.

[10] G. Gandolfo; Economic Dynamics: Methods and Models, University of Rome, North-Holland
Publishing Company, 1979.
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