Electronic Journal of Differential Equations, Vol. 2008(2008), No. 116, pp. 1-20. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

RAVI P. AGARWAL, DONAL O'REGAN, BAOQIANG YAN

$$
\begin{aligned}
& \text { AbSTRACT. Using the theory of fixed point index, this paper discusses the } \\
& \text { existence of at least one positive solution and the existence of multiple positive } \\
& \text { solutions for the singular three-point boundary value problem: } \\
& \qquad y^{\prime \prime}(t)+a(t) f\left(t, y(t), y^{\prime}(t)\right)=0, \quad 0<t<1 \\
& \qquad y^{\prime}(0)=0, \quad y(1)=\alpha y(\eta)
\end{aligned}
$$

where $0<\alpha<1,0<\eta<1$, and f may be singular at $y=0$ and $y^{\prime}=0$.

1. Introduction

In this paper, we consider the singular three-point boundary-value problem (BVP):

$$
\begin{gather*}
y^{\prime \prime}(t)+a(t) f\left(t, y(t), y^{\prime}(t)\right)=0, \quad 0<t<1, \tag{1.1}\\
y^{\prime}(0)=0, \quad y(1)=\alpha y(\eta), \tag{1.2}
\end{gather*}
$$

where $0<\alpha<1,0<\eta<1, f$ may be singular at $y=0$ and $y^{\prime}=0$, and $a \in C((0,1),(0, \infty))$.

When $f(t, x, z)$ has no singularity at $x=0$ and $z=0$, there are many results on the existence of solutions to $(\sqrt{1.1})-(\sqrt{1.2})$ with different boundary conditions such as $x(0)=0, x(1)=\delta x(\eta)$, or $x(0)=x_{0}, x(\eta)-x(1)=x_{1}$ (see [4, 5, 7, 8, (9)). Also when $f(t, x, z)=f(t, x)$ has no singularity at $x=0$, using Krasnoselkii's fixed point theorem, Liu citel1 discussed the existence of positive solutions to $\sqrt{1.1}-(\sqrt{1.2})$. In [3, 14, the authors obtained the existence of at least one positive solutions to (1.1)-(1.2) when $f(t, x, z)$ is singular at $x=0$ and $z=0$.

The features in this article, that differ from those in [3, 14], are as follows. Firstly, the nonlinearity $f(t, x, z)$ may be sublinear in x at $x=+\infty$ and the degree of singularity in x and z may be arbitrary; i.e., $f(t, x, z)$ contains $\frac{1}{x^{\alpha}}, x^{\beta}$ and $\frac{1}{(-z)^{-\gamma}}$ for any $\alpha>0, \beta>0$ and $\gamma>0$. Secondly, 1.1 - 1.2 may have at least two positive solutions. Thirdly, (1.1)-(1.2) may have no positive solutions.

[^0]There are main five sections in our paper. In sections 2, we discuss a special Banach space and define a new cone in this space, and some lemmas are proved for convenience. In section 3, we discuss the nonexistence of positive solutions to (1.1)-(1.2). In section 4, the existence of at least one positive solution to (1.1)(1.2) is presented when $f(t, x, z)$ is singular at $x=0$ and $z=0$. In section 5 , we consider the existence of at least two positive solutions to 1.1 - 1.2 when $f(t, x, z)$ is singular at $x=0$ and $z=0$ and f is suplinear at $x=+\infty$. Some of the ideas in this paper were motivated from [1, 2, 12, 13].

2. Preliminaries

Let

$$
C^{1}[0,1]=\left\{y:[0,1] \rightarrow R: y(t) \text { and } y^{\prime}(t) \text { are continuous on }[0,1]\right\}
$$

with norm $\|y\|=\max \left\{\max _{t \in[0,1]}|y(t)|, \max _{t \in[0,1]}\left|y^{\prime}(t)\right|\right\}$ and

$$
P=\left\{y \in C^{1}[0,1]: y(t) \geq 0, \forall t \in[0,1]\right\} .
$$

Obviously $C^{1}[0,1]$ is a Banach space and P is a cone in $C^{1}[0,1]$. The following lemmas are needed later.

Lemma 2.1 (citeg3). Let Ω be a bounded open set in real Banach space E, P be a cone of $E, \theta \in \Omega$ and $A: \bar{\Omega} \cap P \rightarrow P$ be continuous and compact. Suppose

$$
\begin{equation*}
\lambda A x \neq x, \quad \forall x \in \partial \Omega \cap P, \lambda \in(0,1] \tag{2.1}
\end{equation*}
$$

then $i(A, \Omega \cap P, P)=1$.
Lemma 2.2 (6). Let Ω be a bounded open set in real Banach space E, P be a cone of $E, \theta \in \Omega$ and $A: \bar{\Omega} \cap P \rightarrow P$ be continuous and compact. Suppose

$$
\begin{equation*}
A x \neq x, \quad \forall x \in \partial \Omega \cap P \tag{2.2}
\end{equation*}
$$

then $i(A, \Omega \cap P, P)=0$.
Lemma 2.3 ([11]). Let $0<\alpha<1$, $a, h \in C((0,1),(0, \infty))$, $a, h \in L^{1}[0,1]$ and

$$
\begin{aligned}
y(t)= & \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) h(\tau) d \tau d s-\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau) h(\tau) d \tau d s \\
& -\int_{0}^{t} \int_{0}^{s} a(\tau) h(\tau) d \tau d s
\end{aligned}
$$

Then

$$
\begin{equation*}
\min _{t \in[0,1]} y(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}|y(t)| . \tag{2.3}
\end{equation*}
$$

Lemma 2.4. Assume that $f \in C((0,1) \times(0,+\infty) \times(-\infty, 0),(0,+\infty))$, that $a \in$ $C((0,1),(0,+\infty))$, and that for any constant $H>0$ there exists a function $\Psi_{H}(t)$ continuous on $(0,1)$, and positive on $(0,1)$ and a constant $0 \leq \gamma<1$ such that

$$
\begin{equation*}
f(t, x, z) \geq \Psi_{H}(t)(-z)^{\gamma}, \quad \forall t \geq 0,0<x \leq H, z<0 \tag{2.4}
\end{equation*}
$$

where $\int_{0}^{1} a(s) \Psi_{H}(s) d s<+\infty$. Then there is a $c_{0}>0$ such that for any positive solution $x \in C[0,1]$ with $x^{\prime}(t)<0$ for all $t \in(0,1)$ to (1.1)-(1.2) we have

$$
\begin{equation*}
x(t) \geq c_{0}, \quad t \in[0,1] \tag{2.5}
\end{equation*}
$$

Moreover, if $x_{0} \in C[0,1]$ is a positive solution to

$$
\begin{gathered}
y^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, y(t)\right\},-\left|y^{\prime}(t)\right|-\frac{1}{n}\right)=0, \quad 0<t<1 \\
y^{\prime}(0)=0, \quad y(1)=\alpha y(\eta)
\end{gathered}
$$

where $\frac{\alpha}{1-\alpha}(1-\eta) \frac{1}{n}<c_{0}, x_{0}$ is a positive solution to

$$
\begin{gathered}
y^{\prime \prime}(t)+a(t) f\left(t, y(t),-\left|y^{\prime}(t)\right|-\frac{1}{n}\right)=0, \quad 0<t<1, \\
y^{\prime}(0)=0, \quad y(1)=\alpha y(\eta) .
\end{gathered}
$$

Proof. Assume that x is a positive solution to (1.1)-1.2) with $x^{\prime}(t)<0$ for $t \in(0,1)$. Then Lemma 2.3 implies $\min _{t \in[0,1]} x(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}|x(t)|>0$.

Let $H=1$. Then there exists a function $\Psi_{1}(t)$ continuous on $[0,1]$, and positive on $(0,1)$ a constant $0 \leq \gamma<1$ such that

$$
f(t, x, z) \geq \Psi_{1}(t)(-z)^{\gamma}, \quad \forall t \geq 0,0<x \leq 1, z<0 .
$$

There are two cases to be considered: (1) $x(t) \geq 1$ for all $t \in[0,1]$. (2) $x(1)<1$. Let $t_{*}=\inf \{t \mid x(t)<1$ for all $s \in[t, 1]\}$. If $t_{*}>0$, we have $x\left(t_{*}\right)=1$ and $x(0) \geq 1$. Then, Lemma 2.3 yields

$$
\begin{equation*}
\min _{t \in[0,1]}|x(t)| \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}|x(t)| \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \tag{2.6}
\end{equation*}
$$

If $t_{*}=0$ and $x\left(t_{*}\right)=1$, Lemma 2.3 implies

$$
\begin{equation*}
\min _{t \in[0,1]}|x(t)| \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}|x(t)| \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \tag{2.7}
\end{equation*}
$$

also. If $t_{*}=0$ and $x\left(t_{*}\right)<1$, from (2.4), we have

$$
-x^{\prime \prime}(t)=a(t) f\left(t, x(t), x^{\prime}(t)\right) \geq a(t) \Psi_{1}(t)\left(-x^{\prime}(t)\right)^{\gamma}, \quad t \in(0,1)
$$

Also note

$$
-\frac{x^{\prime \prime}(t)}{\left(-x^{\prime}(t)\right)^{\gamma}} \geq a(t) \Psi_{1}(t), \quad t \in(0,1)
$$

Integrating from 0 to t, we have

$$
\frac{1}{1-\gamma}\left(-x^{\prime}(t)\right)^{1-\gamma} \geq \int_{0}^{t} a(s) \Psi_{1}(s) d s, t \in(0,1)
$$

which implies

$$
-x^{\prime}(t) \geq\left[(1-\gamma) \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}}, \quad t \in(0,1)
$$

Integration from η to 1 yields

$$
x(\eta)-x(1) \geq \int_{\eta}^{1}\left[(1-\gamma) \int_{\eta}^{1} \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}} d t
$$

Since $x(1)=\alpha x(\eta)$, we have

$$
\begin{equation*}
x(1) \geq \frac{\alpha}{1-\alpha} \int_{\eta}^{1}\left[(1-\gamma) \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}} d t \tag{2.8}
\end{equation*}
$$

Let $c_{0}=\frac{1}{2} \min \left\{1, \frac{\alpha(1-\eta)}{1-\alpha \eta}, \frac{\alpha}{1-\alpha} \int_{\eta}^{1}\left[(1-\gamma) \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}} d t\right\}$. Combining (2.6), (2.7) and 2.8, we have

$$
\min _{t \in[0,1]} x(t) \geq c_{0}
$$

Suppose that x_{0} satisfies

$$
\begin{gathered}
x_{0}^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, x_{0}(t)\right\},-\left|x_{0}^{\prime}(t)\right|-\frac{1}{n}\right)=0, \quad t \in(0,1), \\
x_{0}^{\prime}(0)=0, \quad x_{0}(\eta)=\alpha x_{0}(1)
\end{gathered}
$$

Then $x_{0}^{\prime \prime}(t)<0$ and so $x_{0}(t)<0$ for $t \in(0,1)$. Then x_{0} satisfies

$$
\begin{gathered}
x_{0}^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, x_{0}(t)\right\}, x_{0}^{\prime}(t)-\frac{1}{n}\right)=0, \quad t \in(0,1), \\
x_{0}^{\prime}(0)=0, \quad x_{0}(\eta)=\alpha x_{0}(1)
\end{gathered}
$$

There are are two cases to be considered:
(1) $x_{0}(t) \geq 1$ for all $t \in[0,1]$. In this case, since $c_{0} \leq 1$, we have
$x_{0}^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, x_{0}(t)\right\}, x_{0}^{\prime}(t)-\frac{1}{n}\right)=x_{0}^{\prime \prime}(t)+a(t) f\left(t, x_{0}(t), x_{0}^{\prime}(t)-\frac{1}{n}\right)=0$, for $0<t<1$.
(2) $x_{0}(1)<1$. Let $t_{*}=\inf \left\{t \mid x_{0}(t)<1\right.$ for all $\left.s \in[t, 1]\right\}$. If $t_{*}>0$, we have $x_{0}\left(t_{*}\right)=1$ and $x_{0}(0) \geq 1$. Then

$$
\min _{t \in[0,1]} x_{0}(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}\left|x_{0}(t)\right| \geq \frac{\alpha(1-\eta)}{1-\alpha \eta}
$$

If $t_{*}=0$ and $x_{0}\left(t_{*}\right)=1$, we have

$$
\min _{t \in[0,1]} x_{0}(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}\left|x_{0}(t)\right| \geq \frac{\alpha(1-\eta)}{1-\alpha \eta}
$$

also. If $t_{*}=0$ and $x_{0}\left(t_{*}\right)<1$, from $(2.4$, we have

$$
-x_{0}^{\prime \prime}(t)=a(t) f\left(t, \max \left\{c_{0}, x_{0}(t)\right\}, x_{0}^{\prime}(t)-\frac{1}{n}\right) \geq a(t) \Psi_{1}(t)\left(-x_{0}^{\prime}(t)+\frac{1}{n}\right)^{\gamma}, \quad t \in(0,1)
$$

Also note

$$
-\frac{x_{0}^{\prime \prime}(t)}{\left(-x_{0}^{\prime}(t)+\frac{1}{n}\right)^{\gamma}} \geq a(t) \Psi_{1}(t), \quad t \in(0,1)
$$

Integrating from 0 to t, we have

$$
\frac{1}{1-\gamma}\left[\left(-x_{0}^{\prime}(t)+\frac{1}{n}\right)^{1-\gamma}-\left(\frac{1}{n}\right)^{1-\gamma}\right] \geq \int_{0}^{t} a(s) \Psi_{1}(s) d s, t \in(0,1)
$$

which implies

$$
-x_{0}^{\prime}(t)+\frac{1}{n} \geq\left[(1-\gamma) \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}}, t \in(0,1)
$$

Integration from η to 1 yields

$$
\left.x_{0}(\eta)-x_{0}(1) \geq \int_{\eta}^{1}\left[(1-\gamma) \int_{\eta}^{1} \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}}\right] d t-(1-\eta) \frac{1}{n}
$$

Since $x_{0}(1)=\alpha x_{0}(\eta)$, we have

$$
\left.x_{0}(1) \geq \frac{\alpha}{1-\alpha} \int_{\eta}^{1}\left[(1-\gamma) \int_{\eta}^{1} \int_{0}^{t} a(s) \Psi_{1}(s) d s\right]^{\frac{1}{1-\gamma}}\right] d t-\frac{\alpha}{1-\alpha}(1-\eta) \frac{1}{n} \geq c_{0}
$$

Consequently, the definition of c_{0} implies that $x_{0}(t) \geq c_{0}$ for all $t \in[0,1]$. Therefore,
$x_{0}^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, x_{0}(t)\right\}, x_{0}^{\prime}(t)-\frac{1}{n}\right)=x_{0}^{\prime \prime}(t)+a(t) f\left(t, x_{0}(t), x_{0}^{\prime}(t)-\frac{1}{n}\right)=0$,
for $0<t<1$. The proof is complete.
To discuss the existence of multiple positive solutions, we construct a new space. Let $q(t)=1-t, t \in[0,1]$ and

$$
C_{q}^{1}[0,1]=\left\{y:[0,1] \rightarrow R: y(t) \text { and } q(t) y^{\prime}(t) \text { are continuous on }[0,1]\right\}
$$

with norm $\|y\|_{q}=\max \left\{\max _{t \in[0,1]}|y(t)|, \max _{t \in[0,1]} q(t)\left|y^{\prime}(t)\right|\right\}$ and
$P_{q}=\left\{y \in C_{q}^{1}[0,1]: \min _{t \in[0,1]} y(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}|y(t)|\right.$ and $\left.y(0) \geq \max _{t \in[0,1]} q(t)\left|y^{\prime}(t)\right|\right\}$.
Lemma 2.5. The set $C_{q}^{1}[0,1]$ is a Banach space and P_{q} is cone in $C_{q}^{1}[0,1]$
Proof. It is easy to see that $\|\cdot\|_{q}$ is a norm of the space C_{q}^{1}. Now we show that C_{q}^{1} is a Banach space. Assume that $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq C_{q}^{1}$ is a Cauchy sequence; i.e., for each $\varepsilon>0$, there is a $N>0$ such that

$$
\begin{equation*}
\left\|x_{n}-x_{m}\right\|_{q}<\varepsilon, \quad \forall n>N, m>N \tag{2.9}
\end{equation*}
$$

Then

$$
\max _{t \in[0,1]}\left|x_{n}(t)-x_{m}(t)\right|<\varepsilon, \quad \forall n>N, m>N
$$

Thus, there is a $x_{0} \in C[0,1]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \max _{t \in[0,1]}\left|x_{n}(t)-x_{0}(t)\right|=0 \tag{2.10}
\end{equation*}
$$

For $1>\delta>0$, since $(1-\delta) \max _{t \in[0,1-\delta]}\left|x_{n}^{\prime}(t)-x_{m}^{\prime}(t)\right| \leq \max _{t \in[0,1-\delta]} q(t) \mid x_{n}^{\prime}(t)-$ $x_{m}^{\prime}(t) \mid$, we have

$$
\max _{t \in[0,1-\delta]}\left|x_{n}^{\prime}(t)-x_{m}^{\prime}(t)\right| \leq \frac{1}{1-\delta} \max _{t \in[0,1-\delta]} q(t)\left|x_{n}^{\prime}(t)-x_{m}^{\prime}(t)\right|<\frac{1}{1-\delta} \varepsilon
$$

which implies that for any $\delta>0, x_{n}^{\prime}(t)$ is uniformly convergent on $[0,1-\delta]$. Hence, $x_{0}(t)$ is continuously differentiable on $[0,1)$. And since $q(t) x_{N+1}^{\prime}(t)$ is uniformly continuous on $[0,1]$, there exists a $\delta^{\prime}>0$ such that

$$
\left|q\left(t_{1}\right) x_{N+1}^{\prime}\left(t_{1}\right)-q\left(t_{2}\right) x_{N+1}^{\prime}\left(t_{2}\right)\right|<\varepsilon \quad \text { for }\left|t_{1}-t_{2}\right|<\delta, t_{1}, t_{2} \in[0,1)
$$

Then

$$
\begin{aligned}
& \left|q\left(t_{1}\right) x_{0}^{\prime}\left(t_{1}\right)-q\left(t_{2}\right) x_{0}^{\prime}\left(t_{2}\right)\right| \\
& =\mid q\left(t_{1}\right) x_{0}^{\prime}\left(t_{1}\right)-q\left(t_{1}\right) x_{N+1}^{\prime}\left(t_{1}\right) \\
& \quad+q\left(t_{1}\right) x_{N+1}^{\prime}\left(t_{1}\right)-q\left(t_{2}\right) x_{N+1}^{\prime}\left(t_{2}\right)+q\left(t_{2}\right) x_{N+1}^{\prime}\left(t_{2}\right)-q\left(t_{2}\right) x_{0}^{\prime}\left(t_{1}\right) \mid \\
& \leq\left|q\left(t_{1}\right) x_{0}^{\prime}\left(t_{1}\right)-q\left(t_{1}\right) x_{N+1}^{\prime}\left(t_{1}\right)\right| \\
& \quad+\left|q\left(t_{1}\right) x_{N+1}^{\prime}\left(t_{1}\right)-q\left(t_{2}\right) x_{N+1}^{\prime}\left(t_{2}\right)\right|+\left|q\left(t_{2}\right) x_{N+1}^{\prime}\left(t_{2}\right)-q\left(t_{2}\right) x_{0}^{\prime}\left(t_{1}\right)\right| \\
& <3 \varepsilon, \quad \text { for }\left|t_{1}-t_{2}\right|<\delta^{\prime}, t_{1}, t_{2} \in[0,1)
\end{aligned}
$$

which implies that $\lim _{t \rightarrow 1^{-}} q(t) x_{0}^{\prime}(t)$ exists. Let $q(1) x_{0}(1)=\lim _{t \rightarrow 1^{-}} q(t) x_{0}^{\prime}(t)$. Now from (2.9), we have for any $t \in[0,1]$,

$$
q(t)\left|x_{n}^{\prime}(t)-x_{m}^{\prime}(t)\right|<\varepsilon, \quad \forall n>N, m>N
$$

Letting $m \rightarrow+\infty$, for all $t \in[0,1]$, we have

$$
\begin{equation*}
q(t)\left|x_{n}^{\prime}(t)-x_{0}^{\prime}(t)\right| \leq \varepsilon, \quad \forall n>N . \tag{2.11}
\end{equation*}
$$

Combining 2.10 and 2.11 shows $C_{q}^{1}[0,1]$ is a Banach space.
Clearly P_{q} is a cone of $C_{q}^{1}[0,1]$. The proof is complete.
Lemma 2.6. For each $y \in P_{q},\|y\|_{q}=\max _{t \in[0,1]}|y(t)|$.
Proof. For $y \in P$, obviously $\|y\|_{q} \geq \max _{t \in[0,1]}|y(t)|$. On the other hand, since $y \in P_{q}$,

$$
\max _{t \in[0,1]}|y(t)| \geq y(0) \geq \max _{t \in[0,1]} q(t)\left|y^{\prime}(t)\right| .
$$

Then

$$
\begin{aligned}
\|y\|_{q} & =\max \left\{\max _{t \in[0,1]}|y(t)|, \max _{t \in[0,1]} q(t)\left|y^{\prime}(t)\right|\right\} \\
& \leq \max \left\{\max _{t \in[0,1]}|y(t)|, y(0)\right\}=\max _{t \in[0,1]}|y(t)|
\end{aligned}
$$

Consequently, $\|y\|_{q}=\max _{t \in[0,1]}|y(t)|$. The proof is complete.
Now we list the following conditions to be used in this article.
(H) $f \in C((0,1) \times(0, \infty) \times(-\infty, 0),(0, \infty))$ and there are three functions $g, h \in$ $C((0,+\infty),(0,+\infty)), \Phi \in C((0,1),[0,+\infty))$, with $\Phi(t)>0$ for all $t \in(0,1)$, and

$$
\begin{equation*}
f(t, x, z) \leq \Phi(t) h(x) g(|z|) \quad \forall(t, x, z) \in(0,1) \times(0,+\infty) \times(-\infty, 0) \tag{2.12}
\end{equation*}
$$

$\left(H^{\prime}\right)$ For any constant $H>0$ there exists a function $\Psi_{H}(t)$ continuous on $(0,1)$ and positive on $(0,1)$, and a constant $0 \leq \gamma<1$ such that

$$
\begin{equation*}
f(t, x, z) \geq \Psi_{H}(t)(-z)^{\gamma}, \quad \forall t \in(0,1), 0<x \leq H, z<0 \tag{2.13}
\end{equation*}
$$

where $\int_{0}^{1} a(s) \Psi_{H}(s) d s<+\infty$.
For each $n \in N=\{1,2, \ldots\}$, for $y \in P$ (or $y \in P_{q}$), define operators

$$
\begin{align*}
\left(A_{n} y\right)(t)= & \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
& -\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \tag{2.14}\\
& -\int_{0}^{t} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s
\end{align*}
$$

for $t \in[0,1]$ and $c_{0}>0$.
Suppose that (H) and (H') hold. A standard argument (see [6, 7]) applied to (2.14) yields that $A_{n}: P \rightarrow P$ is continuous and completely continuous for each $n \in N$.
Lemma 2.7. Suppose (H) and (H') holds and $\int_{0}^{1} a(t) \Phi(t) \sup _{\frac{1}{c} \leq u \leq \frac{1}{c}+\frac{1}{1-t} c} g(u) d t<$ $+\infty$ for all $c>1$. Then $A_{n}: P_{q} \rightarrow P_{q}$ is a continuous and completely continuous for each $n \in N$.

Proof. For $y \in P_{q}$, it is easy to see that $\left|y^{\prime}(t)\right| \leq \frac{1}{1-t}\|y\|_{q}$ for all $t \in[0,1)$. Also (H) and Lemma 2.3 yield

$$
\frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}\left|\left(A_{n} y\right)(t)\right| \leq\left(A_{n} y\right)(t)<+\infty, \quad \forall t \in[0,1]
$$

and $\left(A_{n} y\right)^{\prime}(t)>-\infty$ for all $t \in[0,1)$. Moreover, since

$$
\begin{aligned}
\left(A_{n} y\right)(0)= & \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
& -\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
\geq & \int_{0}^{1} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|\right) d \tau d s \\
= & \int_{0}^{1}(1-s) a(s) f\left(s, \max \left\{c_{0}, y(s)\right\},-\left|y^{\prime}(s)\right|-\frac{1}{n}\right) d s
\end{aligned}
$$

and

$$
\begin{aligned}
q(t)\left|\left(A_{n} x\right)^{\prime}(t)\right| & =(1-t) \int_{0}^{t} a(s) f\left(s, \max \left\{c_{0}, y(s)\right\},-\left|y^{\prime}(s)\right|-\frac{1}{n}\right) d s \\
& \leq \int_{0}^{1}(1-s) a(s) f\left(s, \max \left\{c_{0}, y(s)\right\},-\left|y^{\prime}(s)\right|-\frac{1}{n}\right) d s
\end{aligned}
$$

we have

$$
\left(A_{n} x\right)(0) \geq \max _{t \in[0,1]} q(t)\left|\left(A_{n} x\right)^{\prime}(t)\right|
$$

Consequently, $A_{n} P_{q} \subseteq P_{q}$ for each $n \in N=\{1,2, \ldots\}$. Moreover, since

$$
\lim _{t \rightarrow 1^{-}}\left|\left(A_{n} y\right)^{\prime}(t)\right|=\int_{0}^{1} a(s) f\left(s, \max \left\{c_{0}, y(s)\right\},\left|y^{\prime}(s)\right|-\frac{1}{n}\right) d s
$$

we can assume that $A_{n} y \in C^{1}[0,1]$.
Next we show that $A_{n}: P_{q} \rightarrow P_{q}$ is continuous and completely continuous. Suppose that $\left\{y_{m}\right\} \subseteq P_{q}, y_{0} \in P_{q}$ with $\lim _{m \rightarrow+\infty}\left\|y_{m}-y_{0}\right\|_{q}=0$. Then, there is an $M>c_{0}$ such that

$$
\left\|y_{m}\right\|_{q} \leq M,\left\|y_{0}\right\|_{q} \leq M, \quad m \in N
$$

Then $\left|y_{m}^{\prime}(t)\right| \leq M /(1-t)$ for $m \in\{1,2, \ldots\}$ and so

$$
f\left(t, \max \left\{c_{0}, y_{m}(t)\right\},-\left|y_{m}^{\prime}(t)\right|-\frac{1}{n}\right) \leq \Phi(t) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-t} M} g(u)
$$

for $t \in(0,1)$. Moreover, since

$$
\lim _{m \rightarrow+\infty} f\left(t, \max \left\{c_{0}, y_{m}(t)\right\},-\left|y_{m}^{\prime}(t)\right|-\frac{1}{n}\right)=f\left(t, \max \left\{c_{0}, y_{0}(t)\right\},-\left|y_{0}^{\prime}(t)\right|-\frac{1}{n}\right)
$$

for $t \in(0,1)$, the Lebesgue Dominated Convergence Theorem guarantees that

$$
\begin{aligned}
& \max _{t \in[0,1]}\left|\left(A_{n} y_{m}\right)(t)-\left(A_{n} y_{0}\right)(t)\right| \\
& \leq \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) \left\lvert\, f\left(\tau, \max \left\{c_{0}, y_{m}(\tau)\right\},-\left|y_{m}^{\prime}(\tau)\right|-\frac{1}{n}\right)\right. \\
& \left.-f\left(\tau, \max \left\{c_{0}, y_{0}(\tau)\right\},-\left|y_{0}^{\prime}(\tau)\right|-\frac{1}{n}\right) \right\rvert\, d \tau d s \\
&+\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau)| | f\left(\tau, \max \left\{c_{0}, y_{m}(\tau)\right\},-\left|y_{m}^{\prime}(\tau)\right|-\frac{1}{n}\right) \\
&-f\left(\tau, \max \left\{c_{0}, y_{0}(\tau)\right\},-\left|y_{0}^{\prime}(\tau)\right|-\frac{1}{n}\right) \text { Big } \mid d \tau d s
\end{aligned}
$$

$$
\begin{aligned}
& +\iint_{0}^{1} \int_{0}^{s} a(\tau) \mid f\left(\tau, \max \left\{c_{0}, y_{m}(\tau)\right\},-\left|y_{m}^{\prime}(\tau)\right|\right. \\
& \left.-\frac{1}{n}\right) \left.-f\left(\tau, \max \left\{c_{0}, y_{0}(\tau)\right\},-\left|y_{0}^{\prime}(\tau)\right|-\frac{1}{n}\right) \right\rvert\, d \tau d s \rightarrow 0, \quad \text { as } m \rightarrow+\infty
\end{aligned}
$$

Since $A_{n} y_{m}, A_{n} y_{0} \in P_{q}$, Lemma 2.6 yields

$$
\lim _{m \rightarrow+\infty}\left\|A_{n} y_{m}-A_{n} y_{0}\right\|_{q}=\max _{t \in[0,1]}\left|\left(A_{n} y_{m}\right)(t)-\left(A_{n} y_{0}\right)(t)\right|=0
$$

which implies that $A_{n}: P_{q} \rightarrow P_{q}$ is continuous.
Suppose $D \subseteq P_{q}$ is bounded. Then, there is an $M>c_{0}$ such that $\|y\|_{q} \leq M$ for all $y \in D$. Then $\left|y^{\prime}(t)\right| \leq M /(1-t)$ for all $y \in D$, and so
$f\left(t, \max \left\{c_{0}, y(t)\right\},-\left|y^{\prime}(t)\right|-\frac{1}{n}\right) \leq \Phi(t) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-t} M} g(u), \quad t \in(0,1)$.
Thus

$$
\begin{aligned}
& \max _{t \in[0,1]}\left|\left(A_{n} y\right)(t)\right| \\
& \leq \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau)\left|f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right)\right| d \tau d s \\
&+\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau)\left|f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right)\right| d \tau d s \\
&+\int_{0}^{1} \int_{0}^{s} a(\tau)\left|f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right)\right| d \tau d s \\
& \leq \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) \Phi(s) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-\tau} M} g(u) d \tau d s \\
&+\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} \Phi(s) a(\tau) \max _{c_{0} \leq u \leq M} h(u)_{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-\tau} M}^{\sup } g(u) d \tau d s \\
&+\int_{0}^{1} \int_{0}^{s} a(\tau) \Phi(\tau) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-\tau} M} g(u) d \tau d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \max _{t \in[0,1]}\left|\left(A_{n} y\right)^{\prime}(t)\right| \\
& \leq \max _{t \in[0,1]} \int_{0}^{t} a(\tau)\left|f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right)\right| d \tau \\
& \leq \max _{t \in[0,1]} \int_{0}^{t} a(\tau) \Phi(\tau) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-\tau} M} g(u) d \tau
\end{aligned}
$$

Also $A_{n} D$ is bounded in the norm $\|x\|_{0}=\max \left\{\max _{t \in[0,1]}|x(t)|, \max _{t \in[0,1]}\left|x^{\prime}(t)\right|\right\}$. For $t_{1}, t_{2} \in[0,1], y \in D$, we have

$$
\begin{aligned}
& \left|\left(A_{n} y\right)\left(t_{1}\right)-\left(A_{n} y\right)\left(t_{2}\right)\right| \\
& =\left|\int_{t_{1}}^{t_{2}} \int_{0}^{s} a(\tau) \Phi(\tau)\right| f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right)|d \tau d s| \\
& \leq\left|\int_{t_{1}}^{t_{2}} \int_{0}^{s} a(\tau) \Phi(\tau) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-\tau} M} g(u) d \tau d s\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left(A_{n} y\right)^{\prime}\left(t_{1}\right)-\left(A_{n} y\right)^{\prime}\left(t_{2}\right)\right| & =\left|\int_{t_{1}}^{t_{2}} a(\tau)\right| f\left(\tau, \max \left\{c_{0}, y(\tau)\right\},-\left|y^{\prime}(\tau)\right|-\frac{1}{n}\right)|d \tau| \\
& \leq\left|\int_{t_{1}}^{t_{2}} a(\tau) \Phi(\tau) \max _{c_{0} \leq u \leq M} h(u) \sup _{\frac{1}{n} \leq u \leq \frac{1}{n}+\frac{1}{1-\tau} M} g(u) d \tau\right|,
\end{aligned}
$$

which implies that $\left\{\left(A_{n} y\right)(t) \mid y \in D\right\}$ and $\left\{\left(A_{n} y\right)^{\prime}(t) \mid y \in D\right\}$ are equicontinuous on $[0,1]$.

The Arzela-Ascoli Theorem guarantees that $A_{n} D$ and $\left(A_{n} D\right)^{\prime}$ are relatively compact in $C[0,1]$. Since

$$
\begin{aligned}
\left\|A_{n} y\right\|_{q} & =\max \left\{\max _{t \in[0,1]}\left|\left(A_{n} y\right)(t)\right|, \max _{t \in[0,1]}(1-t)\left|\left(A_{n} y\right)^{\prime}(t)\right|\right\} \\
& \leq \max \left\{\max _{t \in[0,1]}\left|\left(A_{n} y\right)(t)\right|, \max _{t \in[0,1]}\left|\left(A_{n} y\right)^{\prime}(t)\right|\right\}
\end{aligned}
$$

the set $A_{n} D$ is relatively compact in $C_{q}^{1}[0,1]$. Consequently, $A_{n}: P_{q} \rightarrow P_{q}$ is continuous and completely continuous for each $n \in\{1,2, \ldots\}$. The proof is complete.
3. Nonexistence of positive solutions to 1.1 - 1.2)

In this section, we notice that the presence of z in $f(t, x, z)$ can lead to the nonexistence of positive solutions to (1.1)- (1.2).

Theorem 3.1. Suppose (H) holds and $\int_{0}^{z} \frac{1}{g(r)} d r=+\infty$ for all $z \in(0,+\infty)$ and $\int_{0}^{1} a(s) \Phi(s) d s<+\infty$. Then 1.1)-1.2 has no positive solution.
Proof. Suppose $x_{0}(t)$ is a positive solution to 1.1 - 1.2 . Then

$$
\begin{gathered}
x_{0}^{\prime \prime}(t)+a(t) f\left(t, x_{0}(t), x_{0}^{\prime}(t)\right)=0, \quad t \in(0,1) \\
x_{0}^{\prime}(0)=0, \quad x_{0}(1)=\alpha x_{0}(\eta),
\end{gathered}
$$

which means that there is a $t_{0} \in(0,1)$ with $x_{0}^{\prime}\left(t_{0}\right)<0, x_{0}\left(t_{0}\right)>0$ (otherwise $x^{\prime}(t) \geq 0$ for all $t \in(0,1)$ which would contradict $\left.x(1)=\alpha x(\eta)<x(\eta)\right)$. Let $t_{*}=\inf \left\{t<t_{0} \mid x_{0}^{\prime}(s)<0\right.$ for all $\left.s \in\left[t, t_{0}\right]\right\}$. Obviously, $t_{*} \geq 0$ and $x_{0}^{\prime}\left(t_{*}\right)=0$ and $x_{0}^{\prime}(t)<0$ for all $t \in\left(t_{*}, t_{0}\right]$. Condition (H) implies

$$
-x_{0}^{\prime \prime}(t) \leq a(t) f\left(t, x_{0}(t), x_{0}^{\prime}(t)\right) \leq a(t) \Phi(t) h\left(x_{0}(t)\right) g\left(\left|x_{0}^{\prime}(t)\right|\right), \quad \forall t \in\left(t_{*}, t_{0}\right)
$$

and so

$$
\frac{-x_{0}^{\prime \prime}(t)}{g\left(-x_{0}^{\prime}(t)\right)} \leq a(t) \Phi(t) h\left(x_{0}(t)\right) \leq a(t) \Phi(t) h\left(x_{0}(t)\right), \quad \forall t \in\left(t_{*}, t_{0}\right)
$$

Integration from t to t_{0} yields

$$
\int_{-x_{0}^{\prime}(t)}^{-x_{0}^{\prime}\left(t_{0}\right)} \frac{1}{g(r)} d r=\int_{t}^{t_{0}} \frac{1}{g\left(-x_{0}^{\prime}(s)\right)} d\left(-x_{0}^{\prime}(s)\right) \leq \max _{u \in\left[x_{0}\left(t_{0}\right), x_{0}(t)\right]} h(u) \int_{0}^{1} a(s) \Phi(s) d s
$$

Letting $t \rightarrow t_{*}$, we have

$$
+\infty=\int_{0}^{-x_{0}^{\prime}\left(t_{0}\right)} \frac{1}{g(r)} d r \leq \max _{u \in\left[x_{0}\left(t_{0}\right), x_{0}\left(t_{*}\right)\right]} h(u) \int_{0}^{1} a(s) \Phi(s) d s<+\infty
$$

a contradiction. Consequently, $(1.1)-(\sqrt{1.2})$ has no positive solution.

Example 3.2. Consider the boundary-value problem

$$
\begin{gathered}
x^{\prime \prime}+(1-t)^{a}\left(\left|x^{\prime}\right|\right)^{a}\left[x^{b}+(x+1)^{-d}+1\right]=0, \quad t \in(0,1), \\
x(0)=0, \quad x(1)=\frac{1}{2} x\left(\frac{1}{2}\right)
\end{gathered}
$$

where $a \geq 1, b>1, d>0$. This problem has no positive solution. It is easy to see that $f(t, x, z)=(1-t)^{a}(|z|)^{a}\left[x^{b}+(x+1)^{-d}+1\right]$ for all $(t, x, z) \in[0,1] \times[0,+\infty) \times$ $(-\infty,+\infty)$. Obviously, $g(r)=r^{a}$ and $\int_{0}^{z} \frac{1}{g(r)} d r=+\infty$ for all $z \in(0,+\infty)$. Then Theorem 3.1 guarantees that $(3.2)-(3.2)$ has no positive solution.

4. Existence of at least one positive solution to 1.1-1.2

In this section our nonlinearity f may be singular at $y^{\prime}=0$ and $y=0$ and Φ. Throughout this section we will assume that the following conditions hold:
(H1) $a(t) \in C(0,1), a(t)>0$ for all $t \in(0,1)$;
(H2) Conditions (H) and (H') hold and $I(z)=\int_{0}^{z} \frac{1}{g(r)} d r<+\infty$ for all $z \in$ $[0,+\infty)$ with

$$
\sup _{c_{0} \leq r \leq c} h(r) \int_{0}^{1} a(s) \Phi(s) d s<\int_{0}^{\infty} \frac{d r}{g(r)}
$$

for all $c \in\left[c_{0},+\infty\right)$ and suppose

$$
\sup _{c_{0} \leq c<+\infty} \frac{c}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq c} h(r) \int_{0}^{1} a(s) \Phi(s) d s\right)}>1
$$

where c_{0} is defined in Lemma 2.4 .
Theorem 4.1. Suppose that (H1)-(H2) hold. Then 1.1$)-(1.2)$ has at least one positive solution $y_{0} \in C[0,1] \cap C^{2}(0,1)$ with $y_{0}(t)>0$ on $[0,1]$ and $y_{0}^{\prime}(t)<0$ on $(0,1)$.

Proof. Choose $R_{1}>0$ with

$$
\begin{equation*}
\frac{R_{1}}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s\right)}>1 \tag{4.1}
\end{equation*}
$$

From the continuity of I^{-1} and I, we can choose $\varepsilon>0$ and $\varepsilon<R_{1}$ with

$$
\begin{equation*}
\frac{R_{1}}{\left.\left.\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s)\right) \Phi(s) d s\right)+I(\varepsilon)\right)}>1 \tag{4.2}
\end{equation*}
$$

Let $n_{0} \in\{1,2, \ldots\}$ with $\left.\frac{1}{n_{0}}<\min \left\{\varepsilon, \frac{1}{2} \frac{1-\alpha}{\alpha(1-\eta)} c_{0}\right\}\right\}$ and let $N_{0}=\left\{n_{0}, n_{0}+1, \ldots\right\}$. Now (H1)-(H2) guarantee that for each $n \in N_{0}, A_{n}: P \rightarrow P$ is a continuous and completely continuous operator.

Let $\Omega_{1}=\left\{y \in C^{1}[0,1]:\|y\|<R_{1}\right\}$. We now show that

$$
\begin{equation*}
y \neq \mu A_{n} y, \quad \forall y \in P \cap \partial \Omega_{1}, \mu \in(0,1], n \in N_{0} . \tag{4.3}
\end{equation*}
$$

Suppose there exists a $y_{0} \in P \cap \partial \Omega_{1}$ and a $\mu_{0} \in(0,1]$ such that $y_{0}=\mu_{0} A_{n} y_{0}$. It is easy to see that $y_{0}^{\prime}(t) \leq 0$ and

$$
\begin{equation*}
y_{0}^{\prime}(t)=-\mu_{0} \int_{0}^{t} a(s) f\left(s, \max \left\{c_{0}, y_{0}(s)\right\}, y_{0}^{\prime}(s)-\frac{1}{n}\right) d s, t \in(0,1) \tag{4.4}
\end{equation*}
$$

Also

$$
\begin{gather*}
y_{0}^{\prime \prime}(t)+\mu_{0} a(t) f\left(t, \max \left\{c_{0}, y_{0}(t)\right\}, y_{0}^{\prime}(t)-\frac{1}{n}\right)=0, \quad 0<t<1 \tag{4.5}\\
y_{0}^{\prime}(0)=0, y_{0}(1)=\alpha y_{0}(\eta) \tag{4.6}
\end{gather*}
$$

Therefore,

$$
\begin{aligned}
-y_{0}^{\prime \prime}(t) & =\mu_{0} a(t) f\left(t, \max \left\{c_{0}, y_{0}(t)\right\}, y_{0}^{\prime}(t)-\frac{1}{n}\right) \\
& \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{0}(t)\right\}\right) g\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right), \forall t \in(0,1)
\end{aligned}
$$

which yields

$$
\frac{-y_{0}^{\prime \prime}(t)}{g\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right)} \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{0}(t)\right\}\right), \quad \forall t \in(0,1)
$$

Integration from 0 to t yields

$$
\begin{aligned}
I\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right)-I\left(\frac{1}{n}\right) & \leq \int_{0}^{t} a(s) \Phi(s) h\left(\max \left\{c_{0}, y_{0}(s)\right\}\right) d s \\
& \leq \sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{t} a(s) \Phi(s) d s
\end{aligned}
$$

and so

$$
I\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right) \leq \sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{t} a(s) \Phi(s) d s+I(\varepsilon)
$$

Thus

$$
\begin{equation*}
-y_{0}^{\prime}(t) \leq I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right), \quad t \in(0,1) \tag{4.7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
y_{0}(t)-y_{0}(1) \leq(1-t) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right) \tag{4.8}
\end{equation*}
$$

Let $t=\eta$ in 4.8. Then

$$
y_{0}(\eta)-y_{0}(1) \leq(1-\eta) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
$$

Since $y_{0}(1)=\alpha y_{0}(\eta)$, one has

$$
\left(\frac{1}{\alpha}-1\right) y_{0}(1) \leq(1-\eta) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
$$

which yields

$$
y_{0}(1) \leq \frac{\alpha}{1-\alpha}(1-\eta) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
$$

Then 4.8 implies

$$
\begin{align*}
y_{0}(0) & \leq y_{0}(1)+I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right) \tag{4.9}\\
& =\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
\end{align*}
$$

Now 4.7) and 4.9 guarantee that

$$
\begin{aligned}
R_{1} & =\max \left\{\max _{t \in[0,1]}\left|y_{0}(t)\right|, \max _{t \in[0,1]}\left|y_{0}^{\prime}(t)\right|\right\} \\
& \leq \frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
\end{aligned}
$$

which implies

$$
\frac{R_{1}}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)} \leq 1
$$

This contradicts (4.2). Thus (4.3) is true.
From Lemma 2.1. for each $n \in N_{0}$, we have $i\left(A_{n}, \Omega_{1} \cap P, P\right)=1$. As a result, for each $n \in N_{0}$, there exists a $y_{n} \in \Omega_{1} \cap P$, such that $y_{n}=A_{n} y_{n}$; i.e.,

$$
\begin{aligned}
y_{n}(t)= & \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y_{n}(\tau)\right\},-\left|y_{n}^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
& -\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y_{n}(\tau)\right\},-\left|y_{n}^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
& -\int_{0}^{t} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, y_{n}(\tau)\right\},-\left|y_{n}^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s
\end{aligned}
$$

It is easy to see that $y_{n}^{\prime}(t)<0$, and

$$
y_{n}^{\prime}(t)=-\int_{0}^{t} a(s) f\left(s, \max \left\{c_{0}, y_{n}(s)\right\}, y_{n}^{\prime}(s)-\frac{1}{n}\right) d s, \quad n \in N_{0}, t \in(0,1)
$$

Now we consider $\left\{y_{n}(t)\right\}_{n \in N_{0}}$ and $\left\{y_{n}^{\prime}(t)\right\}_{n \in N_{0}}$. Since $\left\|y_{n}\right\| \leq R_{1}$, one has the functions belonging to $\left\{y_{n}\right\}$ are uniformly bounded on $[0,1]$, the functions belonging to $\left\{y_{n}^{\prime}\right\}$ are uniformly bounded on $[0,1]$.
Thus

$$
\begin{equation*}
\text { the functions belonging to }\left\{y_{n}\right\} \text { are equicontinuous on }[0,1] \text {. } \tag{4.12}
\end{equation*}
$$

A similar argument to that used to show 4.5 yields

$$
\begin{gather*}
y_{n}^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, y_{n}(t)\right\}, y_{n}^{\prime}(t)-\frac{1}{n}\right)=0, \quad 0<t<1, \tag{4.13}\\
y_{n}^{\prime}(0)=0, \quad y_{n}(1)=\alpha y_{n}(\eta)
\end{gather*}
$$

By Lemma 2.4, we have

$$
\begin{equation*}
y_{n}(t) \geq c_{0}, \quad \forall n \in N_{0} \tag{4.14}
\end{equation*}
$$

Now we claim that for any $t_{1}, t_{2} \in[0,1]$,

$$
\begin{equation*}
\left.\left.\left|I\left(y_{n}^{\prime}\left(t_{2}\right)-\frac{1}{n}\right)-I\left(y_{n}^{\prime}\left(t_{1}\right)-\frac{1}{n}\right)\right| \leq \sup _{c_{0} \leq r \leq R_{1}} h(r)\right) \mid \int_{t_{1}}^{t_{2}} a(t) \Phi(t)\right) d t \mid \tag{4.15}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
-y_{n}^{\prime \prime}(t) & =a(t) f\left(t, \max \left\{c_{0}, y_{n}(t)\right\}, y_{n}^{\prime}(t)-\frac{1}{n}\right) \\
& \leq a(t)\left|f\left(t, \max \left\{c_{0}, y_{n}(t)\right\}, y_{n}^{\prime}(t)-\frac{1}{n}\right)\right| \\
& \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{n}(t)\right\}\right) g\left(y_{n}^{\prime}(t)-\frac{1}{n}\right), \quad \forall t \in(0,1)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{n}^{\prime \prime}(t) & =-a(t) f\left(t, \max \left\{c_{0}, y_{n}(t)\right\}, y_{n}^{\prime}(t)-\frac{1}{n}\right) \\
& \leq a(t)\left|f\left(t, \max \left\{c_{0}, y_{n}(t)\right\}, y_{n}^{\prime}(t)-\frac{1}{n}\right)\right| \\
& \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{n}(t)\right\}\right) g\left(y_{n}^{\prime}(t)-\frac{1}{n}\right), \forall t \in(0,1)
\end{aligned}
$$

which yields

$$
\begin{align*}
\frac{-y_{n}^{\prime \prime}(t)}{g\left(y_{n}^{\prime}(t)-\frac{1}{n}\right)} & \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{n}(t)\right\}\right), \forall t \in(0,1) \tag{4.16}\\
\frac{y_{n}^{\prime \prime}(t)}{g\left(y_{n}^{\prime}(t)-\frac{1}{n}\right)} & \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{n}(t)\right\}\right), \forall t \in(0,1) \tag{4.17}
\end{align*}
$$

Note that the right hand sides are always positive in 4.16) and 4.17). For any t_{1}, $t_{2} \in[0,1]$ with $t_{1}<t_{2}$, we have

$$
\left|\int_{t_{1}}^{t_{2}} \frac{1}{g\left(-y_{n}^{\prime}(s)+\frac{1}{n}\right)} d\left(-y_{n}^{\prime}(s)+\frac{1}{n}\right)\right| \leq \sup _{c_{0} \leq r \leq R_{1}} h(r)\left|\int_{t_{1}}^{t_{2}} a(t) \Phi(t) d t\right|
$$

i.e., 4.15) is true.

Since I^{-1} is uniformly continuous on $\left[0, I\left(R_{1}\right)\right]$, for any $\bar{\varepsilon}>0$, there is a $\varepsilon^{\prime}>0$ such that

$$
\begin{equation*}
\left|I^{-1}\left(s_{1}\right)-I^{-1}\left(s_{2}\right)\right|<\bar{\varepsilon}, \forall\left|s_{1}-s_{2}\right|<\varepsilon^{\prime}, \quad s_{1}, s_{2} \in\left[0, I\left(R_{1}\right)\right] \tag{4.18}
\end{equation*}
$$

Also 4.15 guarantees that, for $\varepsilon^{\prime}>0$, there is a $\delta^{\prime}>0$ such that

$$
\begin{equation*}
\left|I\left(y_{n}^{\prime}\left(t_{2}\right)-\frac{1}{n}\right)-I\left(y_{n}^{\prime}\left(t_{1}\right)-\frac{1}{n}\right)\right|<\varepsilon^{\prime}, \forall\left|t_{1}-t_{2}\right|<\delta^{\prime}, \quad t_{1}, t_{2} \in[0,1] \tag{4.19}
\end{equation*}
$$

Now (4.18) and 4.19) yield

$$
\begin{aligned}
\left|y_{n}^{\prime}\left(t_{2}\right)-y_{n}^{\prime}\left(t_{1}\right)\right| & =\left|-y_{n}^{\prime}\left(t_{2}\right)+\frac{1}{n}+y_{n}^{\prime}\left(t_{1}\right)-\frac{1}{n}\right| \\
& =\left|I^{-1}\left(I\left(-y_{n}^{\prime}\left(t_{2}\right)+\frac{1}{n}\right)\right)-I^{-1}\left(I\left(-y_{n}^{\prime}\left(t_{1}\right)+\frac{1}{n}\right)\right)\right| \\
& <\bar{\varepsilon}, \quad \forall\left|t_{1}-t_{2}\right|<\delta^{\prime}, t_{1}, t_{2} \in[0,1]
\end{aligned}
$$

which implies
the functions belonging to $\left\{y_{n}^{\prime}\right\}$ are equicontinuous on $[0,1]$.
Consequently 4.10, (4.11, 4.12) and 4.20), the Arzela-Ascoli Theorem guarantees that $\left\{y_{n}\right\}$ and $\left\{y_{n}^{\prime}\right\}$ are relatively compact in $C[0,1]$; i.e., there is a function $y_{0} \in C^{1}[0,1]$, and a subsequence $\left\{y_{n_{j}}\right\}$ of $\left\{y_{n}\right\}$ such that

$$
\lim _{j \rightarrow+\infty} \max _{t \in[0,1]}\left|y_{n_{j}}(t)-y_{0}(t)\right|=0, \quad \lim _{j \rightarrow+\infty} \max _{t \in[0,1]}\left|y_{n_{j}}^{\prime}(t)-y_{0}^{\prime}(t)\right|=0
$$

Since $y_{n_{j}}^{\prime}(0)=0, y_{n_{j}}(1)=\alpha y_{n_{j}}(\eta), y_{n_{j}}^{\prime}(t)<0, y_{n_{j}}(t)>0, t \in(0,1), j \in\{1,2, \ldots\}$, then one has

$$
\begin{equation*}
y_{0}^{\prime}(0)=0, y_{0}(1)=\alpha y_{0}(\eta), y_{0}^{\prime}(t) \leq 0, y_{0}(t) \geq 0, t \in(0,1) \tag{4.21}
\end{equation*}
$$

Now since $\sup _{n \geq 1}\left\|y_{n}\right\| \leq R_{1},\left(\mathrm{H}^{\prime}\right)$ guarantees that there exists a $\Psi_{R_{1}}(t)$ continuous and $\Psi_{R_{1}}(t)>0$ on $(0,1)$ such that

$$
f(t, x, z) \geq \Psi_{R_{1}}(t)(-z)^{\gamma}, \quad t \in(0,1), x \in\left(0, R_{1}\right], z<0
$$

Then

$$
\left.-y_{n_{j}}^{\prime \prime}(t)=a(t) f\left(t, \max \left\{c_{0}, y_{n_{j}}(t)\right\}, y_{n_{j}}^{\prime}(t)-\frac{1}{n_{j}}\right)\right) \geq a(t) \Psi_{R_{1}}(t)\left(-y_{n_{j}}^{\prime}(t)+\frac{1}{n_{j}}\right)^{\gamma}
$$

for $t \in(0,1)$. Also note that

$$
-\frac{y^{\prime \prime}(t)}{\left(-y_{n_{j}}^{\prime}(t)+\frac{1}{n_{j}}\right)^{\gamma}} \geq a(t) \Psi_{R_{1}}(t), \quad t \in(0,1)
$$

Integrating from 0 to t, we have

$$
\frac{1}{1-\gamma}\left(-y_{n_{j}}^{\prime}(t)+\frac{1}{n_{j}}\right)^{1-\gamma}-\frac{1}{1-\gamma}\left(\frac{1}{n_{j}}\right)^{1-\gamma} \geq \int_{0}^{t} a(s) \Psi_{1}(s) d s, \quad t \in(0,1)
$$

which implies

$$
-y_{n_{j}}^{\prime}(t)+\frac{1}{n_{j}} \geq\left[(1-\gamma)\left(\int_{0}^{t} a(s) \Psi_{1}(s) d s+\frac{1}{1-\gamma}\left(\frac{1}{n_{j}}\right)^{1-\gamma}\right)\right]^{\frac{1}{1-\gamma}}, \quad t \in(0,1) .
$$

Letting $j \rightarrow+\infty$, we have

$$
-y_{0}^{\prime}(t) \geq\left[(1-\gamma)\left(\int_{0}^{t} a(s) \Psi_{1}(s) d s\right)\right]^{\frac{1}{1-\gamma}}, \quad t \in(0,1)
$$

Consequently, $y_{0}^{\prime}(t)<0$ for all $t \in(0,1)$, which together with $y_{0}(1)>0$ guarantees that $y_{0}(t)>0$ for all $t \in[0,1]$. Therefore,

$$
\begin{array}{ll}
\min \left\{\min _{s \in\left[\frac{1}{2}, t\right]} y_{0}(s), \min _{s \in\left[\frac{1}{2}, t\right]}\left|y_{0}^{\prime}(s)\right|\right\}>0, & \text { for all } t \in\left[\frac{1}{2}, 1\right), \\
\min \left\{\min _{s \in\left[t, \frac{1}{2}\right]} y_{0}(s), \min _{s \in\left[t, \frac{1}{2}\right]}\left|y_{0}^{\prime}(s)\right|\right\}>0, & \text { for all } t \in\left(0, \frac{1}{2}\right] .
\end{array}
$$

Since

$$
y_{n_{j}}^{\prime}(t)-y_{n_{j}}^{\prime}\left(\frac{1}{2}\right)=-\int_{\frac{1}{2}}^{t} a(s) f\left(s, \max \left\{c_{0}, y_{n_{j}}(s)\right\}, y_{n_{j}}^{\prime}(s)-\frac{1}{n_{j}}\right) d s, \quad t \in(0,1)
$$

letting $j \rightarrow+\infty$, one has

$$
y_{0}^{\prime}(t)-y_{0}^{\prime}\left(\frac{1}{2}\right)=-\int_{\frac{1}{2}}^{t} a(s) f\left(s,\left\{c_{0}, y_{0}(s)\right\}, y_{0}^{\prime}(s)\right) d s, t \in(0,1)
$$

Now by direct differentiation, we have

$$
y_{0}^{\prime \prime}(t)+a(t) f\left(t,\left\{c_{0}, y_{0}(t)\right\}, y_{0}^{\prime}(t)\right)=0,0<t<1
$$

Now (4.14) guarantees that $y_{0}(t) \geq c_{0}$ for all $t \in[0,1]$ and so

$$
y_{0}^{\prime \prime}(t)+a(t) f\left(t, y_{0}(t), y_{0}^{\prime}(t)\right)=0, \quad 0<t<1
$$

From 4.21, we have $y_{0} \in C[0,1] \cap C^{2}(0,1)$ and y_{0} is a positive solution to (1.1)(1.2).

Example 4.2. Consider the three-point boundary value problems

$$
\begin{gathered}
y^{\prime \prime}+\alpha\left[\left(-y^{\prime}\right)^{\frac{1}{2}}+\left(-y^{\prime}\right)^{-a}\right]\left[y^{b}+\left(\frac{1}{\alpha}\right)^{\frac{1}{2} d} y^{-d}\right]=0, t \in(0,1), \\
y^{\prime}(0)=0, y(1)=\frac{1}{2} y\left(\frac{1}{2}\right)
\end{gathered}
$$

where $\alpha>0, a>0,1>\gamma \geq 0, b \geq 0$ and $d>0$. Then, there is a $\alpha_{0}>0$ such that (4.2)-4.2 has one positive solution $y_{0} \in C[0,1] \cap C^{2}(0,1)$ with $y_{0}(t)>0$ on $[0,1]$ and $y_{0}^{\prime}(t)<0$ on $(0,1)$ for all $0<\alpha<\alpha_{0}$.

Let $a(t) \equiv \mu, \Phi(t) \equiv 1$ for all $t \in[0,1], h(x)=x^{b}+\left(\frac{1}{\alpha}\right)^{\frac{1}{2} d} x^{-d}$ for $x \in(0,+\infty)$ and $g(z)=z^{\frac{1}{2}}+z^{-a}$ for $z \in(0,+\infty)$. From the proof of Lemma 2.4, we have $c_{0}=\frac{7}{192} \alpha^{\frac{1}{2}}$ with $\alpha \leq 1$, and then $\alpha\left[y^{b}+\left(\frac{1}{\alpha}\right)^{\frac{1}{2} d} y^{-d}\right] \leq \alpha y^{b}+\left(\frac{192}{7}\right)^{d}$ for all $y \in\left[c_{0},+\infty\right)$. Let $I(z)=\int_{0}^{z} \frac{1}{r^{\frac{1}{2}}+r^{-a}} d r$. Thus there exists an α_{0} such that

$$
\frac{I(1 / 3)}{\alpha \sup _{c_{0} \leq r \leq 1} h(r)}>1, \quad \forall \alpha \in\left(0, \alpha_{0}\right]
$$

and then

$$
\sup _{c_{0} \leq c<+\infty} \frac{c}{3 I^{-1}\left(\sup _{c_{0} \leq r \leq c} h(r) \alpha\right)}>1 .
$$

Hence, the conditions (H1) and (H2) hold. Thus Theorem 4.1 guarantees that 4.2) and 4.2 has at least one positive solution.

5. Multiple positive solutions to (1.1)- 1.2

In this section our nonlinearity f may be singular at $y^{\prime}=0$ and $y=0$. Throughout this section we will assume that the following conditions hold:
(P1) $a(t) \in C(0,1), a(t)>0$ for all $t \in(0,1)$;
(P2) Conditions (H) and (H') hold and $I(z)=\int_{0}^{z} \frac{1}{g(r)} d r<+\infty$ for all $z \in$ $[0,+\infty)$ with $\sup _{c_{0} \leq r \leq c} h(r) \int_{0}^{1} a(s) \Phi(s) d s<\int_{0}^{\infty} \frac{d r}{g(r)}$ for all $c \in\left[c_{0},+\infty\right)$ and suppose

$$
\sup _{c_{0} \leq c<+\infty} \frac{c}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq c} h(r) \int_{0}^{1} a(s) \Phi(s) d s\right)}>1
$$

where c_{0} is defined by Lemma 2.4.
(P3) $\lim _{u \rightarrow+\infty} f(t, u, z) / u=+\infty$ uniformly for $(t, z) \in\left[\frac{1}{4}, \frac{3}{4}\right] \times(0,+\infty)$.
Theorem 5.1. Suppose that (P1)-(P3) hold. Then $\sqrt{1.1})-(1.2)$ has at least two positive solutions $y_{1,0}, y_{1,0} \in C[0,1] \cap C^{2}(0,1)$ with $y_{1,0}(t)>0, y_{2,0}(t)>0$ on $[0,1]$ and $y_{1,0}^{\prime}(t)<0, y_{2,0}^{\prime}(t)<0$ on $(0,1)$.

Proof. Choose $R_{1}>0$ with

$$
\begin{equation*}
\frac{R_{1}}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s\right)}>1 \tag{5.1}
\end{equation*}
$$

From the continuity of I^{-1} and I, we can choose $\varepsilon>0$ and $\varepsilon<R_{1}$ with

$$
\begin{equation*}
\frac{R_{1}}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)}>1 \tag{5.2}
\end{equation*}
$$

Let $n_{0} \in\{1,2, \ldots\}$ so that $\frac{1}{n_{0}}<\min \left\{\varepsilon, \frac{1}{2} \frac{1-\alpha}{\alpha(1-\eta)} c_{0}\right\}$ and let $N_{0}=\left\{n_{0}, n_{0}+1, \ldots\right\}$. Lemma 2.7 guarantees that for each $n \in N_{0}, A_{n}: P_{q} \rightarrow P_{q}$ is a continuous and completely continuous operator. From $\left(P_{3}\right)$, there is a $R^{\prime}>R_{1}$ such that

$$
f(t, x, y) \geq N^{*} x, \quad \forall x \geq R^{\prime}
$$

where $N^{*}>\left(\int_{1 / 4}^{3 / 4}(1-s) a(s) d s \frac{\alpha(1-\eta)}{1-\alpha \eta}\right)^{-1}$. Let

$$
R_{2}>\max \left\{R^{\prime}, \frac{1-\alpha \eta}{\alpha(1-\eta)} R^{\prime}\right\}
$$

Now let

$$
\Omega_{1}=\left\{y \in C_{q}^{1}[0,1]:\|y\|_{q}<R_{1}\right\}, \quad \Omega_{2}=\left\{y \in C_{q}^{1}[0,1]:\|y\|_{q}<R_{2}\right\}
$$

We now show that

$$
\begin{equation*}
y \neq \mu A_{n} y, \quad \forall y \in P \cap \partial \Omega_{1}, \mu \in(0,1], n \in N_{0} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n} x \not \leq x, \quad \forall x \in \partial \Omega_{2} \cap P, n \in N_{0} . \tag{5.4}
\end{equation*}
$$

Suppose there exists a $y_{0} \in P \cap \partial \Omega_{1}$ and a $\mu_{0} \in(0,1]$ such that $y_{0}=\mu_{0} A_{n} y_{0}$. It is easy to see that $y_{0}^{\prime}(t) \leq 0$ and

$$
\begin{equation*}
y_{0}^{\prime}(t)=-\mu_{0} \int_{0}^{t} a(s) f\left(s, \max \left\{c_{0}, y_{0}(s)\right\}, y_{0}^{\prime}(s)-\frac{1}{n}\right) d s, t \in(0,1) \tag{5.5}
\end{equation*}
$$

Also

$$
\begin{gathered}
y_{0}^{\prime \prime}(t)+\mu_{0} a(t) f\left(t, \max \left\{c_{0}, y_{0}(t)\right\}, y_{0}^{\prime}(t)-\frac{1}{n}\right)=0, \quad 0<t<1 \\
y_{0}^{\prime}(0)=0, y_{0}(1)=\alpha y_{0}(\eta)
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
-y_{0}^{\prime \prime}(t) & =\mu_{0} a(t) f\left(t, \max \left\{c_{0}, y_{0}(t)\right\}, y_{0}^{\prime}(t)-\frac{1}{n}\right) \\
& \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{0}(t)\right\}\right) g\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right), \quad \forall t \in(0,1)
\end{aligned}
$$

which yields

$$
\frac{-y_{0}^{\prime \prime}(t)}{g\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right)} \leq a(t) \Phi(t) h\left(\max \left\{c_{0}, y_{0}(t)\right\}\right), \quad \forall t \in(0,1)
$$

Integration from 0 to t yields

$$
\begin{aligned}
I\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right)-I\left(\frac{1}{n}\right) & \leq \int_{0}^{t} a(s) \Phi(s) h\left(\max \left\{c_{0}, y_{0}(s)\right\}\right) d s \\
& \leq \sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s
\end{aligned}
$$

and so

$$
I\left(-y_{0}^{\prime}(t)+\frac{1}{n}\right) \leq \sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)
$$

Thus

$$
\begin{equation*}
-y_{0}^{\prime}(t) \leq I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right), \quad t \in(0,1) \tag{5.6}
\end{equation*}
$$

Integration from t to 1 yields

$$
\begin{equation*}
y_{0}(t)-y_{0}(1) \leq(1-t) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right), \quad t \in(0,1) \tag{5.7}
\end{equation*}
$$

Let $t=\eta$ in 5.7). Then

$$
y_{0}(\eta)-y_{0}(1) \leq(1-\eta) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
$$

Since $y_{0}(1)=\alpha y_{0}(\eta)$, one has

$$
\left(\frac{1}{\alpha}-1\right) y_{0}(1) \leq(1-\eta) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
$$

which yields

$$
y_{0}(1) \leq \frac{\alpha}{1-\alpha}(1-\eta) I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
$$

Then (5.7) implies

$$
\begin{align*}
y_{0}(0) & \leq y_{0}(1)+I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right) \tag{5.8}\\
& =\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
\end{align*}
$$

Now (5.6) and (5.8) guarantees

$$
\begin{aligned}
R_{1} & =\max \left\{\max _{t \in[0,1]}\left|y_{0}(t)\right|, \max _{t \in[0,1]}(1-t)\left|y_{0}^{\prime}(t)\right|\right\} \\
& \leq \frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)
\end{aligned}
$$

which implies

$$
\frac{R_{1}}{\frac{1-\alpha \eta}{1-\alpha} I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right)} \leq 1
$$

This contradicts (5.2). Thus (5.3) is true.
From Lemma 2.1, for each $n \in N_{0}$, we have

$$
\begin{equation*}
i\left(A_{n}, \Omega_{1} \cap P, P\right)=1, \quad n \in N_{0} \tag{5.9}
\end{equation*}
$$

Suppose there is a $x_{0} \in \partial \Omega_{2} \cap P$ such that $A_{n} x_{0} \leq x_{0}$. Then $\left\|x_{0}\right\|_{q}=R_{2}$. Also Lemma 2.3 implies

$$
\min _{t \in[0,1]} x_{0}(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta} \max _{t \in[0,1]}\left|x_{0}(t)\right|=\frac{\alpha(1-\eta)}{1-\alpha \eta}\left\|x_{0}\right\|_{q}=\frac{\alpha(1-\eta)}{1-\alpha \eta} R_{2}>R^{\prime}
$$

Then, we have

$$
\begin{aligned}
x_{0}(0) \geq & \left(A x_{0}\right)(0) \\
= & \frac{1}{1-\alpha} \int_{0}^{1} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, x_{0}(\tau)\right\},-\left|x_{0}^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
& -\frac{\alpha}{1-\alpha} \int_{0}^{\eta} \int_{0}^{s} a(\tau) f\left(\tau, \max \left\{c_{0}, x_{0}(\tau)\right\},-\left|x_{0}^{\prime}(\tau)\right|-\frac{1}{n}\right) d \tau d s \\
\geq & \int_{1 / 4}^{3 / 4}(1-s) a(s) f\left(\tau, \max \left\{c_{0}, x_{0}(s)\right\},-\left|x_{0}^{\prime}(s)\right|-\frac{1}{n}\right) d s \\
\geq & \int_{1 / 4}^{3 / 4}(1-s) a(s) N * \max \left\{c_{0}, x_{0}(s)\right\} d s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \int_{1 / 4}^{3 / 4}(1-s) a(s) d s N * \frac{\alpha(1-\eta)}{1-\alpha \eta} R_{2} \\
& >\left\|x_{0}\right\|_{q},
\end{aligned}
$$

which is a contradiction. Thus, 5.4 is true. Then Lemma 2.2 implies

$$
\begin{equation*}
i\left(A_{n}, \Omega_{2} \cap P, P\right)=0, \quad n \in N_{0} \tag{5.10}
\end{equation*}
$$

From (5.9) and (5.10), we have

$$
\begin{equation*}
i\left(A_{n},\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P, P\right)=-1, \quad n \in N_{0} . \tag{5.11}
\end{equation*}
$$

By (5.9), 5.11, there is a $x_{1, n} \in \Omega_{1} \cap P$ and another $x_{2, n} \in \Omega_{2} \cap P$ such that

$$
A_{n} x_{1, n}=x_{1, n}, \quad A_{n} x_{2, n}=x_{2, n}, \quad n \in N_{0}
$$

Now we consider $\left\{x_{1, n}\right\}_{n \in N_{0}}$ and $\left\{x_{2, n}\right\}_{n \in N_{0}}$. By Lemma 2.4 we have $x_{1, n}(t) \geq c_{0}$ and $x_{2, n} \geq c_{0}$.

We consider $\left\{x_{1, n}\right\}_{n \in N_{0}}$. Obviously $\max _{t \in[0,1]}\left|x_{1, n}(t)\right| \leq R_{1}$ for all $n \in N_{0}$ and $\max _{t \in[0,1]}(1-t)\left|x_{1, n}^{\prime}(t)\right| \leq R_{1}$ for all $n \in N_{0}$. Also $\left|x_{1, n}^{\prime}(t)\right| \leq \frac{1}{1-t} R_{1}$ for all $t \in[0,1)$ and $n \in N_{0}$. Hence, the functions belonging to $\left\{x_{1, n}\right\}$ are uniformly bounded on $[0,1]$.

Since $x_{1, n}(t)$ satisfies

$$
\begin{array}{r}
x_{1, n}^{\prime \prime}(t)+a(t) f\left(t, \max \left\{c_{0}, x_{1, n}(t)\right\}, x_{1, n}^{\prime}(t)-\frac{1}{n}\right)=0, \quad 0<t<1 \\
x_{1, n}^{\prime}(0)=0, x_{1, n}(1)=\alpha x_{1, n}(\eta)
\end{array}
$$

A similar argument to that used to show (5.6) yields that

$$
-x_{1, n}^{\prime}(t) \leq I^{-1}\left(\sup _{c_{0} \leq r \leq R_{1}} h(r) \int_{0}^{1} a(s) \Phi(s) d s+I(\varepsilon)\right), \quad t \in(0,1)
$$

which implies that the functions belonging to $\left\{x_{1, n}^{\prime}\right\}$ are uniformly bounded on $[0,1]$ and so the functions belonging to $\left\{x_{1, n}\right\}$ are equicontinuous on $[0,1]$.

A similar argument to that to used to show (4.15) yields the functions belonging to $\left\{x_{1, n}^{\prime}\right\}$ are equicontinuous on $[0,1]$.

Consequently, the Arzela-Ascoli Theorem guarantees that $\left\{x_{1, n}(t)\right\}$ and $\left\{x_{1, n}^{\prime}(t)\right\}$ are relatively compact in $C[0,1]$; i.e., there is a function $x_{1,0} \in C^{1}[0,1]$, and a subsequence $\left\{x_{1, n_{j}}\right\}$ of $\left\{x_{1, n}\right\}$ such that

$$
\lim _{j \rightarrow+\infty} \max _{t \in[0,1]}\left|x_{1, n_{j}}(t)-x_{1,0}(t)\right|=0, \quad \lim _{j \rightarrow+\infty} \max _{t \in[0,1]}\left|x_{1, n_{j}}^{\prime}(t)-x_{1,0}^{\prime}(t)\right|=0
$$

Similar reasoning as in the proof of Theorem 4.1 establishes that $x_{1,0}$ is a positive solution to 1.1 and $\sqrt{1.2}$.

Similarly, there is a convergent subsequence $\left\{x_{2, n_{k}}\right\}$ of $\left\{x_{2, n}\right\}$ such that

$$
\lim _{k \rightarrow+\infty}\left|x_{2, n_{k}}(t)-x_{2,0}(t)\right|=0, \quad \lim _{k \rightarrow+\infty}\left|x_{2, n_{j}}^{\prime}(t)-x_{2,0}^{\prime}(t)\right|=0
$$

and $x_{2,0}$ satisfies (1.1)- 1.2 .
Since $\left\|x_{1,0}\right\|_{q}=\max _{t \in[0,1]}\left|x_{1,0}(t)\right| \leq R_{1}$ and $\left\|x_{2,0}\right\|_{q}=\max _{t \in[0,1]}\left|x_{2,0}(t)\right| \geq R_{1}$, a similar argument to that used to show (5.3) yields that $x_{1,0}, x_{2,0} \notin P \cap \partial \Omega_{1}$; i.e.,

$$
\left\|x_{1,0}\right\|_{q}=\max _{t \in[0,1]}\left|x_{1,0}(t)\right|<R_{1}, \quad\left\|x_{2,0}\right\|_{q}=\max _{t \in[0,1]}\left|x_{2,0}(t)\right|>R_{1}
$$

Consequently, $x_{1,0}$ and $x_{2,0}$ are different positive solutions to $1.1-(1.2)$.

Example 5.2. Consider the three-point boundary value problems

$$
\begin{gathered}
y^{\prime \prime}+\alpha(1-t)^{a}\left[1+\left(-y^{\prime}\right)^{e}+\left(-y^{\prime}\right)^{-a}\right]\left[1+y^{b}+y^{-d}\right]=0, \quad t \in(0,1) \\
y^{\prime}(0)=0, y(1)=\frac{1}{2} y\left(\frac{1}{2}\right)
\end{gathered}
$$

where $1 \geq e \geq 0, a>0, b \geq 0, d>0$ and $\alpha>0$. Then there is a $\alpha_{0}>0$ such that (5.11)-5.2) has at least two positive solutions $y_{1,0}, y_{2,0} \in C[0,1] \cap C^{2}(0,1)$ with $y_{1,0}(t)>0, y_{2,0}(t)>0$ on $[0,1]$ and $y_{1,0}^{\prime}(t)<0, y_{2,0}^{\prime}(t)<0$ on $(0,1)$ for all $0<\alpha \leq \alpha_{0}$.

Let $a(t) \equiv \mu, \Phi(t)=(1-t)^{a}$ for all $t \in[0,1], h(x)=1+x^{b}+x^{-d}$ for $x \in(0,+\infty)$ and $g(z)=1+z^{e}+z^{-a}$ for $z \in(0,+\infty)$. From the proof of Lemma 2.4 we have $c_{0}=\frac{1}{2} \min \left\{\frac{1}{3}, \frac{1}{a+1}\left(\frac{1}{2}-\frac{1}{a+2}\left(\frac{1}{2}\right)^{a+2}\right)\right\}$, and then $\alpha(1-t)^{a}\left[1+y^{b}+y^{-d}\right] \leq$ $\alpha(1-t)^{a}\left[1+y^{b}+c_{0}{ }^{-d}\right]$ for all $y \in\left[c_{0},+\infty\right)$. Let $I(z)=\int_{0}^{z} \frac{1}{1+r^{e}+r^{-a}} d r$. Thus there exists an α_{0} such that

$$
\frac{I\left(\frac{1}{3}\right)}{\alpha \frac{1}{a+1} \sup _{c_{0} \leq r \leq 1} h(r)}>1, \quad \forall \alpha \in\left(0, \alpha_{0}\right]
$$

and then

$$
\sup _{c_{0} \leq c<+\infty} \frac{c}{3 I^{-1}\left(\sup _{c_{0} \leq r \leq c} h(r) \int_{0}^{1} a(s) \Phi(s) d s\right)}>1 .
$$

Hence, the conditions (P1), (P2) and (P3) hold. Thus Theorem 5.1 guarantees that (5.2)-(5.2) has at least two positive solutions.

References

[1] R. P.Agarwal, D. O'Regan; Nonlinear Superlinear Singular and Nonsingular Second Order Boundary Value Problems, Journal of differential equations, 143 (1998), 60-95.
[2] R. P. Agarwal, D. O'Regan; Second order boundary value problems of singular type, Journal of Mathematical Analysis and Applications, 226(1998), pp414-430.
[3] Y. Chen, B. Yan, L. Zhang; Positive solutions for singular three-point boundary-value problems with sign changing nonlinearities depending on x^{\prime}, Electronic Journal of Differential Equations, 2007 (2007), No. 63, pp. 1-9.
[4] C. P. Gupta; Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl., 168 (1992), pp. 540-551.
[5] C. P. Gupta, S. I. Trofimchuk; A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl., 205 (1997), pp. 586-597.
[6] D. Guo and V. Lakshmikantham; Nonlinear problems in abstract cones. Academic Press. Inc. New York, 1988.
[7] Y. Guo, W. Ge; Positive solutions for three-point boundary value problems with dependence on the first order derivative, J. Math. Anal. Appl., 290 (2004), pp. 291-301.
[8] J. Henderson; Uniqueness implies existence for three-point boundary value problems for second order differential equations, Applied Mathematics Letters, 18 (2005), pp. 905-909.
[9] R. A. Khan, J. R. L. Webb; Existence of at least three solutions of a second-order three-point boundary value problem, Nonlinear Analysis, 64 (2006), pp. 1356-1366.
[10] M. A. Krasnoselskii; Positive solutions of operaor equation, Noordhoff, Groningen, 1964.
[11] B. Liu; Positive solutions of a nonlinear three-point boundary value problem, Appl. Math. Comput., 132 (2002), pp. 11-28.
[12] D. O'Regan; Existence theory for ordinary differential equations, Kluwer. Dordrecht. 1997.
[13] D. O'Regan; Theory of singular boundary value problems. World Scientific, Singapore. 1994.
[14] B. Yan, Y. Liu; Positive solutions for superlinear second order singular three-point boundary value problems with derivative dependence, Mathematica Acta Scientia, to appear.

Ravi P. Agarwal
Department of Mathematical Science, Florida Institute of Technology, Melbourne, Florida 32901, USA

E-mail address: agarwal@fit.edu
Donal O'Regan
Department of Mathematics, National University of Ireland, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie
BaOQiang Yan
Department of Mathematics, Shandong Normal University, Ji-nan, 250014, China
E-mail address: yanbqcn@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 34B15.
 Key words and phrases. Three-point boundary value problems; singularity;
 positive solutions; fixed point index.
 (C)2008 Texas State University - San Marcos.

 Submitted January 17, 2008. Published August 25, 2008.
 Supported by grants 10571111 from National Natural Science, and J07WH08 from
 the Shandong Education Committee.

