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EXISTENCE OF POSITIVE SOLUTIONS FOR SEMIPOSITONE
DYNAMIC SYSTEM ON TIME SCALES

NA-NA SHAO, YOU-WEI ZHANG

Abstract. In this paper, we study the following semipositone dynamic system

on time scales

−x∆∆(t) = f(t, y) + p(t), t ∈ (0, T )T,

−y∆∆(t) = g(t, x), t ∈ (0, T )T,

x(0) = x(σ2(T )) = 0,

αy(0)− βy∆(0) = γy(σ(T )) + δy∆(σ(T )) = 0.

Using fixed point index theory, we show the existence of at least one positive

solution. The interesting point is the that nonlinear term is allowed to change

sign and may tend to negative infinity.

1. Introduction

The theory of dynamic equations on time scales is undergoing rapid develop-
ment. This is not only because it can provide a unifying structure for the study
of differential equations in the continuous case and the study of finite difference
equations in the discrete case, but also because the study of time scales has led to
many important applications, e.g., in the study of insect population models, neu-
ral networks, biology, heat transfer, stock market, crop harvesting and epidemic
models [1, 2, 3, 7, 8].

Let T be a time scale (arbitrary nonempty closed subset of the real numbers R).
For each internal I of R, we denote by IT = I

⋂
T. In this paper, we are interested

in the nonlinear dynamic system on a time scale T,

−x∆∆(t) = f(t, y) + p(t), t ∈ (0, T )T,

−y∆∆(t) = g(t, x), t ∈ (0, T )T,

x(0) = x(σ2(T )) = 0,

αy(0)− βy∆(0) = γy(σ(T )) + δy∆(σ(T )) = 0,

(1.1)
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where p : (0, T ) → R is Lebesgue integrable and f, g ∈ C((0, T )T × R+, R+),
0, T ∈ T, α, β, γ, δ > 0 are constants such that ρ = αδ + βγ + αγσ(T ) > 0.

Recently, there is much attention paid to question of positive solutions of bound-
ary value problems on time scales, see [3, 4, 5, 9, 10, 11] and the references therein.
However, to the best of our knowledge, very few works can be found for the problem
when the nonlinearity can change sign.

Motivated by the main ideas in [12], the purpose of this paper is to study the ex-
istence at least one positive solution for the semipositone differential system (1.1).
Different from the previous papers, in this paper the nonlinearity term p(t) is al-
lowed to be negative and may tend to infinity. Our results are new even for the
special case of difference equations.

The rest of the paper is organized as follows. In section 2, we provide some
lemmas which are useful later. In Section 3, we give the main result of the paper
and an example is presented to demonstrate the application of our main results.

2. Preliminaries

Let X = {x|x : [0, σ2(T )]T → R is continuous} be a Banach space endowed with
the norm ‖u‖ = maxt∈[0,σ2(T )]T |u(t)|.

Define P = {x ∈ X : x(t) ≥ 0, t ∈ [0, σ2(T )]T} and K = {x ∈ P : x(t) ≥
q(t)‖x‖, t ∈ [0, σ2(T )]}, where q(t) = t(σ2(T )−t)

(σ2(T ))2 , it is easy to see that P and K are
cones of X and K ⊂ P . To obtain solutions of the system (1.1), we first denote the
Green’s functions of the following boundary value problems:

−x∆∆(t) = 0, t ∈ (0, T )T,

x(0) = x(σ2(T )) = 0,

and

−y∆∆(t) = 0, t ∈ (0, T )T,

αy(0)− βy∆(0) = γy(σ(T )) + δy∆(σ(T )) = 0,

by G(t, s) and H(t, s) respectively. From [4, 5], we know that

G(t, s) =
1

σ2(T )

{
t(σ2(T )− σ(s)), t ≤ s,

σ(s)(σ2(T )− t), t ≥ σ(s);
(2.1)

H(t, s) =
1
ρ

{
(β + αt)(γ(σ(T )− σ(s)) + δ), t ≤ s,

(β + ασ(s))(γ(σ(T )− t) + δ), t ≥ σ(s),
(2.2)

Obviously,

0 ≤ G(t, s) ≤ t(σ2(T )− t)
σ2(T )

, 0 ≤ H(t, s) ≤ H(σ(s), s). (2.3)

For the sake of convenience, we state the following hypotheses:

(C1) f : (0, T )T × [0,+∞) → [0,+∞) is continuous and for any t ∈ (0, T )T,
y ∈ [0,+∞), f(t, y) is nondecreasing on y and satisfying f(t, y) ≤ p∗(t)h(y),
where p∗ : (0, T )T → [0,+∞) and h : (0,+∞) → [0,+∞) are continuous,
limy→+∞

f(t,y)
y = +∞ uniformly for t on any close subinterval of (0, T )T.
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(C2) g : (0, T )T × [0,+∞) → [0,+∞) is continuous, there exist constants λ1 ≥
λ2 ≥ 1 such that for any t ∈ [0, T ]T, x ∈ [0,+∞),

cλ1g(t, x) ≤ g(t, cx) ≤ cλ2g(t, x), ∀0 ≤ c ≤ 1, (2.4)

with 0 <
∫ σ(T )

0
H(σ(t), t)g(t, 1)∆t < +∞.

(C3) p : (0, T )T → (−∞,+∞) is Lebesgue integrable such that
∫ σ(T )

0
p−(t)∆t >

0 and

0 <

∫ σ(T )

0

G(σ(t), t)[p∗(t) + p+(t)]∆t <
σ2(T )

∫ σ(t)

0
p−(t)∆t

2(max0≤τ≤R h(τ) + 1)
,

where p+(t) = max{p(t), 0}, p−(t) = max{0,−p(t)}, and

R =
( ∫ σ(T )

0

P−(t)∆t + 1
)λ1

∫ σ(T )

0

H(σ(t), t)g(t, 1)∆t.

From (C2), as in [10, Remark2.2, Lemma2.2] we obtain the following result.

Remark 2.1. If (C2) is satisfied, then for t ∈ [0, T ]T, g(t, x) is increasing on x and
for (t, x) ∈ [0, T ]T × [0,+∞), c ∈ [1,+∞), λ1 ≥ λ2 > 1,

cλ2g(t, x) ≤ g(t, cx) ≤ cλ1g(t, x), lim
x→+∞

min
t∈[0,T ]T

g(t, x)
x

= +∞ (2.5)

For convenience, we define a functions

[x(t)]∗ =

{
x(t), x(t) ≥ 0,

0, x(t) < 0,

and

ω(t) =
∫ σ(T )

0

G(t, s)p−(s)∆s, t ∈ [0, σ2(T )]T.

By the definition of the function ω(t) and G(t, s) ≥ 0, we have

0 ≤ ω(t) =
∫ σ(T )

0

G(t, s)p−(s)∆s ≤ t(σ2(t)− t)
σ2(T )

∫ σ(T )

0

p−(s)∆s < ∞,

thus ω(t) ∈ P , −ω∆∆(t) = p−(t) and ω(0) = ω(σ2(T )) = 0.
Next, we consider the approximate system

−x∆∆(t) = f(t, y) + p+(t), t ∈ (0, T )T,

−y∆∆(t) = g(t, [x(t)− ω(t)]∗), t ∈ (0, T )T,

x(0) = x(σ2(T )) = 0,

αy(0)− βy∆(0) = γy(σ(T )) + δy∆(σ(T )) = 0.

(2.6)

It is well known that (x, y) is a solution of system (2.6) if and only if (x, y) is the
solution of the nonlinear integral equation system

x(t) =
∫ σ(T )

0

G(t, s)[f(s, y(s)) + p+(s)]∆s, t ∈ [0, σ2(T )]T,

y(t) =
∫ σ(T )

0

H(t, s)g(s, [x(s)− ω(s)]∗)∆s.

(2.7)
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Obviously, the integral system (2.7) is equivalent to the nonlinear integral equation

x(t) =
∫ σ(T )

0

G(t, s)
[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x(τ)−ω(τ)]∗)∆τ
)

+p+(s)
]
∆s, (2.8)

t ∈ [0, σ2(T )]T.
Now, we define the operator F : P → X by

(Fx)(t) =
∫ σ(T )

0

G(t, s)
[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x(τ)− ω(τ)]∗)∆τ
)

+ p+(s)
]
∆s.

(2.9)
Then the existence of solutions to system (2.7) is equivalent to the existence of
solution for nonlinear integral equation (2.8). Therefore, if x is a fixed point of the
operator F in X, then the system (2.7) has one solution (u, v) which can be written
as

u(t) = x(t),

v(t) =
∫ σ(T )

0

H(t, s)g(s, [x(s)− ω(s)]∗)∆s, t ∈ [0, σ2(T )]T.
(2.10)

Lemma 2.2. If (u, v) with u(t) ≥ ω(t) for t ∈ [0, σ2(T )]T is a positive solution of
system (2.7), then (u−ω, v) is a positive solution of semipositone dynamical system
(1.1).

Proof. Suppose that (u, v) is a positive solution of (2.7) with u(t) ≥ ω(t) for t ∈
[0, σ2(T )]T, then from (2.7) and the definition of [u(t)]∗, we have

−u∆∆(t) = f(t, v(t)) + p+(t), t ∈ (0, T )T,

−v∆∆(t) = g(t, [u(t)− ω(t)]∗), t ∈ (0, T )T,

u(0) = u(σ2(T )) = 0,

αv(0)− βv∆(0) = γv(σ(T )) + δv∆(σ(T )) = 0.

(2.11)

Set u1 = u− ω, then u∆∆
1 = u∆∆ − ω∆∆ which implies

−u∆∆
1 (t) = f(t, v(t)) + p+(t)− p−(t), t ∈ (0, T )T,

−v∆∆(t) = g(t, u1(t)), t ∈ (0, T )T,

u1(0) = u1(σ2(T )) = 0,

αv(0)− βv∆(0) = γv(σ(T )) + δv∆(σ(T )) = 0, .

(2.12)

From (C3) we know p+(t) − p−(t) = p(t), then (u1, v) is a positive solution of
(1.1). �

Lemma 2.3. If (C1)–(C3) are satisfied, then F : K → K is completely continuous.

Proof. For any x ∈ K, let u(t) = (Fx)(t). By the definition of the operator F , we
have u(t) ≥ 0, and u(0) = u(σ2(T )) = 0. Hence, there exists a t0 ∈ [0, σ2(T )]T such
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that ‖u‖ = u(t0). Since

G(t, s)
G(t0, s)

=



t
t0

, t, t0 ≤ s,

t(σ2(T )−σ(s))
σ(s)(σ2(T )−t0)

, t ≤ s < t0,

σ(s)(σ2(T )−t)
t0(σ2(T )−σ(s)) , t0 ≤ s < t,

σ2(T )−t
σ2(T )−t0

, t, t0 ≥ s,

(2.13)

we have
G(t, s)
G(t0, s)

≥ t(σ2(T )− t)
(σ2(T ))2

= q(t).

Thus

(Fx)(t)

=
∫ σ(T )

0

G(t, s)
[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x(τ)− ω(τ)]∗)∆τ
)

+ p+(s)
]
∆s

≥ q(t)
∫ σ(T )

0

G(t0, s)
[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x(τ)− ω(τ)]∗)∆τ
)

+ p+(s)
]
∆s

≥ q(t)(Fx)(t0) = q(t)‖Fx‖,

and F (K) ⊆ K. By standard argument, we can easily obtain that the operator
F : K → K is completely continuous. The proof is complete. �

For our arguments, the following fixed point index theory [6] is crucial.

Lemma 2.4. Let X be a Banach space and K be a cone in X. Assume that Ω is
a bounded open subset of X with θ ∈ Ω and let Φ : K ∩ Ω → K be a completely
continuous operator.

(i) If Φz 6= λz for all z ∈ K
⋂

∂Ω, λ ≥ 1, then i(Φ,K
⋂

Ω,K) = 1;
(ii) if Φz 6≤ z for all z ∈ K

⋂
∂Ω, then i(Φ,K

⋂
Ω,K) = 0.

3. Main Results

Before presenting the main result, we give two lemmas which are important in
establishing the existence of one positive solutions to the problem (1.1).

Lemma 3.1. Assume (C1)–(C3) hold, if we let r = σ2(T )
∫ σ(T )

0
p−(t)∆t, Ωr =

{x ∈ X : ‖x‖ < r}, then i(F,K ∩ Ωr,K) = 1.

Proof. Suppose that there exist λ0 ≥ 1 and x0 ∈ K ∩ ∂Ωr such that Fx0 = λ0x0.
By 0 ≤ G(t, s) ≤ t(σ2(T )− t)/σ2(T ), we have

0 < ω(t) =
∫ σ(T )

0

G(t, s)p−(s)∆s ≤ t(σ2(T )− t)
σ2(T )

∫ σ(T )

0

p−(s)∆s < +∞, (3.1)

for t ∈ [0, σ2(T )]T, which together with x0(t) ≥ q(t)‖x0‖ = rq(t), t ∈ [0, σ2(T )]T,
yield

x0(t)− ω(t) ≥ rq(t)− t(σ2(T )− t)
σ2(T )

∫ σ(T )

0

p−(s)∆s = 0, t ∈ [0, σ2(T )]T. (3.2)
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Thus, from x0 = 1
λ0

Fx0 and (3.2), we obtain

−x∆∆
0 (t) =

1
λ0

[
f
(
t,

∫ σ(T )

0

H(t, τ)g(τ, x0(τ)− ω(τ))∆τ
)

+ p+(t)
]
, t ∈ [0, T ]T,

x0(0) = x0(σ2(T )) = 0,

(3.3)
which shows that there exists a t0 ∈ [0, σ2(T )]T such that x0(t0) = ‖x0‖ = r,
x∆

0 (t0) ≤ 0. Then

0 ≤ x0(t)− ω(t) ≤ x0(t) ≤ ‖x0‖ = r < r + 1. (3.4)

Let t ∈ [0, t0]T, integrating the equation in (3.3) from t to t0, we have

x∆
0 (t)− x∆

0 (t0) =
∫ t0

t

−x∆∆
0 (s)∆s

=
∫ t0

t

1
λ0

[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, x0(τ)− ω(τ))∆τ
)

+ p+(s)
]
∆s

≤
∫ t0

t

[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, x0(τ)− ω(τ))∆τ
)

+ p+(s)
]
∆s

≤
∫ t0

t

[
p∗(s)h

( ∫ σ(T )

0

H(s, τ)g(τ, x0(τ)− ω(τ))∆τ
)

+ p+(s)
]
∆s.

Since g(t, x) is increasing with respect to x,∫ σ(T )

0

H(s, τ)g(τ, x0(τ)− ω(τ))∆τ ≤
∫ σ(T )

0

H(σ(τ), τ)g(τ, x0(τ)− ω(τ))∆τ

≤
∫ σ(T )

0

H(σ(τ), τ)g(τ, r + 1)∆τ

≤ (r + 1)λ1

∫ σ(T )

0

H(σ(τ), τ)g(τ, 1)∆τ.

So

x∆
0 (t) ≤

(
max

0≤τ≤R
h(τ) + 1

) ∫ t0

t

(p∗(s) + p+(s))∆s, (3.5)

where R = (r + 1)λ1
∫ σ(T )

0
H(σ(τ), τ)g(τ, 1)∆τ . Integrating (3.5) from 0 to t0, we

have

r =
∫ t0

0

x∆
0 (s)∆s ≤ [ max

0≤τ≤R
h(τ) + 1]

∫ t0

0

∫ t0

s

(p∗(τ) + p+(τ))∆τ∆s

≤ [ max
0≤τ≤R

h(τ) + 1]σ2(T )
∫ t0

0

(p∗(τ) + p+(τ))∆τ

≤ [max0≤τ≤R h(τ) + 1]σ2(T )
σ2(T )− t0

∫ t0

0

σ(τ)(σ2(T )− σ(τ))
σ2(T )

(p∗(τ) + p+(τ))∆τ.

≤ [max0≤τ≤R h(τ) + 1]σ2(T )
σ2(T )− t0

∫ σ(T )

0

σ(τ)(σ2(T )− σ(τ))
σ2(T )

(p∗(τ) + p+(τ))∆τ.

Consequently,∫ σ(T )

0

G(σ(τ), τ)(p∗(τ) + p+(τ))∆τ ≥ r(σ2(T )− t0)
[max0≤τ≤R h(τ) + 1]σ2(T )

. (3.6)
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Integrate (3.5) from t0 to t, we have the following inequality in the same way

∫ σ(T )

0

G(σ(τ), τ)(p∗(τ) + p+(τ))∆τ ≥ rt0
[max0≤τ≤R h(τ) + 1]σ2(T )

. (3.7)

Combining with (3.6) and (3.7),

2
∫ σ(T )

0

G(σ(τ), τ)(p∗(τ) + p+(τ))∆τ ≥ rσ2(T )
[max0≤τ≤R h(τ) + 1]σ2(T )

=
σ2(T )

max0≤τ≤R h(τ) + 1

∫ σ(T )

0

p−(τ)∆τ.

As a result,

∫ σ(T )

0

G(σ(τ), τ)(p∗(τ) + p+(τ))∆τ ≥ σ2(T )
2[max0≤τ≤R h(τ) + 1]

∫ σ(T )

0

p−(τ)∆τ,

(3.8)
which is a contradiction with (C3). So applying Lemma 2.4, i(F,K∩Ωr,K) = 1. �

Lemma 3.2. Assume (C1)–(C3). Then there exist R∗ > r = σ2(T )
∫ σ(T )

0
p−(t)∆s,

such that i(F,K ∩ ΩR∗ ,K) = 0, where ΩR∗ = {x|x ∈ X, ‖x‖ < R∗}.

Proof. Choose constants 0 < α∗ ≤ β∗ and L, such that [α∗, β∗]T ⊆ [0, T ]T and

L >
2σ2(T )

α∗(σ2(T )− β∗)

(
min

t∈[0,σ2(T )]T

∫ β∗

α∗
G(t, s)∆s

)−1

By (C1), there exists R∗1 > 2r such that f(t, y) > Ly, for t ∈ [α∗, β∗]T, y ≥ R∗1.
Since limx→+∞min g(t, x)/x = +∞, there is R∗2 > R∗1, t ∈ [α∗, β∗]T. When x > R∗2,
from Remark 2.1 we have

g(t, x)
x

≥ min
t∈[α∗,β∗]T

g(t, x)
x

≥ 1

minα≤s≤β

∫ β∗

α∗ H(s, τ)∆τ
. (3.9)

So that

g(t, x) ≥ x

minα∗≤s≤β∗
∫ β∗

α∗ H(s, τ)∆τ
for t ∈ [α, β]T, x ≥ R∗2.

Let R∗ = 2R∗
2(σ2(T ))2

α∗(σ2(T )−β∗) , then R∗ > R∗2 > R∗1 > 2r, we assert that Fx 6≤ x, x ∈
K ∩ ∂ΩR∗ .
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Suppose on the contrary that there exists x1 ∈ K ∩ ∂ΩR∗ such that Fx1 ≤ x1.
Then for t ∈ [α, β]T, we have

x1(t)− ω(t) ≥ x1(t)−
t(σ2(T )− t)

σ2(T )

∫ σ(T )

0

P−(τ)∆τ

= x1(t)− rq(t)

≥ x1(t)−
x1(t)
‖x1(t)‖

r

>
1
2
x1(t)

≥ 1
2
q(t)‖x1‖

=
t(σ2(T )− t)R∗

2(σ2(T ))2

≥ R∗α∗(σ2(T )− β∗)
2(σ2(T ))2

= R∗2 > 0.

Then ∫ β

α

H(s, τ)g(τ, [x1(τ)− ω(τ)]∗)∆τ

=
∫ β

α

H(s, τ)g(τ, [x1(τ)− ω(τ)])∆τ

≥ 1

minα∗≤s≤β∗
∫ β∗

α∗ H(s, τ)∆τ

∫ β∗

α∗
H(s, τ)(x1(τ)− ω(τ))∆τ

≥ R∗α∗(σ2(T )− β∗)
2(σ2(T ))2

= R∗2

> R∗1 > 0,

Since f(t, y) is nondecreasing on y,

R∗ ≥ x1(t) ≥ (Fx1)(t)

=
∫ σ(T )

0

G(t, s)
[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x1(τ)− ω(τ)]∗)∆τ
)

+ p+(s)
]
∆s

≥
∫ β

α

G(t, s)
[
f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x1(τ)− ω(τ)])∆τ
)

+ p+(s)
]
∆s

≥
∫ β

α

G(t, s)f
(
s,

∫ σ(T )

0

H(s, τ)g(τ, [x1(τ)− ω(τ)])∆τ
)
∆s

≥
∫ β

α

G(t, s)L
( ∫ σ(T )

0

H(s, τ)g(τ, [x1(τ)− ω(τ)])∆τ
)
∆s

≥ LR∗α∗(σ2(T )− β∗)
2(σ2(T ))2

∫ β∗

α∗
G(t, s)∆s.

So,

L ≤ 2σ2(T )2

α∗(σ2 − β∗)

[
min

t∈[0,σ2(T )]T

∫ β∗

α∗
G(t, s)∆s

]−1

.
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This contradicts the choice of the constant L. Thus from Lemma 2.4, i(F,K ∩
ΩR∗ ,K) = 0. �

Now we present the main result of this paper.

Theorem 3.3. Suppose that (C1)–(C3) are satisfied, then the semipositone dy-
namic system (1.1) has at least one positive solution.

Proof. By Lemmas 3.1, 3.2 and the properties of the fixed point index, we have

i(F,KR∗\Kr,K) = −1.

Thus the operator F has a fixed point u0 in KR∗\Kr with r < ‖u0‖ < R∗. Since
‖u0‖ > r, we have

u0(t)− ω(t) ≥ q(t)‖u0‖ −
∫ σ(T )

0

G(t, s)p−(s)∆s

≥ q(t)‖u0‖ −
t(σ2(T )− t)

σ2(T )

∫ σ(T )

0

p−(s)∆s

≥ q(t)(‖u0‖ − r) > 0.

It follows from Lemma 2.2 that
u(t) = u0(t)− ω(t),

v(t) =
∫ σ(T )

0

H(t, s)g(s, u0(s))∆s.
(3.10)

is the positive solution of system (1.1). The proof is complete. �

Example. Let T = [0, 1
3 ]

⋃
[ 23 , 1]. We consider the dynamic system

−x∆∆(t) =
y

t + 1
− 1√

t
, t ∈ (0, 1)T,

−y∆∆(t) =
x2

(t− 1
2 )2

, t ∈ (0, 1)T,

x(0) = x(σ2(1)) = 0,

y(0)− y(0) = y(σ(1)) + y∆(σ(1)) = 0.

(3.11)

In fact, for f(t, y) = y
t+1 − 3, p(t) = − 1√

t
, g(t, x) = x2

(t− 1
2 )2

, λ1 = 3, λ2 = 3
2 , all

conditions of Theorem 3.3 are satisfied. Therefore, problem (3.11) has at least one
positive solution.
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