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ON THE EXISTENCE OF WEAK SOLUTIONS FOR
p, q-LAPLACIAN SYSTEMS WITH WEIGHTS

OLIMPIO H. MIYAGAKI, RODRIGO S. RODRIGUES

Abstract. This paper studies degenerate quasilinear elliptic systems involv-

ing p, q-superlinear and critical nonlinearities with singularities. Existence
results are obtained by using properties of the best Hardy-Sobolev constant

together with an approach developed by Brezis and Nirenberg.

1. Introduction

In a well-known paper, Brezis and Nirenberg [11] proved that, under certain
conditions, the elliptic problem with Dirichlet boundary condition

−∆u = λuq + u2∗−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω

(1.1)

possesses at least a solution, for all λ > 0, where 1 < q < 2∗ = 2N/(N − 2), N ≥ 3,
2∗ is said to be the critical Sobolev exponent, and Ω ⊂ RN (N ≥ 3) is a bounded
smooth domain. In general, the main difficulty in this type of problem is the lack
of compactness of the injection H1

0 (Ω) ↪→ L2∗(Ω).
We recall that the perturbation λuq is essential in this kind of the problem. By

Pohozaev identity [30], problem (1.1) does not possess any solution when λ ≤ 0.
Garćıa and Peral in [19] studied the existence of nontrivial solution for a class

of problems involving the p-laplacian operator, namely,

−∆pu ≡ −div(|∇u|p−2∇u) = λ|u|q−2u+ µ|u|p
∗−2u in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,

in a bounded smooth domain Ω ⊂ RN (N > p), with 1 < p ≤ q < p∗ = Np/(N − p).
When p < q < p∗, we say that the above problem is p-superlinear. These type of
problems, which are related to the Brezis and Nirenberg problem [11] (problem
(1.1) with p = 2), have been widely treated by several authors and we would like
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to mention some of them, e.g., [14, 20, 21] for 1 < p < N and [26, 28, 29] for p = 2,
see also references cited there.

Caffarelli, Kohn and Nirenberg in [12] proved that if 1 < p < N , −∞ < a <
(N − p)/p, a ≤ c1 ≤ a+ 1, d1 = 1 + a− c1, and p∗ = p∗(a, c1, p) := Np/(N − d1p),
there exists Ca,p > 0 such that the following Hardy-Sobolev type inequality with
weights is satisfied( ∫

RN

|x|−c1p∗ |u|p
∗
dx

)p/p∗

≤ Ca,p

(∫
RN

|x|−ap|∇u|pdx
)
, ∀u ∈ C∞0 (RN ).

Note that several papers have been appeared on this subject, mainly, the works
about the existence of solution for a class of quasilinear elliptic problems of the
type

−Luap = g(x, u) + |x|−e1p∗ |u|q−2u in Ω,

where Luap = div(|x|−ap|∇u|p−2∇u), under certain suppositions on the exponents
1 < p < N , −∞ < a < (N − p)/p, a ≤ e1 < a + 1, d = 1 + a − e1, and
p∗ = Np/(N − dp), and on the function g : Ω × R → R. See, for instance,
[4, 7, 13, 16, 34, 35] and references therein. The lack of compactness is overcame
proving that all the Palais Smale sequence at the level c, ( (PS)c-sequence, in short),
with c < (d/N)(C∗a,p)

N/dp, is relatively compact. (d/N)(C∗a,p)
N/dp is so called the

critical level and C∗a,p is the best Hardy-Sobolev constant and it is characterized by

C∗a,p = C∗a,p(Ω) := inf
u∈W 1,p

0 (Ω,|x|−ap)\{0}

{ ∫
Ω
|x|−ap|∇u|pdx( ∫

Ω
|x|−e1p∗ |u|p∗dx

)p/p∗

}
.

Besides the great number of the applications known for the scalar case, for
instance, in fluid mechanics, in newtonian fluids, in flow through porous media,
reaction-diffusion problems, nonlinear elasticity, petroleum extraction, astronomy,
glaciology, etc, see [15], the above systems can involve another phenomena, such as
competition model in population dynamics, see [18] and reference therein. For the
systems case we would like to mention the papers [2, 32] and a survey paper [17]
as well as in the references therein.

In our work, we will use a version of the well-known mountain pass theorem [6] to
establish conditions for the existence of a nontrivial solution for a quasilinear elliptic
system involving the above operator and a p, q-superlinear nonlinear perturbation

−Luap = λθ|x|−β1 |u|θ−2|v|δu+ µα|x|−β2 |u|α−2|v|γu in Ω,

−Lvbq = λδ|x|−β1 |u|θ|v|δ−2v + µγ|x|−β2 |u|α|v|γ−2v in Ω,
u = v = 0 on ∂Ω,

(1.2)

where

Ω is a bounded smooth domain of RN with 0 ∈ Ω, (1.3)

the parameters λ, µ are positive real numbers and the exponents satisfy

1 < p, q < N, −∞ < a < (N − p)/p, −∞ < b < (N − q)/q,
a ≤ c1 < a+ 1, b ≤ c2 < b+ 1, d1 = 1 + a− c1, d2 = 1 + b− c2,

p∗ = Np/(N − d1p), q∗ = Nq/(N − d2q),
α, γ, θ, δ > 1, β1, β2 ∈ R,

(1.4)
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with one of the following two sets of conditions satisfied:
θ

p
+
δ

q
,
α

p
+
γ

q
> 1 (p, q-superlinear)

θ

p∗
+

δ

q∗
,
α

p∗
+

γ

q∗
< 1 (p, q-subcritical),

(1.5)

or
θ

p∗
+

δ

q∗
< 1 <

θ

p
+
δ

q
and

α

p∗
+

γ

q∗
= 1 p, q-superlinear/critical case) (1.6)

However, the variational systems behave, in a certain sense, like in the scalar case,
there exist some additional difficulties mainly coming from the mutual actions of
the variables u and v, see e. g. [23, 33]. Another difficulty, even in the regular case,
are the systems involving p-laplacian and q-laplacian operators and their respective
critical exponents. In this situation, it is hard to find a well appropriated critical
level, mainly, when p 6= q. This open question was pointed out in Adriouch and
Hamidi [1]. But, recently Silva and Xavier in [31] were able to prove, in a certain
context and in the regular case, the existence of weak solution for a system involving
p-laplacian and q-laplacian operators with p 6= q. Still in the regular case and p = q,
we would like to mention the papers [2, 5, 27, 32, 36], also a survey paper [17]. In
particular, Morais and Souto in [27] defined the following critical level number
SH/p, where

SH = inf
W\{0}

{∫
Ω
|∇u|p + |∇v|pdx( ∫
Ω
H(u, v)dx

)p/p∗

}
,

W = W 1,p
0 (Ω) × W 1,q

0 (Ω) and H is homogeneous nonlinearity of degree p∗. In
this work, we will improve the critical level by proving that all the Palais Smale
sequences at the level c are relatively compact provided that

c < (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p + λ(
1
p
− 1
p1

)M,

where S̃ depends of C∗a,p andM = M(un, vn) ≥ 0 depends of Palais Smale sequence.
Our first result deals with p, q-superlinear and subcritical nonlinear perturbation.

Theorem 1.1. In addition to (1.3), (1.4), and (1.5), assume that pi ∈ (p, p∗),
qi ∈ (q, q∗), i = 1, 2, with θ/p1 + δ/q1 = α/p2 + γ/q2 = 1 and

βi < min
{
(a+ 1)pi +N

(
1− pi

p

)
, (b+ 1)qi +N

(
1− qi

q

)}
, i = 1, 2. (1.7)

Then system (1.2) possesses a weak solution, where each component is nontrivial
and nonnegative, for each λ ≥ 0 and µ > 0.

The next result treats the p, q-superlinear and critical case.

Theorem 1.2. Assume (1.3), (1.4) and (1.6), with p = q and a = b ≥ 0. Suppose
also p1 = q1 ∈ (p, p∗), with θ/p1 + δ/q1 = 1, p∗ = q∗, β2 = c1p

∗, and β1 =
(a+ 1)p1 − c with

−N [1− (p1/p)] < c <
(p1 − p+ 1)N − (a+ 1)p1

p− 1
− (N − p− ap)(p1 − p)

p(p− 1)
·

Then, system (1.2) possesses a weak solutions, where each component is nontrivial
and nonnegative, for each λ, µ > 0.
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The p, q-superlinear and critical case with p 6= q is studied in the following result.

Theorem 1.3. In addition to (1.3), (1.4), and (1.6), assume that p1 ∈ (p, p∗),
q1 ∈ (q, q∗), with θ/p1 +δ/q1 = 1, β2 = c1p

∗ = c2q
∗, and β1 as in (1.7). Then there

exists µ0 sufficiently small such that system (1.2) posesses a weak solution, where
each component is nontrivial and nonnegative, for each λ > 0 and 0 < µ < µ0.

2. Preliminaries

We will set some spaces and their norms. If α ∈ R and l ≥ 1, we define Ll(Ω, |x|α)
as being the subspace of Ll(Ω) of the Lebesgue measurable functions u : Ω → R
satisfying

‖u‖Ll(Ω,|x|α) :=
( ∫

Ω

|x|α|u|ldx
)1/l

<∞.

If 1 < p < N and −∞ < a < (N − p)/p, we define W 1,p
0 (Ω, |x|−ap) as being the

completion of C∞0 (Ω) with respect to the norm ‖ · ‖ defined by

‖u‖ :=
(∫

Ω

|x|−ap|∇u|pdx
)1/p

.

First of all, from the Caffarelli, Kohn and Nirenberg inequality (see [12]) and by
the boundedness of Ω, it is easy to see that there exists C > 0 such that( ∫

Ω

|x|−δ|u|rdx
)p/r

≤ C
(∫

Ω

|x|−ap|∇u|pdx
)
, ∀u ∈W 1,p

0 (Ω, |x|−ap),

where 1 ≤ r ≤ Np/(N − p) and δ ≤ (a+ 1)r +N [1− (r/p)].

Lemma 2.1. Suppose that Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 <
p < N , −∞ < a < (N − p)/p, a ≤ e1 < a+1, d1 = 1+a− e1, p∗ = Np/(N − d1p),
and α+ γ = p∗, then

S̃ := inf
(u,v)∈W̃

{∫
Ω
|x|−ap(|∇u|p + |∇v|p)dx( ∫
Ω
|x|−e1p∗ |u|α|v|γdx

)p/p∗

}
,

where
W̃ =

{
(u, v) ∈

(
W 1,p

0 (Ω, |x|−ap)
)2 : |u‖v| 6≡ 0

}
,

satisfies
S̃ =

[
(α/γ)γ/p∗ + (α/γ)−α/p∗

]
C∗a,p.

The proof of the above lemma is similar to the proof of [5, Theorem 5] (see also
[27, Lemma 3] for p 6= 2).

Let us consider Ω a smooth domain of RN (not necessarily bounded), 0 ∈ Ω, 1 <
p < N , 0 ≤ a < (N −p)/p, a ≤ c1 < a+1, d1 = 1+a− c1, and p∗ = Np/(N −d1p).
We define the space

W 1,p
a,c1

(Ω) =
{
u ∈ Lp∗(Ω, |x|−c1p∗) : |∇u| ∈ Lp(Ω, |x|−ap)

}
,

equipped with the norm

‖u‖W 1,p
a,c1 (Ω) = ‖u‖Lp∗ (Ω,|x|−c1p∗ ) + ‖∇u‖Lp(Ω,|x|−ap).

We consider the best Hardy-Sobolev constant given by

S̃a,p = inf
W 1,p

a,c1 (RN )\{0}

{ ∫
RN |x|−ap|∇u|pdx( ∫

RN |x|−c1p∗ |u|p∗dx
)p/p∗

}
.
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Also, we define
R1,p

a,c1
(Ω) =

{
u ∈W 1,p

a,c1
(Ω) : u(x) = u(|x|)

}
,

endowed with the norm

‖u‖R1,p
a,c1 (Ω) = ‖u‖W 1,p

a,c1 (Ω).

Actually, Horiuchi in [24] proved that

S̃a,p,R = inf
R1,p

a,c1 (RN )\{0}

{ ∫
RN |x|−ap|∇u|pdx( ∫

RN |x|−c1p∗ |u|p∗dx
)p/p∗

}
= S̃a,p

and it is achieved by functions of the form

yε(x) := ka,p(ε)Ua,p,ε(x), ∀ε > 0,

where

ka,p(ε) = c0ε
(N−d1p)/d1p2

and Ua,p,ε(x) =
(
ε+ |x|

d1p(N−p−ap)
(p−1)(N−d1p)

)−(
N−d1p

d1p )

.

Moreover, yε satisfies∫
RN

|x|−ap|∇yε|pdx =
∫

RN

|x|−c1p∗ |yε|p
∗
dx. (2.1)

See also Clément, Figueiredo and Mitidieri [16, Proposition 1.4].
The next lemma can be proved arguing as in [11] (see also [35, Lemma 5.1]). For

the sake of the completeness we will give the proof in the appendix.

Lemma 2.2. In addition to (1.3) and (1.4), assume that p1 = q1 ∈ (p, p∗), θ/p1 +
δ/q1 = 1, β2 = c1p

∗ = c2q
∗, and β1 = (a+ 1)p1 − c with

−N [1− (p1/p)] < c.

Let R0 ∈ (0, 1) be such that B(0, 2R0) ⊂ Ω and ψ ∈ C∞0 (B(0, 2R0)) with ψ ≥ 0 in
B(0, 2R0) and ψ ≡ 1 in B(0, R0), then the function

uε(x) =
ψ(x)Ua,p,ε(x)

‖ψUa,p,ε‖Lp∗ (Ω,|x|−c1p∗ )

satisfies

‖uε‖p∗

Lp∗ (Ω,|x|−c1p∗ )
= 1, ‖∇uε‖p

Lp(Ω,|x|−ap) ≤ S̃a,p,R +O(ε(N−d1p)/d1p),

and

‖uε‖p1

Lp1 (Ω,|x|−β1 )
≥



O(ε(N−d1p)p1/d1p2
) if c > (p1−p+1)N−(a+1)p1

p−1 ,

O(ε(N−d1p)p1/d1p2 |ln(ε)|) if c = (p1−p+1)N−(a+1)p1
p−1 ,

O
(
ε

(N−d1p)(p−1)(N−p1−ap1+c)
d1p(N−p−ap) − (N−d1p)(p−1)p1

d1p2
)

if c < (p1−p+1)N−(a+1)p1
p−1 .

(2.2)

The following result, which will be useful in the proof of our results, was proved
by Kavian in [25, Lemma 4.8].

Lemma 2.3. Let Ω be an open subset of RN , {fn} ∈ Lr(Ω), for some 1 < r <∞,
a bounded sequence such that fn(x) → f(x), for a.e. x ∈ Ω, as n → ∞. Then,
f ∈ Lr(Ω) and fn ⇀ f weakly in Lr(Ω) as n→∞.
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Definition. Let us consider {(un, vn)} in W 1,p
0 (Ω, |x|−ap) ×W 1,q

0 (Ω, |x|−bq). We
say that the sequence {(un, vn)} is a Palais Smale sequence for operator I at the
level c (or simply, (PS)c-sequence) if

I(un, vn) → c and I ′(un, vn) → 0, as n→∞.

Our approach will be to use variational techniques; that is, we have to find the
critical points of the Euler-Lagrange functional

I : W 1,p
0 (Ω, |x|−ap)×W 1,q

0 (Ω, |x|−bq) → R

given by

I(u, v) =
1
p

∫
Ω

|x|−ap|∇u|p dx+
1
q

∫
Ω

|x|−bq|∇v|q dx

− λ

∫
Ω

|x|−β1uθ
+v

δ
+ dx− µ

∫
Ω

|x|−β2uα
+v

γ
+ dx,

which is well defined and is of class C1, with the Gâteaux derivative

〈I ′(u, v), (w, z)〉 =
∫

Ω

|x|−ap|∇u|p−2∇u∇w dx+
∫

Ω

|x|−bq|∇v|q−2∇v∇z dx

− λθ

∫
Ω

|x|−β1uθ−1
+ vδ

+w dx− λδ

∫
Ω

|x|−β1uθ
+v

δ−1
+ z dx

− µα

∫
Ω

|x|−β2uα−1
+ vγ

+w dx− µγ

∫
Ω

|x|−β2uα
+v

γ−1
+ z dx,

where u± = max{0,±u} which is in W 1,p
0 (Ω, |x|−ap) (Similarly v± = max{0,±v}

which is in W 1,q
0 (Ω, |x|−bq); see [3]).

First of all, we are going to show the geometric conditions of the mountain pass
theorem.

Lemma 2.4. In addition to (1.3) and (1.4), assume that one of the following
conditions hold:

(i) the case (1.5), pi ∈ (p, p∗), qi ∈ (q, q∗), with θ/p1 +δ/q1 = α/p2 +γ/q2 = 1,
and βi as in (1.7), for i = 1, 2.

(ii) the case (1.6), p1 ∈ (p, p∗), q1 ∈ (q, q∗), with θ/p1 + δ/q1 = 1, β1 as in
(1.7), p2 = p∗, q2 = q∗, and β2 = c1p

∗ = c2q
∗.

Then the Euler-Lagrange functional I satisfies:
(a) There exist σ, ρ > 0 such that

I(u, v) ≥ σ if ‖(u, v)‖ = ρ. (2.3)

(b) There exists e ∈W 1,p
0 (Ω, |x|−ap)×W 1,q

0 (Ω, |x|−bq) such that

I(e) ≤ 0, ‖e‖ ≥ R for some R > ρ.

Proof. Part (a). For (u, v) ∈ W 1,p
0 (Ω, |x|−ap) ×W 1,q

0 (Ω, |x|−bq) with ‖(u, v)‖ ≤ 1,
we have

I(u, v) ≥
(1
p
‖u‖p − λ

θCp1/p

p1
‖u‖p1 − µ

αCp2/p

p2
‖u‖p2

)
+

(1
q
‖v‖q − λ

δCq1/q

q1
‖v‖q1 − µ

γCq2/q

q2
‖v‖q2

)
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≥ 1
p
‖u‖p −

(
λ
θCp1/p

p1
+ µ

αCp2/p

p2

)
‖u‖min{p1,p2}

+
1
q
‖v‖q −

(
λ
δCq1/q

q1
+ µ

γCq2/q

q2

)
‖v‖min{q1,q2}.

Hence, as p < min{p1, p2} and q < min{q1, q2}, we can choose ρ ∈ (0, 1) such that

I(u, v) ≥ σ if ‖(u, v)‖ = ρ.

Part (b). The proof follows by taking (u0, v0) ∈W 1,p
0 (Ω, |x|−ap)×W 1,q

0 (Ω, |x|−bq)
with u0+ .v0+ 6≡ 0. Then, defining (ut, vt) = (t1/pu0, t

1
q v0), for t > 0, we obtain

I(ut, vt) ≤
(1
p
‖u0‖p +

1
q
‖v0‖q

)
t− µt

α
p + γ

q

∫
Ω

|x|−β2uα
0+
vγ
0+
dx→ −∞, (2.4)

as t→∞. �

From the mountain pass theorem [6] we get a (PS)c-sequence {(un, vn)} in
W 1,p

0 (Ω, |x|−ap)×W 1,q
0 (Ω, |x|−bq), where

0 < σ ≤ c = inf
h∈Γ

max
t∈[0,1]

I(h(t)) (2.5)

and

Γ =
{
h ∈ C([0, 1],W 1,p

0 (Ω, |x|−ap)×W 1,q
0 (Ω, |x|−bq)) : h(0) = 0, h(1) = e

}
, (2.6)

with I(e) ≡ I(t0u0, t0v0) < 0.

Lemma 2.5. In addition to (1.3) and (1.4), assume that one of the two following
conditions hold:

(i) the case (1.5), pi ∈ (p, p∗), qi ∈ (q, q∗), with θ/p1 +δ/q1 = α/p2 +γ/q2 = 1,
and βi as in (1.7), for i = 1, 2.

(ii) the case (1.6), p1 ∈ (p, p∗), q1 ∈ (q, q∗), with θ/p1 + δ/q1 = 1, β1 as in
(1.7), p2 = p∗, q2 = q∗, and β2 = c1p

∗ = c2q
∗.

Let {(un, vn)} ⊂ W 1,p
0 (Ω, |x|−ap) × W 1,q

0 (Ω, |x|−bq) be a (PS)c-sequence. Then
{(un+ , vn+)} is a (PS)c-sequence which is bounded uniformly in µ > 0.

Proof. Let θ1 = min{p1, p2} and θ2 = min{q1, q2}, we have

c+ ‖(un, vn)‖+On(1) ≥ I(un, vn)− 〈I ′(un, vn), (un/θ1, vn/θ2)〉

≥ (
1
p
− 1
θ1

)‖un‖p + (
1
q
− 1
θ2

)‖vn‖q

+ λ(
θ

θ1
+

δ

θ2
− 1)

∫
Ω

|x|−β1uθ
n+
vδ

n+
dx

+ µ(
α

θ1
+
γ

θ2
− 1)

∫
Ω

|x|−β2uα
n+
vγ

n+
dx

≥ (
1
p
− 1
θ1

)‖un‖p + (
1
q
− 1
θ2

)‖vn‖q.

Therefore, independently of λ ≥ 0 and µ > 0, we conclude that {(un, vn)} is
a bounded sequence in W 1,p

0 (Ω, |x|−ap) ×W 1,q
0 (Ω, |x|−bq). In particular, we have

that {(un− , vn−)} and {(un+ , vn+)} are bounded sequences in W 1,p
0 (Ω, |x|−ap) ×

W 1,q
0 (Ω, |x|−bq), then

−‖un−‖p =
〈
I ′(un, vn), (un− , 0)

〉
→ 0 as n→∞ (2.7)
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and similarly

−‖vn−‖q =
〈
I ′(un, vn), (0, vn−)

〉
→ 0 as n→∞. (2.8)

Moreover, we get

I(un+ , vn+) = I(un, vn) +
1
p
‖un−‖p +

1
q
‖vn−‖q = I(un, vn) +On(1).

Therefore, from (2.7) and (2.8), we obtain I(un+ , vn+) → c as n→∞. Similarly, if
(w, z) ∈W 1,p

0 (Ω, |x|−ap)×W 1,q
0 (Ω, |x|−bq), we prove that

〈I ′(un+, vn+), (w, z)〉 = 〈I ′(un, vn), (w, z)〉+On(1),

hence I ′(un+ , un+) → 0 as n→∞. �

3. Proof of theorem 1.1

Lemma 3.1. Suppose that (1.3) and (1.4) hold. Assume that pi ∈ (p, p∗), qi ∈
(q, q∗), i = 1, 2, with θ/p1 + δ/q1 = α/p2 + γ/q2 = 1, and βi, i = 1, 2, as in
(1.7). Then, every (PS)c-sequence {(un, vn)} with un, vn ≥ 0, for a.e. in Ω, is
precompact.

Proof. From lemma 2.5, the sequence {(un, vn)} is bounded in W 1,p
0 (Ω, |x|−ap) ×

W 1,q
0 (Ω, |x|−bq). We can assume, passing to a subsequence if necessary, there exists

(u, v) ∈W 1,p
0 (Ω, |x|−ap)×W 1,q

0 (Ω, |x|−bq) satisfying un ⇀ u and vn ⇀ v weakly, as
n→∞. From the compact embedding theorem [35, Theorem 2.1], we obtain

un → u in Lp1(Ω, |x|−β1) ∩ Lp2(Ω, |x|−β2) as n→∞,

vn → v in Lq1(Ω, |x|−β1) ∩ Lq2(Ω, |x|−β2) as n→∞.

Since there exist f ∈ Lp1(Ω, |x|−β1) and g ∈ Lq1(Ω, |x|−β1) such that |un|(x) ≤ f(x)
and |vn|(x) ≤ g(x), for a.e. x ∈ Ω and all n ∈ N, applying the Lebesgue’s dominated
convergence theorem we infer that

lim
n→∞

∫
Ω

|x|−β1uθ−1
n vδ

n(un − u)dx = 0 , (3.1)

and similarly

lim
n→∞

∫
Ω

|x|−β2uα−1
n vγ

n(un − u)dx = 0. (3.2)

Now, taking the upper limit in the equation∫
Ω

|x|−ap
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)dx

= 〈I ′(un, vn), (un − u, 0)〉 −
∫

Ω

|x|−ap|∇u|p−2∇u∇(un − u)dx

+ λθ

∫
Ω

|x|−β1uθ−1
n vδ

n(un − u)dx+ µα

∫
Ω

|x|−β2uα−1
n vγ

n(un − u)dx .

Using the definition of (PS)c-sequence, the weak convergence, (3.1), and (3.2), we
obtain

lim sup
n→∞

∫
Ω

|x|−ap
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)dx = 0.
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Consequently, by a well known lemma (see e.g. [20, lemma 4.1]) we achieve, up to
a subsequence, that un → u strongly in W 1,p

0 (Ω, |x|−ap) as n → ∞. Analogously,
we get vn → v strongly in W 1,q

0 (Ω, |x|−bq) as n→∞. �

Proof of theorem 1.1. By combining lemmata 2.4 and 2.5, there exists a (PS)c-
sequence {(un, vn)} in W 1,p

0 (Ω, |x|−ap)×W 1,q
0 (Ω, |x|−bq) with un, vn ≥ 0, for a.e. in

Ω. Moreover, from lemma 3.1 there exist (u, v) ∈W 1,p
0 (Ω, |x|−ap)×W 1,q

0 (Ω, |x|−bq)
and a subsequence of {(un, vn)}, that we will denote by {(un, vn)}, such that un → u

strongly in W 1,p
0 (Ω, |x|−ap) and vn → v strongly in W 1,q

0 (Ω, |x|−bq), as n → ∞.
Then, we conclude that

I(u, v) = c > 0 and I ′(u, v) = 0,

that is, (u, v) is a nonnegative weak solution of system (1.2). Moreover, it is easy
to check that u, v 6≡ 0. �

4. Proof of theorem 1.2

First of all, notice that by lemma 2.4 the geometric conditions of the mountain
pass theorem for the functional I are satisfied.

The next three lemmata are crucial in the proof of this theorem.

Lemma 4.1. Let {(un, vn)} ⊂ (W 1,p
0 (Ω, |x|−ap))2 be a bounded (PS)c-sequence

such that un, vn ≥ 0, for a.e. in Ω, and there exists (u, v) ∈ (W 1,p
0 (Ω, |x|−ap))2

satisfying un ⇀ u and vn ⇀ v weakly in W 1,p
0 (Ω, |x|−ap), as n → ∞. Then, (u, v)

is a weak solution of system (1.2) and u, v ≥ 0 for a.e. in Ω.

Proof. Arguing as in the proof of lemma 3.1, by combining the compact embedding
theorem [35, Theorem 2.1] with the Lebesgue’s dominated convergence theorem,
we obtain that u, v ≥ 0 for a.e. in Ω,

lim
n→∞

∫
Ω

|x|−β1uθ−1
n vδ

nwdx =
∫

Ω

|x|−β1uθ−1vδwdx, ∀w ∈W 1,p
0 (Ω, |x|−ap), (4.1)

and

lim
n→∞

∫
Ω

|x|−β1uθ
nv

δ−1
n zdx =

∫
Ω

|x|−β1uθvδ−1zdx, ∀z ∈W 1,p
0 (Ω, |x|−ap). (4.2)

Notice that ∇un(x) → ∇u(x) and ∇vn(x) → ∇v(x), for a.e. x ∈ Ω, as n→∞.
These facts can be proved arguing as in [9] (see also [8, 20, 22]).

Since {(un, vn)} is bounded in (W 1,p
0 (Ω, |x|−ap))2, we have {|∇un|p−2∇un} and

{|∇vn|p−2∇vn} are bounded in (L
p

p−1 (Ω, |x|−ap))N . On the other hand, since α +
γ = p∗, by the Hölder’s inequality, we infer that {un

α−1vn
γ} and {un

αvn
γ−1} are

bounded in L
p∗

p∗−1 (Ω, |x|−e1p∗). Therefore, by lemma 2.3 we get

∇un ⇀ ∇u and ∇vn ⇀ ∇v weakly in (L
p

p−1 (Ω, |x|−ap))N (4.3)

and

uα
nv

γ−1
n ⇀ uαvγ−1, uα−1

n vγ
n ⇀ uα−1vγ weakly in L

p∗
p∗−1 (Ω, |x|−c1p∗), (4.4)

as n→∞. Consequently, using (4.1)− (4.4) we obtain

〈I ′(u, v), (w, z)〉 = lim
n→∞

〈I ′(un, vn), (w, z)〉 = 0, ∀(w, z) ∈ (W 1,p
0 (Ω, |x|−ap))2,

that is, (u, v) is a weak solution of system (1.2). �
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Lemma 4.2. In addition to (1.3), (1.4), and (1.6), assume that p = q, 0 ≤ a = b,
p1 = q1 ∈ (p, p∗), with θ/p1 + δ/q1 = 1, p∗ = q∗, and β2 = c1p

∗. Then, all the
Palais Smale sequences {(un, vn)} ⊂ (W 1,p

0 (Ω, |x|−ap))2 for the operator I at the
level c, with un, vn ≥ 0 for a.e. in Ω, are precompact provided that

c < (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p +K(λ), (4.5)

where

K(λ) = λp1(
1
p
− 1
p1

) lim
n→∞

∫
Ω

|x|−β1uθ
nv

δ
ndx.

Proof. By Lemma 2.5 the sequence {(un, vn)} is bounded in (W 1,p
0 (Ω, |x|−ap))2;

consequently, there exists (u, v) ∈ (W 1,p
0 (Ω, |x|−ap))2 such that un ⇀ u and vn ⇀ v

weakly in W 1,p
0 (Ω, |x|−ap), as n→∞. Then, by combining the compact embedding

theorem [35, Theorem 2.1] with the Lebesgue’s dominated convergence theorem,
we infer that un(x) → u(x), vn(x) → v(x), for a.e. in Ω, as n→∞, and

lim
n→∞

∫
Ω

|x|−β1uθ
nv

δ
ndx =

∫
Ω

|x|−β1uθvδdx. (4.6)

Moreover, as in Lemma 4.1 we can suppose that ∇un(x) → ∇u(x) and ∇vn(x) →
∇v(x), for a.e. x ∈ Ω, as n→∞.

Define ũn = un − u and ṽn = vn − v. By Brezis and Lieb [10, Theorem 1] we
have

(i) ‖un‖p = ‖ũn‖p + ‖u‖p +On(1), as n→∞.
(ii) ‖vn‖p = ‖ṽn‖p + ‖v‖p +On(1), as n→∞.
(iii)

∫
Ω

|x|−c1p∗ |un|α|vn|γdx−
∫

Ω

|x|−c1p∗ |ũn|α|ṽn|γdx

=
∫

Ω

|x|−c1p∗ |u|α|v|γdx+On(1), as n→∞.

We recall that the proof of identity iii. follows arguing as in [27, Lemma 8].
By Lemma 4.1 we have that (u, v) is a weak solution of system (1.2), that is,

〈I ′(u, v), (w, z)〉 = 0 for all (w, z) ∈ (W 1,p
0 (RN , |x|−ap))2. By using (4.6) and (i)–

(iii), we get

‖ũn‖p − µα

∫
Ω

|x|−c1p∗ |ũn|α|ṽn|γdx

= ‖un‖p − ‖u‖p − µα
[∫

Ω

|x|−c1p∗uα
nv

γ
ndx−

∫
Ω

|x|−c1p∗uαvγdx
]

+On(1)

= 〈I ′(un, vn), (un, 0)〉 − 〈I ′(u, v), (u, 0)〉+On(1)

= On(1), as n→∞.

Analogously, we obtain

‖ṽn‖p − µγ

∫
Ω

|x|−c1p∗ |ũn|α|ṽn|γdx = On(1).

Thus, we can take l ≥ 0 such that

l = lim
n→∞

‖ũn‖p

α
= lim

n→∞

‖ṽn‖p

γ
= µ lim

n→∞

∫
Ω

|x|−c1p∗ |ũn|α|ṽn|γdx.
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If l = 0 the result is proved. Suppose by contradiction that l > 0. By the definition
of (PS)c-sequence we get

c+On(1)

= I(un, vn)− 1
p1
〈I ′(un, vn), (un, vn)〉

= (
1
p
− 1
p1

)(‖un‖p + ‖vn‖p) + µ(
α+ γ

p1
− 1)

∫
Ω

|x|−c1p∗uα
nv

γ
ndx

= (
1
p
− 1
p1

)(‖ũn‖p + ‖ṽn‖p) + (
1
p
− 1
p1

)(‖u‖p + ‖v‖p)

+ µ(
p∗

p1
− 1)

[∫
Ω

|x|−c1p∗ ũα
n ṽ

γ
ndx+

∫
Ω

|x|−c1p∗uα
nv

γ
ndx

]
+On(1)

= (
1
p
− 1
p1

)p∗l + (
1
p
− 1
p1

)(‖u‖p + ‖v‖p)

+ (
1
p1
− 1
p∗

)p∗
[
l + µ

∫
Ω

|x|−c1p∗uα
nv

γ
ndx

]
+On(1)

= (
1
p
− 1
p∗

)p∗l + (
1
p
− 1
p1

)
[
λp1

∫
Ω

|x|−β1uθvδdx+ µp∗
∫

Ω

|x|−c1p∗uαvγdx
]

+ µ(
1
p1
− 1
p∗

)p∗
∫

Ω

|x|−c1p∗uα
nv

γ
ndx+On(1)

= (
1
p
− 1
p∗

)p∗l + λp1(
1
p
− 1
p1

)
∫

Ω

|x|−β1uθvδdx

+ µ(
1
p
− 1
p∗

)p∗
∫

Ω

|x|−c1p∗uα
nv

γ
ndx+On(1)

≥ (
1
p
− 1
p∗

)p∗l + λp1(
1
p
− 1
p1

)
∫

Ω

|x|−β1uθvδdx+On(1).

(4.7)

Using the definition of S̃ we have(∫
Ω

|x|−c1p∗uα
nv

γ
ndx

)p/p∗

S̃ ≤ ‖un‖p + ‖vn‖p, ∀n.

Hence, taking the limit in the above inequality we get( l
µ

)p/p∗

S̃ ≤ (α+ γ)l = p∗l

then

l ≥ (µ)
−p

p∗−p (p∗)
−p∗

p∗−p S̃
p∗

p∗−p . (4.8)

Substituting (4.8) in (4.7) and taking the limit, we obtain

c ≥ (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p +K(λ),

which contradicts the inequality (4.5). �

Lemma 4.3. We can choose e in (2.6) such that c given by (2.5) satisfies

c < (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p . (4.9)
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Proof. Let us consider s0 = s1(sα
1 t

γ
1)

−1
p∗ and t0 = t1(sα

1 t
γ
1)

−1
p∗ , where s1, t1 > 0 and

s1/t1 = (α/γ)1/p, and uε the function defined in lemma 2.2. Then, it is suffices to
prove that there exists ε > 0 such that

sup
t≥0

I(t(s0uε), t(t0uε)) < (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p .

Due to the geometric conditions of the mountain pass theorem, for each ε > 0,
there exists tε > 0 such that

0 < σ ≤ sup
t≥0

I(t(s0uε), t(t0uε)) = I(tε(s0uε), tε(t0uε)).

Moreover, supposing by contradiction that there exists a subsequence {tεn} with
tεn

→ 0 as n→∞, we obtain

0 < σ ≤ I(tεn
(s0uεn

), tεn
(t0uεn

))

≤
tpεn
sp
0

p
‖uεn‖p +

tpεn
tp0
p

‖uεn‖p

≤
tpεn

p
(sp

0 + tp0)(S̃a,p,R +O(ε(N−d1p)/d1p
n )) → 0 as n→∞,

which is an absurd. Then, there exists l > 0 with tε ≥ l, for all ε > 0. Consequently,
by using lemma 2.2 and putting c0 = lp1sθ

0t
δ
0, we get

sup
t≥0

I(t(s0uε), t(t0uε)) ≤
tpε
p

( sp
1 + tp1

(sα
1 t

γ
1)p/p∗

‖uε‖p
)
− λc0

∫
Ω

|x|−β1up1
ε dx− µtp

∗

ε . (4.10)

Note that

t1ε
= (µp∗)

−1
p∗−p

( sp
1 + tp1

(sα
1 t

γ
1)p/p∗

) 1
p∗−p ‖uε‖

p
p∗−p (4.11)

is the unique maximum point of fε : (0,∞) → R, given by

fε(t) =
(sp

1 + tp1) t
p

(sα
1 t

γ
1)p/p∗p

‖uε‖p − µtp
∗
.

Also we know that

(A+B)k ≤ Ak + k(A+B)k−1B, (4.12)

for all A,B ≥ 0 and k ≥ 1 [26]. Observe that the following identity holds

[ sp
1 + tp1

(sα
1 t

γ
1)p/p∗

]
=

[
(α/γ)γ/p∗ + (α/γ)−α/p∗

]
. (4.13)

By the Caffarelli-Kohn-Nirenberg’s inequality, W 1,p
0 (Ω, |x|−ap) ⊂W 1,p

a,c1
(RN ). Then

S̃a,p ≤ C∗a,p. (4.14)
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Substituting (4.11) in (4.10), from (4.12), (4.13), (4.14), and using lemma 2.2, we
obtain

sup
t≥0

I(t(s0uε), t(t0uε)) ≤ (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p

{
[(
α

γ
)γ/p∗ + (

α

γ
)−α/p∗ ]S̃a,p,R

+O(ε
N−d1p

d1p )
} p∗

p∗−p − λc0

∫
Ω

|x|−β1up1
ε dx

≤ (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p

{
[(
α

γ
)

γ
p∗ + (

α

γ
)
−α
p∗ ]S̃a,p

} p∗
p∗−p

+O(ε
N−d1p

d1p )− λc0

∫
Ω

|x|−β1up1
ε dx

≤ (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p

{
[(
α

γ
)

γ
p∗ + (

α

γ
)
−α
p∗ ]C∗a,p

} p∗
p∗−p

+O(ε
N−d1p

d1p )− λc0

∫
Ω

|x|−β1up1
ε dx

(4.15)

Now, from lemma 2.1 and (4.15), we get

sup
t≥0

I(t(s0uε), t(t0uε)) ≤ (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p +O(ε
N−d1p

d1p )

− λc0

∫
Ω

|x|−β1up1
ε dx.

(4.16)

Supposing that c < (p1−p+1)N−(a+1)p1
p−1 − (N−p−ap)(p1−p)

p(p−1) we have

(N − p1 + ap1 + c)(p− 1)(N − d1p)
d1p(N − p− ap)

− (N − d1p)(p− 1)p1

d1p2
<
N − d1p

d1p
,

then, by lemma 2.2 and by (4.16), we can take a ε > 0 small enough such that

sup
t≥0

I(t(s0uε), t(t0uε)) ≤ (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p +O(ε
N−d1p

d1p )

−O(ε
(N−d1p)(p−1)(N−p1−ap1+c)

d1p(N−p−ap) − (N−d1p)(p−1)p1
d1p2 )

< (
1
p
− 1
p∗

)(µp∗)
−p

p∗−p S̃
p∗

p∗−p .

This completes the proof. �

Proof of theorem 1.2. From lemmata 2.4, 2.5, and 4.3, there exists a bounded
(PS)c-sequence {(un, vn)} in (W 1,p

0 (Ω, |x|−ap))2 with c > 0 satisfying (4.9) and
un, vn ≥ 0 for a.e. in Ω. Since that p1 ∈ (p, p∗), it follows that c verifies (4.5).
Thus, we have by lemma 4.2 that there exists (u, v) ∈ (W 1,p

0 (Ω, |x|−ap))2 with
un → u and vn → v in W 1,p

0 (Ω, |x|−ap), as n→∞. Hence, we conclude

I(u, v) = c > 0 and I ′(u, v) = 0,

that is, (u, v) is a nontrivial and nonnegative weak solution of system (1.2). �
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5. Proof of theorem 1.3

The proof follows the steps the proof of theorem 1.2. By lemmata 2.4 and 2.5,
there exists a (PS)c-sequence {(un, vn)} in W 1,p

0 (Ω, |x|−ap)×W 1,q
0 (Ω, |x|−bq) with

c > 0 given as in (2.5) and un, vn ≥ 0 for a.e. in Ω. Moreover, {(un, vn)} is bounded
uniformly in µ > 0, that is, there exist M > 0 such that ‖(un, vn)‖ ≤ M for all
n ∈ N, uniformly in µ > 0. Consequently, we get that c ≤M uniformly in µ > 0.

Due to the boundedness of {(un, vn)}, there exists a subsequence, that we will
denote by {(un, vn)}, and (u, v) ∈ W 1,p

0 (Ω, |x|−ap) ×W 1,q
0 (Ω, |x|−bq) with un ⇀ u

weakly in W 1,p
0 (Ω, |x|−ap) and vn ⇀ v weakly in W 1,q

0 (Ω, |x|−bq), as n→∞. Then,
arguing as in lemma 4.1 we obtain that (u, v) is a weak solution of system (1.2)
with u, v ≥ 0 for a.e. in Ω.

Now, we will prove that there exists µ0 > 0 such that u, v is nontrivial, provided
that 0 < µ < µ0.

Supposing by contradiction that u(x) ≡ 0 for a.e. x ∈ Ω and proceeding as in
the proof of theorem 1.2, we obtain l > 0 such that

l = lim
n→∞

‖un‖p

α
= lim

n→∞

‖vn‖q

γ
= µ lim

n→∞

∫
Ω

|x|−c1p∗uα
nv

γ
ndx

and
c = lim

n→∞
I(un, vn) = (

α

p
+
γ

q
− 1)l > 0. (5.1)

On the other hand, by Young’s inequality and definitions of C∗a,p and C∗b,q, we obtain

l

µ
≤ α(p∗+p)/p

p∗
(C∗a,p)

−p∗/plp
∗/p +

γ(q∗+q)/q

q∗
(C∗b,q)

−q∗/qlq
∗/q

≤
[α(p∗+p)/p

p∗
(C∗a,p)

−p∗/p +
γ(q∗+q)/q

q∗
(C∗b,q)

−q∗/q
]
lτ ,

where τ = max{p∗/p, q∗/q} if l > 1, and τ = min{p∗/p, q∗/q} if l ≤ 1. Therefore,

l ≥
[
µ
(α(p∗+p)/p

p∗
(C∗a,p)

−p∗/p +
γ(q∗+q)/q

q∗
(C∗b,q)

−q∗/q
)] −1

τ−1
.

Thus substituting the above inequality in (5.1) and taking µ0 > 0 small enough we
conclude

c ≥ (
α

p
+
γ

q
− 1)

[
µ
(α(p∗+p)/p

p∗
(C∗a,p)

−p∗/p +
γ(q∗+q)/q

q∗
(C∗b,q)

−q∗/q
)] −1

τ−1 ≥M,

for all 0 < µ < µ0, which is an absurd.

6. Appendix

Proof of lemma 2.2. From equation (2.1) we obtain

‖∇yε‖p
Lp(RN ,|x|−ap)

= (S̃a,p,R)p∗/(p∗−p) = (ka,p(ε))p‖∇Ua,p,ε‖p
Lp(RN ,|x|−ap)

,

‖yε‖p∗

Lp∗ (RN ,|x|−c1p∗ )
= (S̃a,p,R)p∗/(p∗−p) = (ka,p(ε))p∗‖Ua,p,ε‖p∗

Lp∗ (RN ,|x|−c1p∗ )
.

We observe that

∇(ψ(x)Ua,p,ε(x)) =


∇Ua,p,ε(x) if |x| < R0

Ua,p,ε(x)∇ψ(x) + ψ(x)∇Ua,p,ε(x) if R0 ≤ |x| < 2R0

0 if |x| ≥ 2R0
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and

∇Ua,p,ε(x) = −N − p− ap

p− 1
· |x|[d1p(N−p−ap)/(p−1)(N−d1p)]−2x

(ε+ |x|d1p(N−p−ap)/(p−1)(N−d1p))N/d1p
·

Therefore,∫
Ω

|x|−ap|∇(ψUa,p,ε)(x)|pdx = O(1) +
∫

RN

|x|−ap|∇Ua,p,ε(x)|pdx

= O(1) + (S̃a,p,R)
p∗

p∗−p (ka,p(ε))−p

and ∫
Ω

|x|−c1p∗ |ψ(x)Ua,p,ε(x)|p
∗
dx = O(1) +

∫
RN

|x|−c1p∗ |Ua,p,ε(x)|p
∗
dx

= O(1) + (S̃a,p,R)
p∗

p∗−p (ka,p(ε))−p∗ .

Consequently,∫
Ω

|x|−ap|∇uε(x)|pdx =
O(1) + (S̃a,p,R)p∗/(p∗−p)(ka,p(ε))−p

[O(1) + (S̃a,p,R)p∗/(p∗−p)(ka,p(ε))−p∗ ]p/p∗

=
(ka,p(ε))p[O(1) + (S̃a,p,R)p∗/(p∗−p)(ka,p(ε))−p]

[O(ka,p(ε)p∗) + (S̃a,p,R)p∗/(p∗−p)]p/p∗

≤ S̃a,p,R +O(ka,p(ε)p)

= S̃a,p,R +O(ε(N−d1p)/d1p).

Now, we prove that ‖uε‖p1

Lp1 (Ω,|x|−β1 )
is as in (2.2). Considering the changes of

variables by the polar coordinates and s = R−1
0 ε−1/αr with α = d1p(N−p−ap)

(p−1)(N−d1p) , we
obtain ∫

Ω

|x|−(a+1)p1+c|ψUa,p,ε|p1dx

≥ O(1) +
∫
|x|<R0

|x|−(a+1)p1+c|Ua,p,ε|p1 dx

= O(1) + ωN

∫ R0

0

r−(a+1)p1+c+N−1

(ε+ rα)(N−d1p)p1/d1p
dr

= O(1) + ωN (Rα
0 ε)

−(N−d1p)p1
d1p +

(N−p1−ap1+c)(p−1)(N−d1p)
d1p(N−p−ap)

×
∫ ε−1/α

0

s−(a+1)p1+c+N−1

(R−α
0 + sα)(N−d1p)p1/d1p

ds.

(6.1)

Assuming that c = [(p1 − p+ 1)N − (a+ 1)p1]/(p− 1), we see that

−(N − d1p)p1

d1p
+

(p− 1)(N − p1 − ap1 + c)(N − d1p)
d1p(N − p− ap)

= 0,

−(a+ 1)p1 + c+N − (N − p− ap)p1

(p− 1)
= 0·

Therefore, by (6.1),∫
Ω

|x|−(a+1)p1+c|ψUa,p,ε|p1dx ≥ ωN

∫ ε−1/α

1

s−(a+1)p1+c+N−1−α
(N−d1p)p1

d1p

[(R0s)−α + 1](N−d1p)p1/d1p
ds
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≥ ωN(
R−α

0 + 1
)(N−d1p)p1/d1p

| ln(ε)| = O(| ln(ε)|).

Hence, we obtain∫
Ω

|x|−(a+1)p1+c|uε|p1dx ≥ O(| ln(ε)|)[
O(1) + (Sa,p,R)p∗/(p∗−p)(ka,p(ε))−p∗

]p1/p∗

=
O(| ln(ε)|)

(ka,p(ε))−p1
[
O(ka,p(ε)p∗) + (Sa,p,R)p∗/(p∗−p)

]p1/p∗

≥ O(ε(N−d1p)p1/d1p2
| ln(ε)|).

Assuming that c > [(p1 − p+ 1)N − (a+ 1)p1]/(p− 1), we have

−(N − d1p)p1

d1p
+

(N − p1 − ap1 + c)(p− 1)(N − d1p)
d1p(N − p− ap)

> 0,

−(a+ 1)p1 + c+N − (N − p− ap)p1

(p− 1)
> 0.

Consequently, by (6.1),∫
Ω

|x|−(a+1)p1+c|ψUa,p,ε|p1dx

≥ O(1) + ωN (Rα
0 ε)

−(N−d1p)p1
d1p +

(N−p1−ap1+c)(p−1)(N−d1p)
d1p(N−p−ap)

× 1
(R−α

0 + 1)(N−d1p)p1/d1p

∫ 1

1/2

s−(a+1)p1+c+N−1 ds ≥ O(1).

Hence, we get∫
Ω

|x|−(a+1)p1+c|uε|p1dx ≥ O(1)
(ka,p(ε))−p1 [O(ka,p(ε)p∗) + (Sa,p,R)p∗/(p∗−p)]p1/p∗

≥ O(ka,p(ε)p1)
[O(1) + (Sa,p,R)p∗/(p∗−p)]p1/p∗

≥ O(ε(N−d1p)p1/d1p2
).

If c < [(p1 − p+ 1)N − (a+ 1)p1]/(p− 1), we see that

−(N − d1p)p1

d1p
+

(N − p1 − ap1 + c)(p− 1)(N − d1p)
d1p(N − p− ap)

< 0,

−(a+ 1)p1 + c+N − (N − p− ap)p1

(p− 1)
< 0.

Using (6.1) we obtain∫
Ω

|x|−(a+1)p1+c|ψUε|p1dx

≥ O(1)ε
−(N−d1p)p1

d1p +
(N−p1−ap1+c)(p−1)(N−d1p)

d1p(N−p−ap)

∫ 1

1/2

s−(a+1)p1+c+N−1ds

≥ O
(
ε
−(N−d1p)p1

d1p +
(N−p1−ap1+c)(p−1)(N−d1p)

d1p(N−p−ap)

)
.
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Hence, we conclude∫
Ω

|x|−(a+1)p1+c|uε|p1dx ≥
O

(
ε
−(N−d1p)p1

d1p +
(N−p1−ap1+c)(p−1)(N−d1p)

d1p(N−p−ap)
)[

O(1) + (Sa,p,R)p∗/(p∗−p)(ka,p(ε))−p∗
]p1/p∗

≥ O
(
ε

(N−p1−ap1+c)(p−1)(N−d1p)
d1p(N−p−ap) − (N−d1p)(p−1)p1

d1p2
)
.
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[19] J. P. Garćıa Azorero, and I. Peral Alonso; Existence and nonuniqueness for the p-laplacian:

Nonlinear eigenvalues, Comm. Partial Diff. Eqns., Vol. 12 (1987), 1389-1430.
[20] N. Ghoussoub, and C. Yuan; Multiple solutions for quasi-linear PDEs involving the critical

Sobolev and Hardy exponents, Trans. Amer. Math. Soc., Vol. 352 (1998), 5703-5743.
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