
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 116, pp. 1–20.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT
BOUNDARY-VALUE PROBLEMS

RAVI P. AGARWAL, DONAL O’REGAN, BAOQIANG YAN

Abstract. Using the theory of fixed point index, this paper discusses the

existence of at least one positive solution and the existence of multiple positive
solutions for the singular three-point boundary value problem:

y′′(t) + a(t)f(t, y(t), y′(t)) = 0, 0 < t < 1,

y′(0) = 0, y(1) = αy(η),

where 0 < α < 1, 0 < η < 1, and f may be singular at y = 0 and y′ = 0.

1. Introduction

In this paper, we consider the singular three-point boundary-value problem
(BVP):

y′′(t) + a(t)f(t, y(t), y′(t)) = 0, 0 < t < 1, (1.1)

y′(0) = 0, y(1) = αy(η), (1.2)

where 0 < α < 1, 0 < η < 1, f may be singular at y = 0 and y′ = 0, and
a ∈ C((0, 1), (0,∞)).

When f(t, x, z) has no singularity at x = 0 and z = 0, there are many results
on the existence of solutions to (1.1)-(1.2) with different boundary conditions such
as x(0) = 0, x(1) = δx(η), or x(0) = x0, x(η) − x(1) = x1 (see [4, 5, 7, 8, 9]).
Also when f(t, x, z) = f(t, x) has no singularity at x = 0, using Krasnoselkii’s fixed
point theorem, Liu citel1 discussed the existence of positive solutions to (1.1)-(1.2).
In [3, 14], the authors obtained the existence of at least one positive solutions to
(1.1)-(1.2) when f(t, x, z) is singular at x = 0 and z = 0.

The features in this article, that differ from those in [3, 14], are as follows.
Firstly, the nonlinearity f(t, x, z) may be sublinear in x at x = +∞ and the degree
of singularity in x and z may be arbitrary; i.e., f(t, x, z) contains 1

xα , xβ and 1
(−z)−γ

for any α > 0, β > 0 and γ > 0. Secondly, (1.1)-(1.2) may have at least two positive
solutions. Thirdly, (1.1)-(1.2) may have no positive solutions.
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There are main five sections in our paper. In sections 2, we discuss a special
Banach space and define a new cone in this space, and some lemmas are proved
for convenience. In section 3, we discuss the nonexistence of positive solutions to
(1.1)-(1.2). In section 4, the existence of at least one positive solution to (1.1)-
(1.2) is presented when f(t, x, z) is singular at x = 0 and z = 0. In section 5, we
consider the existence of at least two positive solutions to (1.1)-(1.2) when f(t, x, z)
is singular at x = 0 and z = 0 and f is suplinear at x = +∞. Some of the ideas in
this paper were motivated from [1, 2, 12, 13].

2. Preliminaries

Let

C1[0, 1] = {y : [0, 1] → R : y(t) and y′(t)are continuous on [0, 1]}

with norm ‖y‖ = max{maxt∈[0,1] |y(t)|,maxt∈[0,1] |y′(t)|} and

P = {y ∈ C1[0, 1] : y(t) ≥ 0,∀t ∈ [0, 1]}.

Obviously C1[0, 1] is a Banach space and P is a cone in C1[0, 1]. The following
lemmas are needed later.

Lemma 2.1 (citeg3). Let Ω be a bounded open set in real Banach space E, P be a
cone of E, θ ∈ Ω and A : Ω̄ ∩ P → P be continuous and compact. Suppose

λAx 6= x, ∀x ∈ ∂Ω ∩ P, λ ∈ (0, 1], (2.1)

then i(A,Ω ∩ P, P ) = 1.

Lemma 2.2 ([6]). Let Ω be a bounded open set in real Banach space E, P be a
cone of E, θ ∈ Ω and A : Ω̄ ∩ P → P be continuous and compact. Suppose

Ax 6= x, ∀ x ∈ ∂Ω ∩ P, (2.2)

then i(A,Ω ∩ P, P ) = 0.

Lemma 2.3 ([11]). Let 0 < α < 1, a, h ∈ C((0, 1), (0,∞)), a, h ∈ L1[0, 1] and

y(t) =
1

1− α

∫ 1

0

∫ s

0

a(τ)h(τ) dτ ds− α

1− α

∫ η

0

∫ s

0

a(τ)h(τ) dτ ds

−
∫ t

0

∫ s

0

a(τ)h(τ) dτ ds.

Then

min
t∈[0,1]

y(t) ≥ α(1− η)
1− αη

max
t∈[0,1]

|y(t)|. (2.3)

Lemma 2.4. Assume that f ∈ C((0, 1) × (0,+∞) × (−∞, 0), (0,+∞)), that a ∈
C((0, 1), (0,+∞)), and that for any constant H > 0 there exists a function ΨH(t)
continuous on (0, 1), and positive on (0, 1) and a constant 0 ≤ γ < 1 such that

f(t, x, z) ≥ ΨH(t)(−z)γ , ∀t ≥ 0, 0 < x ≤ H, z < 0, (2.4)

where
∫ 1

0
a(s)ΨH(s)ds < +∞. Then there is a c0 > 0 such that for any positive

solution x ∈ C[0, 1] with x′(t) < 0 for all t ∈ (0, 1) to (1.1)-(1.2) we have

x(t) ≥ c0, t ∈ [0, 1]. (2.5)
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Moreover, if x0 ∈ C[0, 1] is a positive solution to

y′′(t) + a(t)f(t,max{c0, y(t)},−|y′(t)| − 1
n

) = 0, 0 < t < 1,

y′(0) = 0, y(1) = αy(η),

where α
1−α (1− η) 1

n < c0, x0 is a positive solution to

y′′(t) + a(t)f(t, y(t),−|y′(t)| − 1
n

) = 0, 0 < t < 1,

y′(0) = 0, y(1) = αy(η).

Proof. Assume that x is a positive solution to (1.1)-(1.2) with x′(t) < 0 for t ∈ (0, 1).
Then Lemma 2.3 implies mint∈[0,1] x(t) ≥ α(1−η)

1−αη maxt∈[0,1] |x(t)| > 0.
Let H = 1. Then there exists a function Ψ1(t) continuous on [0, 1], and positive

on (0, 1) a constant 0 ≤ γ < 1 such that

f(t, x, z) ≥ Ψ1(t)(−z)γ , ∀t ≥ 0, 0 < x ≤ 1, z < 0.

There are two cases to be considered: (1) x(t) ≥ 1 for all t ∈ [0, 1]. (2) x(1) < 1.
Let t∗ = inf{t|x(t) < 1 for all s ∈ [t, 1]}. If t∗ > 0, we have x(t∗) = 1 and x(0) ≥ 1.
Then, Lemma 2.3 yields

min
t∈[0,1]

|x(t)| ≥ α(1− η)
1− αη

max
t∈[0,1]

|x(t)| ≥ α(1− η)
1− αη

. (2.6)

If t∗ = 0 and x(t∗) = 1, Lemma 2.3 implies

min
t∈[0,1]

|x(t)| ≥ α(1− η)
1− αη

max
t∈[0,1]

|x(t)| ≥ α(1− η)
1− αη

(2.7)

also. If t∗ = 0 and x(t∗) < 1, from (2.4), we have

−x′′(t) = a(t)f(t, x(t), x′(t)) ≥ a(t)Ψ1(t)(−x′(t))γ , t ∈ (0, 1).

Also note

− x′′(t)
(−x′(t))γ

≥ a(t)Ψ1(t), t ∈ (0, 1).

Integrating from 0 to t, we have

1
1− γ

(−x′(t))1−γ ≥
∫ t

0

a(s)Ψ1(s)ds, t ∈ (0, 1),

which implies

−x′(t) ≥ [(1− γ)
∫ t

0

a(s)Ψ1(s)ds]
1

1−γ , t ∈ (0, 1).

Integration from η to 1 yields

x(η)− x(1) ≥
∫ 1

η

[(1− γ)
∫ 1

η

∫ t

0

a(s)Ψ1(s)ds]
1

1−γ dt.

Since x(1) = αx(η), we have

x(1) ≥ α

1− α

∫ 1

η

[(1− γ)
∫ t

0

a(s)Ψ1(s)ds]
1

1−γ dt. (2.8)
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Let c0 = 1
2 min{1, α(1−η)

1−αη , α
1−α

∫ 1

η
[(1 − γ)

∫ t

0
a(s)Ψ1(s)ds]

1
1−γ dt}. Combining (2.6),

(2.7) and (2.8), we have
min

t∈[0,1]
x(t) ≥ c0.

Suppose that x0 satisfies

x′′0(t) + a(t)f(t, max{c0, x0(t)},−|x′0(t)| −
1
n

) = 0, t ∈ (0, 1),

x′0(0) = 0, x0(η) = αx0(1).

Then x′′0(t) < 0 and so x0(t) < 0 for t ∈ (0, 1). Then x0 satisfies

x′′0(t) + a(t)f(t, max{c0, x0(t)}, x′0(t)−
1
n

) = 0, t ∈ (0, 1),

x′0(0) = 0, x0(η) = αx0(1).

There are are two cases to be considered:
(1) x0(t) ≥ 1 for all t ∈ [0, 1]. In this case, since c0 ≤ 1, we have

x′′0(t) + a(t)f(t, max{c0, x0(t)}, x′0(t)−
1
n

) = x′′0(t) + a(t)f(t, x0(t), x′0(t)−
1
n

) = 0,

for 0 < t < 1.
(2) x0(1) < 1. Let t∗ = inf{t|x0(t) < 1 for all s ∈ [t, 1]}. If t∗ > 0, we have
x0(t∗) = 1 and x0(0) ≥ 1. Then

min
t∈[0,1]

x0(t) ≥
α(1− η)
1− αη

max
t∈[0,1]

|x0(t)| ≥
α(1− η)
1− αη

.

If t∗ = 0 and x0(t∗) = 1, we have

min
t∈[0,1]

x0(t) ≥
α(1− η)
1− αη

max
t∈[0,1]

|x0(t)| ≥
α(1− η)
1− αη

also. If t∗ = 0 and x0(t∗) < 1, from (2.4), we have

−x′′0(t) = a(t)f(t,max{c0, x0(t)}, x′0(t)−
1
n

) ≥ a(t)Ψ1(t)(−x′0(t)+
1
n

)γ , t ∈ (0, 1).

Also note

− x′′0(t)
(−x′0(t) + 1

n )γ
≥ a(t)Ψ1(t), t ∈ (0, 1).

Integrating from 0 to t, we have

1
1− γ

[(−x′0(t) +
1
n

)1−γ − (
1
n

)1−γ ] ≥
∫ t

0

a(s)Ψ1(s)ds, t ∈ (0, 1),

which implies

−x′0(t) +
1
n
≥ [(1− γ)

∫ t

0

a(s)Ψ1(s)ds]
1

1−γ , t ∈ (0, 1).

Integration from η to 1 yields

x0(η)− x0(1) ≥
∫ 1

η

[(1− γ)
∫ 1

η

∫ t

0

a(s)Ψ1(s)ds]
1

1−γ ]dt− (1− η)
1
n

.

Since x0(1) = αx0(η), we have

x0(1) ≥ α

1− α

∫ 1

η

[(1− γ)
∫ 1

η

∫ t

0

a(s)Ψ1(s)ds]
1

1−γ ]dt− α

1− α
(1− η)

1
n
≥ c0.
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Consequently, the definition of c0 implies that x0(t) ≥ c0 for all t ∈ [0, 1]. Therefore,

x′′0(t) + a(t)f(t, max{c0, x0(t)}, x′0(t)−
1
n

) = x′′0(t) + a(t)f(t, x0(t), x′0(t)−
1
n

) = 0,

for 0 < t < 1. The proof is complete. �

To discuss the existence of multiple positive solutions, we construct a new space.
Let q(t) = 1− t, t ∈ [0, 1] and

C1
q [0, 1] = {y : [0, 1] → R : y(t) and q(t)y′(t) are continuous on [0, 1]}

with norm ‖y‖q = max{maxt∈[0,1] |y(t)|,maxt∈[0,1] q(t)|y′(t)|} and

Pq = {y ∈ C1
q [0, 1] : min

t∈[0,1]
y(t) ≥ α(1− η)

1− αη
max

t∈[0,1]
|y(t)| and y(0) ≥ max

t∈[0,1]
q(t)|y′(t)|}.

Lemma 2.5. The set C1
q [0, 1] is a Banach space and Pq is cone in C1

q [0, 1]

Proof. It is easy to see that ‖ · ‖q is a norm of the space C1
q . Now we show that C1

q

is a Banach space. Assume that {xn}∞n=1 ⊆ C1
q is a Cauchy sequence; i.e., for each

ε > 0, there is a N > 0 such that

‖xn − xm‖q < ε, ∀n > N, m > N . (2.9)

Then
max

t∈[0,1]
|xn(t)− xm(t)| < ε, ∀n > N, m > N.

Thus, there is a x0 ∈ C[0, 1] such that

lim
n→+∞

max
t∈[0,1]

|xn(t)− x0(t)| = 0. (2.10)

For 1 > δ > 0, since (1− δ) maxt∈[0,1−δ] |x′n(t)− x′m(t)| ≤ maxt∈[0,1−δ] q(t)|x′n(t)−
x′m(t)|, we have

max
t∈[0,1−δ]

|x′n(t)− x′m(t)| ≤ 1
1− δ

max
t∈[0,1−δ]

q(t)|x′n(t)− x′m(t)| < 1
1− δ

ε,

which implies that for any δ > 0, x′n(t) is uniformly convergent on [0, 1− δ]. Hence,
x0(t) is continuously differentiable on [0, 1). And since q(t)x′N+1(t) is uniformly
continuous on [0, 1], there exists a δ′ > 0 such that

|q(t1)x′N+1(t1)− q(t2)x′N+1(t2)| < ε for |t1 − t2| < δ, t1, t2 ∈ [0, 1).

Then

|q(t1)x′0(t1)− q(t2)x′0(t2)|
= |q(t1)x′0(t1)− q(t1)x′N+1(t1)

+ q(t1)x′N+1(t1)− q(t2)x′N+1(t2) + q(t2)x′N+1(t2)− q(t2)x′0(t1)|
≤ |q(t1)x′0(t1)− q(t1)x′N+1(t1)|

+ |q(t1)x′N+1(t1)− q(t2)x′N+1(t2)|+ |q(t2)x′N+1(t2)− q(t2)x′0(t1)|
< 3ε, for |t1 − t2| < δ′, t1, t2 ∈ [0, 1),

which implies that limt→1− q(t)x′0(t) exists. Let q(1)x0(1) = limt→1− q(t)x′0(t).
Now from (2.9), we have for any t ∈ [0, 1],

q(t)|x′n(t)− x′m(t)| < ε, ∀n > N, m > N.
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Letting m → +∞, for all t ∈ [0, 1], we have

q(t)|x′n(t)− x′0(t)| ≤ ε, ∀n > N. (2.11)

Combining (2.10) and (2.11) shows C1
q [0, 1] is a Banach space.

Clearly Pq is a cone of C1
q [0, 1]. The proof is complete. �

Lemma 2.6. For each y ∈ Pq, ‖y‖q = maxt∈[0,1] |y(t)|.

Proof. For y ∈ P , obviously ‖y‖q ≥ maxt∈[0,1] |y(t)|. On the other hand, since
y ∈ Pq,

max
t∈[0,1]

|y(t)| ≥ y(0) ≥ max
t∈[0,1]

q(t)|y′(t)|.

Then

‖y‖q = max{max
t∈[0,1]

|y(t)|, max
t∈[0,1]

q(t)|y′(t)|}

≤ max{max
t∈[0,1]

|y(t)|, y(0)} = max
t∈[0,1]

|y(t)|.

Consequently, ‖y‖q = maxt∈[0,1] |y(t)|. The proof is complete. �

Now we list the following conditions to be used in this article.
(H) f ∈ C((0, 1)×(0,∞)×(−∞, 0), (0,∞)) and there are three functions g, h ∈

C((0,+∞), (0,+∞)), Φ ∈ C((0, 1), [0,+∞)), with Φ(t) > 0 for all t ∈ (0, 1),
and

f(t, x, z) ≤ Φ(t)h(x)g(|z|) ∀ (t, x, z) ∈ (0, 1)× (0,+∞)× (−∞, 0). (2.12)

(H’) For any constant H > 0 there exists a function ΨH(t) continuous on (0, 1)
and positive on (0, 1), and a constant 0 ≤ γ < 1 such that

f(t, x, z) ≥ ΨH(t)(−z)γ , ∀t ∈ (0, 1), 0 < x ≤ H, z < 0, (2.13)

where
∫ 1

0
a(s)ΨH(s)ds < +∞.

For each n ∈ N = {1, 2, . . . }, for y ∈ P (or y ∈ Pq), define operators

(Any)(t) =
1

1− α

∫ 1

0

∫ s

0

a(τ)f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

) dτ ds

− α

1− α

∫ η

0

∫ s

0

a(τ)f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

) dτ ds

−
∫ t

0

∫ s

0

a(τ)f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

) dτ ds,

(2.14)

for t ∈ [0, 1] and c0 > 0.
Suppose that (H) and (H’) hold. A standard argument (see [6, 7]) applied to

(2.14) yields that An : P → P is continuous and completely continuous for each
n ∈ N .

Lemma 2.7. Suppose (H) and (H’) holds and
∫ 1

0
a(t)Φ(t) sup 1

c≤u≤ 1
c + 1

1−t c g(u)dt <

+∞ for all c > 1. Then An : Pq → Pq is a continuous and completely continuous
for each n ∈ N .

Proof. For y ∈ Pq, it is easy to see that |y′(t)| ≤ 1
1−t‖y‖q for all t ∈ [0, 1). Also (H)

and Lemma 2.3 yield
α(1− η)
1− αη

max
t∈[0,1]

|(Any)(t)| ≤ (Any)(t) < +∞, ∀t ∈ [0, 1]
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and (Any)′(t) > −∞ for all t ∈ [0, 1). Moreover, since

(Any)(0) =
1

1− α

∫ 1

0

∫ s

0

a(τ)f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

) dτ ds

− α

1− α

∫ η

0

∫ s

0

a(τ)f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

) dτ ds

≥
∫ 1

0

∫ s

0

a(τ)f(τ,max{c0, y(τ)},−|y′(τ)|) dτ ds

=
∫ 1

0

(1− s)a(s)f(s,max{c0, y(s)},−|y′(s)| − 1
n

)ds

and

q(t)|(Anx)′(t)| = (1− t)
∫ t

0

a(s)f(s,max{c0, y(s)},−|y′(s)| − 1
n

)ds

≤
∫ 1

0

(1− s)a(s)f(s,max{c0, y(s)},−|y′(s)| − 1
n

)ds,

we have
(Anx)(0) ≥ max

t∈[0,1]
q(t)|(Anx)′(t)|.

Consequently, AnPq ⊆ Pq for each n ∈ N = {1, 2, . . . }. Moreover, since

lim
t→1−

|(Any)′(t)| =
∫ 1

0

a(s)f(s,max{c0, y(s)}, |y′(s)| − 1
n

)ds,

we can assume that Any ∈ C1[0, 1].
Next we show that An : Pq → Pq is continuous and completely continuous.

Suppose that {ym} ⊆ Pq, y0 ∈ Pq with limm→+∞ ‖ym − y0‖q = 0. Then, there is
an M > c0 such that

‖ym‖q ≤ M, ‖y0‖q ≤ M, m ∈ N.

Then |y′m(t)| ≤ M/(1− t) for m ∈ {1, 2, . . . } and so

f(t,max{c0, ym(t)},−|y′m(t)| − 1
n

) ≤ Φ(t) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−t M

g(u),

for t ∈ (0, 1). Moreover, since

lim
m→+∞

f(t,max{c0, ym(t)},−|y′m(t)| − 1
n

) = f(t, max{c0, y0(t)},−|y′0(t)| −
1
n

),

for t ∈ (0, 1), the Lebesgue Dominated Convergence Theorem guarantees that

max
t∈[0,1]

|(Anym)(t)− (Any0)(t)|

≤ 1
1− α

∫ 1

0

∫ s

0

a(τ)
∣∣∣f(τ,max{c0, ym(τ)},−|y′m(τ)| − 1

n
)

− f(τ,max{c0, y0(τ)},−|y′0(τ)| − 1
n

)
∣∣∣ dτ ds

+
α

1− α

∫ η

0

∫ s

0

a(τ)
∣∣∣|f(τ,max{c0, ym(τ)},−|y′m(τ)| − 1

n
)

− f(τ,max{c0, y0(τ)},−|y′0(τ)| − 1
n

)Big| dτ ds
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+
∫ ∫ 1

0

∫ s

0

a(τ)
∣∣∣f(τ,max{c0, ym(τ)},−|y′m(τ)|

− 1
n

)− f(τ,max{c0, y0(τ)},−|y′0(τ)| − 1
n

)
∣∣∣ dτ ds → 0, as m → +∞.

Since Anym, Any0 ∈ Pq, Lemma 2.6 yields

lim
m→+∞

‖Anym −Any0‖q = max
t∈[0,1]

|(Anym)(t)− (Any0)(t)| = 0,

which implies that An : Pq → Pq is continuous.
Suppose D ⊆ Pq is bounded. Then, there is an M > c0 such that ‖y‖q ≤ M for

all y ∈ D. Then |y′(t)| ≤ M/(1− t) for all y ∈ D, and so

f(t,max{c0, y(t)},−|y′(t)|− 1
n

) ≤ Φ(t) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−t M

g(u), t ∈ (0, 1).

Thus

max
t∈[0,1]

|(Any)(t)|

≤ 1
1− α

∫ 1

0

∫ s

0

a(τ)|f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

)| dτ ds

+
α

1− α

∫ η

0

∫ s

0

a(τ)|f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

)| dτ ds

+
∫ 1

0

∫ s

0

a(τ)|f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

)| dτ ds

≤ 1
1− α

∫ 1

0

∫ s

0

a(τ)Φ(s) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−τ M

g(u) dτ ds

+
α

1− α

∫ η

0

∫ s

0

Φ(s)a(τ) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−τ M

g(u) dτ ds

+
∫ 1

0

∫ s

0

a(τ)Φ(τ) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−τ M

g(u) dτ ds

and

max
t∈[0,1]

|(Any)′(t)|

≤ max
t∈[0,1]

∫ t

0

a(τ)|f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

)|dτ

≤ max
t∈[0,1]

∫ t

0

a(τ)Φ(τ) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−τ M

g(u)dτ.

Also AnD is bounded in the norm ‖x‖0 = max{maxt∈[0,1] |x(t)|,maxt∈[0,1] |x′(t)|}.
For t1, t2 ∈ [0, 1], y ∈ D, we have

|(Any)(t1)− (Any)(t2)|

= |
∫ t2

t1

∫ s

0

a(τ)Φ(τ)|f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

)| dτ ds|

≤ |
∫ t2

t1

∫ s

0

a(τ)Φ(τ) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−τ M

g(u) dτ ds|
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and

|(Any)′(t1)− (Any)′(t2)| = |
∫ t2

t1

a(τ)|f(τ,max{c0, y(τ)},−|y′(τ)| − 1
n

)|dτ |

≤ |
∫ t2

t1

a(τ)Φ(τ) max
c0≤u≤M

h(u) sup
1
n≤u≤ 1

n + 1
1−τ M

g(u)dτ |,

which implies that {(Any)(t)|y ∈ D} and {(Any)′(t)|y ∈ D} are equicontinuous on
[0, 1].

The Arzela-Ascoli Theorem guarantees that AnD and (AnD)′ are relatively com-
pact in C[0, 1]. Since

‖Any‖q = max{max
t∈[0,1]

|(Any)(t)|, max
t∈[0,1]

(1− t)|(Any)′(t)|}

≤ max{max
t∈[0,1]

|(Any)(t)|, max
t∈[0,1]

|(Any)′(t)|},

the set AnD is relatively compact in C1
q [0, 1]. Consequently, An : Pq → Pq is contin-

uous and completely continuous for each n ∈ {1, 2, . . . }. The proof is complete. �

3. Nonexistence of positive solutions to (1.1)-(1.2)

In this section, we notice that the presence of z in f(t, x, z) can lead to the
nonexistence of positive solutions to (1.1)-(1.2).

Theorem 3.1. Suppose (H) holds and
∫ z

0
1

g(r)dr = +∞ for all z ∈ (0,+∞) and∫ 1

0
a(s)Φ(s)ds < +∞. Then (1.1)-(1.2) has no positive solution.

Proof. Suppose x0(t) is a positive solution to (1.1)-(1.2). Then

x′′0(t) + a(t)f(t, x0(t), x′0(t)) = 0, t ∈ (0, 1)

x′0(0) = 0, x0(1) = αx0(η),

which means that there is a t0 ∈ (0, 1) with x′0(t0) < 0, x0(t0) > 0 (otherwise
x′(t) ≥ 0 for all t ∈ (0, 1) which would contradict x(1) = αx(η) < x(η)). Let
t∗ = inf{t < t0|x′0(s) < 0 for all s ∈ [t, t0]}. Obviously, t∗ ≥ 0 and x′0(t∗) = 0 and
x′0(t) < 0 for all t ∈ (t∗, t0]. Condition (H) implies

−x′′0(t) ≤ a(t)f(t, x0(t), x′0(t)) ≤ a(t)Φ(t)h(x0(t))g(|x′0(t)|), ∀t ∈ (t∗, t0),

and so
−x′′0(t)

g(−x′0(t))
≤ a(t)Φ(t)h(x0(t)) ≤ a(t)Φ(t)h(x0(t)), ∀t ∈ (t∗, t0).

Integration from t to t0 yields∫ −x′0(t0)

−x′0(t)

1
g(r)

dr =
∫ t0

t

1
g(−x′0(s))

d(−x′0(s)) ≤ max
u∈[x0(t0),x0(t)]

h(u)
∫ 1

0

a(s)Φ(s)ds.

Letting t → t∗, we have

+∞ =
∫ −x′0(t0)

0

1
g(r)

dr ≤ max
u∈[x0(t0),x0(t∗)]

h(u)
∫ 1

0

a(s)Φ(s)ds < +∞,

a contradiction. Consequently, (1.1)-(1.2) has no positive solution. �
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Example 3.2. Consider the boundary-value problem

x′′ + (1− t)a(|x′|)a[xb + (x + 1)−d + 1] = 0, t ∈ (0, 1),

x(0) = 0, x(1) =
1
2
x(

1
2
),

where a ≥ 1, b > 1, d > 0. This problem has no positive solution. It is easy to see
that f(t, x, z) = (1− t)a(|z|)a[xb + (x + 1)−d + 1] for all (t, x, z) ∈ [0, 1]× [0,+∞)×
(−∞,+∞). Obviously, g(r) = ra and

∫ z

0
1

g(r)dr = +∞ for all z ∈ (0,+∞). Then
Theorem 3.1 guarantees that (3.2)-(3.2) has no positive solution.

4. Existence of at least one positive solution to (1.1)-(1.2)

In this section our nonlinearity f may be singular at y′ = 0 and y = 0 and Φ .
Throughout this section we will assume that the following conditions hold:

(H1) a(t) ∈ C(0, 1), a(t) > 0 for all t ∈ (0, 1);
(H2) Conditions (H) and (H’) hold and I(z) =

∫ z

0
1

g(r)dr < +∞ for all z ∈
[0,+∞) with

sup
c0≤r≤c

h(r)
∫ 1

0

a(s)Φ(s)ds <

∫ ∞

0

dr

g(r)

for all c ∈ [c0,+∞) and suppose

sup
c0≤c<+∞

c
1−αη
1−α I−1(supc0≤r≤c h(r)

∫ 1

0
a(s)Φ(s)ds)

> 1,

where c0 is defined in Lemma 2.4.

Theorem 4.1. Suppose that (H1)–(H2) hold. Then (1.1)-(1.2) has at least one
positive solution y0 ∈ C[0, 1] ∩ C2(0, 1) with y0(t) > 0 on [0, 1] and y′0(t) < 0 on
(0, 1).

Proof. Choose R1 > 0 with

R1

1−αη
1−α I−1(supc0≤r≤R1

h(r)
∫ 1

0
a(s)Φ(s)ds)

> 1. (4.1)

From the continuity of I−1 and I, we can choose ε > 0 and ε < R1 with

R1

1−αη
1−α I−1(supc0≤r≤R1

h(r)
∫ 1

0
a(s))Φ(s)ds) + I(ε))

> 1. (4.2)

Let n0 ∈ {1, 2, . . . } with 1
n0

< min{ε, 1
2

1−α
α(1−η)c0}} and let N0 = {n0, n0+1, . . . }.

Now (H1)–(H2) guarantee that for each n ∈ N0, An : P → P is a continuous and
completely continuous operator.

Let Ω1 = {y ∈ C1[0, 1] : ‖y‖ < R1}. We now show that

y 6= µAny, ∀y ∈ P ∩ ∂Ω1, µ ∈ (0, 1], n ∈ N0. (4.3)

Suppose there exists a y0 ∈ P ∩ ∂Ω1 and a µ0 ∈ (0, 1] such that y0 = µ0Any0. It is
easy to see that y′0(t) ≤ 0 and

y′0(t) = −µ0

∫ t

0

a(s)f(s,max{c0, y0(s)}, y′0(s)−
1
n

)ds, t ∈ (0, 1). (4.4)
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Also

y′′0 (t) + µ0a(t)f(t,max{c0, y0(t)}, y′0(t)−
1
n

) = 0, 0 < t < 1, (4.5)

y′0(0) = 0, y0(1) = αy0(η). (4.6)

Therefore,

−y′′0 (t) = µ0a(t)f(t,max{c0, y0(t)}, y′0(t)−
1
n

)

≤ a(t)Φ(t)h(max{c0, y0(t)})g(−y′0(t) +
1
n

),∀t ∈ (0, 1),

which yields
−y′′0 (t)

g(−y′0(t) + 1
n )

≤ a(t)Φ(t)h(max{c0, y0(t)}), ∀t ∈ (0, 1).

Integration from 0 to t yields

I(−y′0(t) +
1
n

)− I(
1
n

) ≤
∫ t

0

a(s)Φ(s)h(max{c0, y0(s)})ds

≤ sup
c0≤r≤R1

h(r)
∫ t

0

a(s)Φ(s)ds,

and so

I(−y′0(t) +
1
n

) ≤ sup
c0≤r≤R1

h(r)
∫ t

0

a(s)Φ(s)ds + I(ε).

Thus

−y′0(t) ≤ I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
, t ∈ (0, 1). (4.7)

Therefore,

y0(t)− y0(1) ≤ (1− t)I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
. (4.8)

Let t = η in (4.8). Then

y0(η)− y0(1) ≤ (1− η)I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
.

Since y0(1) = αy0(η), one has

(
1
α
− 1)y0(1) ≤ (1− η)I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
,

which yields

y0(1) ≤ α

1− α
(1− η)I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
.

Then (4.8) implies

y0(0) ≤ y0(1) + I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)

=
1− αη

1− α
I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
.

(4.9)
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Now (4.7) and (4.9) guarantee that

R1 = max{max
t∈[0,1]

|y0(t)|, max
t∈[0,1]

|y′0(t)|}

≤ 1− αη

1− α
I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)

which implies
R1

1−αη
1−α I−1(supc0≤r≤R1

h(r)
∫ 1

0
a(s)Φ(s)ds + I(ε))

≤ 1.

This contradicts (4.2). Thus (4.3) is true.
From Lemma 2.1, for each n ∈ N0, we have i(An,Ω1 ∩ P, P ) = 1. As a result,

for each n ∈ N0, there exists a yn ∈ Ω1 ∩ P , such that yn = Anyn; i.e.,

yn(t) =
1

1− α

∫ 1

0

∫ s

0

a(τ)f(τ,max{c0, yn(τ)},−|y′n(τ)| − 1
n

) dτ ds

− α

1− α

∫ η

0

∫ s

0

a(τ)f(τ,max{c0, yn(τ)},−|y′n(τ)| − 1
n

) dτ ds

−
∫ t

0

∫ s

0

a(τ)f(τ,max{c0, yn(τ)},−|y′n(τ)| − 1
n

) dτ ds.

It is easy to see that y′n(t) < 0, and

y′n(t) = −
∫ t

0

a(s)f(s,max{c0, yn(s)}, y′n(s)− 1
n

)ds, n ∈ N0, t ∈ (0, 1).

Now we consider {yn(t)}n∈N0 and {y′n(t)}n∈N0 . Since ‖yn‖ ≤ R1, one has

the functions belonging to {yn} are uniformly bounded on [0, 1], (4.10)

the functions belonging to {y′n} are uniformly bounded on [0, 1]. (4.11)

Thus

the functions belonging to {yn} are equicontinuous on [0, 1]. (4.12)

A similar argument to that used to show (4.5) yields

y′′n(t) + a(t)f(t, max{c0, yn(t)}, y′n(t)− 1
n

) = 0, 0 < t < 1,

y′n(0) = 0, yn(1) = αyn(η).
(4.13)

By Lemma 2.4, we have
yn(t) ≥ c0, ∀n ∈ N0. (4.14)

Now we claim that for any t1, t2 ∈ [0, 1],

|I(y′n(t2)−
1
n

)− I(y′n(t1)−
1
n

)| ≤ sup
c0≤r≤R1

h(r))|
∫ t2

t1

a(t)Φ(t))dt|. (4.15)

Notice that

−y′′n(t) = a(t)f(t,max{c0, yn(t)}, y′n(t)− 1
n

)

≤ a(t)|f(t,max{c0, yn(t)}, y′n(t)− 1
n

)|

≤ a(t)Φ(t)h(max{c0, yn(t)})g(y′n(t)− 1
n

), ∀t ∈ (0, 1),
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and

y′′n(t) = −a(t)f(t, max{c0, yn(t)}, y′n(t)− 1
n

)

≤ a(t)|f(t,max{c0, yn(t)}, y′n(t)− 1
n

)|

≤ a(t)Φ(t)h(max{c0, yn(t)})g(y′n(t)− 1
n

),∀t ∈ (0, 1),

which yields
−y′′n(t)

g(y′n(t)− 1
n )

≤ a(t)Φ(t)h(max{c0, yn(t)}),∀t ∈ (0, 1), (4.16)

y′′n(t)
g(y′n(t)− 1

n )
≤ a(t)Φ(t)h(max{c0, yn(t)}),∀t ∈ (0, 1). (4.17)

Note that the right hand sides are always positive in (4.16) and (4.17). For any t1,
t2 ∈ [0, 1] with t1 < t2, we have

|
∫ t2

t1

1
g(−y′n(s) + 1

n )
d(−y′n(s) +

1
n

)| ≤ sup
c0≤r≤R1

h(r)|
∫ t2

t1

a(t)Φ(t)dt|;

i.e., (4.15) is true.
Since I−1 is uniformly continuous on [0, I(R1)], for any ε̄ > 0, there is a ε′ > 0

such that

|I−1(s1)− I−1(s2)| < ε̄,∀ |s1 − s2| < ε′, s1, s2 ∈ [0, I(R1)]. (4.18)

Also (4.15) guarantees that, for ε′ > 0, there is a δ′ > 0 such that

|I(y′n(t2)−
1
n

)− I(y′n(t1)−
1
n

)| < ε′,∀ |t1 − t2| < δ′, t1, t2 ∈ [0, 1]. (4.19)

Now (4.18) and (4.19) yield

|y′n(t2)− y′n(t1)| = | − y′n(t2) +
1
n

+ y′n(t1)−
1
n
|

= |I−1(I(−y′n(t2) +
1
n

))− I−1(I(−y′n(t1) +
1
n

))|

< ε̄, ∀ |t1 − t2| < δ′, t1, t2 ∈ [0, 1],

which implies

the functions belonging to {y′n} are equicontinuous on [0, 1]. (4.20)

Consequently (4.10), (4.11), (4.12) and (4.20), the Arzela-Ascoli Theorem guaran-
tees that {yn} and {y′n} are relatively compact in C[0, 1]; i.e., there is a function
y0 ∈ C1[0, 1], and a subsequence {ynj

} of {yn} such that

lim
j→+∞

max
t∈[0,1]

|ynj
(t)− y0(t)| = 0, lim

j→+∞
max

t∈[0,1]
|y′nj

(t)− y′0(t)| = 0.

Since y′nj
(0) = 0, ynj

(1) = αynj
(η), y′nj

(t) < 0, ynj
(t) > 0, t ∈ (0, 1), j ∈ {1, 2, . . . },

then one has

y′0(0) = 0, y0(1) = αy0(η), y′0(t) ≤ 0, y0(t) ≥ 0, t ∈ (0, 1). (4.21)

Now since supn≥1 ‖yn‖ ≤ R1, (H’) guarantees that there exists a ΨR1(t) continuous
and ΨR1(t) > 0 on (0, 1) such that

f(t, x, z) ≥ ΨR1(t)(−z)γ , t ∈ (0, 1), x ∈ (0, R1], z < 0.
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Then

−y′′nj
(t) = a(t)f(t,max{c0, ynj

(t)}, y′nj
(t)− 1

nj
)) ≥ a(t)ΨR1(t)(−y′nj

(t) +
1
nj

)γ ,

for t ∈ (0, 1). Also note that

− y′′(t)
(−y′nj

(t) + 1
nj

)γ
≥ a(t)ΨR1(t), t ∈ (0, 1).

Integrating from 0 to t, we have

1
1− γ

(−y′nj
(t) +

1
nj

)1−γ − 1
1− γ

(
1
nj

)1−γ ≥
∫ t

0

a(s)Ψ1(s)ds, t ∈ (0, 1),

which implies

−y′nj
(t) +

1
nj

≥ [(1− γ)(
∫ t

0

a(s)Ψ1(s)ds +
1

1− γ
(

1
nj

)1−γ)]
1

1−γ , t ∈ (0, 1).

Letting j → +∞, we have

−y′0(t) ≥ [(1− γ)(
∫ t

0

a(s)Ψ1(s)ds)]
1

1−γ , t ∈ (0, 1).

Consequently, y′0(t) < 0 for all t ∈ (0, 1), which together with y0(1) > 0 guarantees
that y0(t) > 0 for all t ∈ [0, 1]. Therefore,

min{ min
s∈[ 12 ,t]

y0(s), min
s∈[ 12 ,t]

|y′0(s)|} > 0, for all t ∈ [
1
2
, 1),

min{ min
s∈[t, 1

2 ]
y0(s), min

s∈[t, 1
2 ]
|y′0(s)|} > 0, for all t ∈ (0,

1
2
].

Since

y′nj
(t)− y′nj

(
1
2
) = −

∫ t

1
2

a(s)f(s,max{c0, ynj
(s)}, y′nj

(s)− 1
nj

)ds, t ∈ (0, 1),

letting j → +∞, one has

y′0(t)− y′0(
1
2
) = −

∫ t

1
2

a(s)f(s, {c0, y0(s)}, y′0(s))ds, t ∈ (0, 1).

Now by direct differentiation, we have

y′′0 (t) + a(t)f(t, {c0, y0(t)}, y′0(t)) = 0, 0 < t < 1.

Now (4.14) guarantees that y0(t) ≥ c0 for all t ∈ [0, 1] and so

y′′0 (t) + a(t)f(t, y0(t), y′0(t)) = 0, 0 < t < 1.

From (4.21), we have y0 ∈ C[0, 1] ∩ C2(0, 1) and y0 is a positive solution to (1.1)-
(1.2). �

Example 4.2. Consider the three-point boundary value problems

y′′ + α[(−y′)
1
2 + (−y′)−a][yb + (

1
α

)
1
2 dy−d] = 0, t ∈ (0, 1),

y′(0) = 0, y(1) =
1
2
y(

1
2
),
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where α > 0, a > 0, 1 > γ ≥ 0, b ≥ 0 and d > 0. Then, there is a α0 > 0 such that
(4.2)-(4.2) has one positive solution y0 ∈ C[0, 1] ∩ C2(0, 1) with y0(t) > 0 on [0, 1]
and y′0(t) < 0 on (0, 1) for all 0 < α < α0.

Let a(t) ≡ µ, Φ(t) ≡ 1 for all t ∈ [0, 1], h(x) = xb+( 1
α )

1
2 dx−d for x ∈ (0,+∞) and

g(z) = z
1
2 +z−a for z ∈ (0,+∞). From the proof of Lemma 2.4, we have c0 = 7

192α
1
2

with α ≤ 1, and then α[yb + ( 1
α )

1
2 dy−d] ≤ αyb + ( 192

7 )d for all y ∈ [c0,+∞). Let
I(z) =

∫ z

0
1

r
1
2 +r−a

dr. Thus there exists an α0 such that

I(1/3)
α supc0≤r≤1 h(r)

> 1, ∀α ∈ (0, α0]

and then
sup

c0≤c<+∞

c

3I−1(supc0≤r≤c h(r)α)
> 1.

Hence, the conditions (H1) and (H2) hold. Thus Theorem 4.1 guarantees that (4.2)
and (4.2) has at least one positive solution.

5. Multiple positive solutions to (1.1)-(1.2)

In this section our nonlinearity f may be singular at y′ = 0 and y = 0. Through-
out this section we will assume that the following conditions hold:

(P1) a(t) ∈ C(0, 1), a(t) > 0 for all t ∈ (0, 1);
(P2) Conditions (H) and (H’) hold and I(z) =

∫ z

0
1

g(r)dr < +∞ for all z ∈
[0,+∞) with supc0≤r≤c h(r)

∫ 1

0
a(s)Φ(s)ds <

∫∞
0

dr
g(r) for all c ∈ [c0,+∞)

and suppose

sup
c0≤c<+∞

c
1−αη
1−α I−1(supc0≤r≤c h(r)

∫ 1

0
a(s)Φ(s)ds)

> 1,

where c0 is defined by Lemma 2.4;
(P3) limu→+∞ f(t, u, z)/u = +∞ uniformly for (t, z) ∈ [ 14 , 3

4 ]× (0,+∞).

Theorem 5.1. Suppose that (P1)–(P3) hold. Then (1.1)-(1.2) has at least two
positive solutions y1,0, y1,0 ∈ C[0, 1]∩C2(0, 1) with y1,0(t) > 0, y2,0(t) > 0 on [0, 1]
and y′1,0(t) < 0, y′2,0(t) < 0 on (0, 1).

Proof. Choose R1 > 0 with

R1

1−αη
1−α I−1

(
supc0≤r≤R1

h(r)
∫ 1

0
a(s)Φ(s)ds

) > 1. (5.1)

From the continuity of I−1 and I, we can choose ε > 0 and ε < R1 with

R1

1−αη
1−α I−1(supc0≤r≤R1

h(r)
∫ 1

0
a(s)Φ(s)ds + I(ε))

> 1. (5.2)

Let n0 ∈ {1, 2, . . . } so that 1
n0

< min{ε, 1
2

1−α
α(1−η)c0} and let N0 = {n0, n0 + 1, . . . }.

Lemma 2.7 guarantees that for each n ∈ N0, An : Pq → Pq is a continuous and
completely continuous operator. From (P3), there is a R′ > R1 such that

f(t, x, y) ≥ N∗x, ∀x ≥ R′,
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where N∗ > (
∫ 3/4

1/4
(1− s)a(s)dsα(1−η)

1−αη )−1. Let

R2 > max{R′, 1− αη

α(1− η)
R′}.

Now let

Ω1 = {y ∈ C1
q [0, 1] : ‖y‖q < R1}, Ω2 = {y ∈ C1

q [0, 1] : ‖y‖q < R2}.

We now show that

y 6= µAny, ∀y ∈ P ∩ ∂Ω1, µ ∈ (0, 1], n ∈ N0, (5.3)

and
Anx 6≤ x, ∀ x ∈ ∂Ω2 ∩ P, n ∈ N0. (5.4)

Suppose there exists a y0 ∈ P ∩ ∂Ω1 and a µ0 ∈ (0, 1] such that y0 = µ0Any0. It is
easy to see that y′0(t) ≤ 0 and

y′0(t) = −µ0

∫ t

0

a(s)f(s,max{c0, y0(s)}, y′0(s)−
1
n

)ds, t ∈ (0, 1). (5.5)

Also

y′′0 (t) + µ0a(t)f(t,max{c0, y0(t)}, y′0(t)−
1
n

) = 0, 0 < t < 1,

y′0(0) = 0, y0(1) = αy0(η).

Therefore,

−y′′0 (t) = µ0a(t)f(t, max{c0, y0(t)}, y′0(t)−
1
n

)

≤ a(t)Φ(t)h(max{c0, y0(t)})g(−y′0(t) +
1
n

), ∀t ∈ (0, 1).

which yields

−y′′0 (t)
g(−y′0(t) + 1

n )
≤ a(t)Φ(t)h(max{c0, y0(t)}), ∀t ∈ (0, 1).

Integration from 0 to t yields

I(−y′0(t) +
1
n

)− I(
1
n

) ≤
∫ t

0

a(s)Φ(s)h(max{c0, y0(s)})ds

≤ sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds,

and so

I(−y′0(t) +
1
n

) ≤ sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε).

Thus

−y′0(t) ≤ I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
, t ∈ (0, 1). (5.6)

Integration from t to 1 yields

y0(t)− y0(1) ≤ (1− t)I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
, t ∈ (0, 1). (5.7)
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Let t = η in (5.7). Then

y0(η)− y0(1) ≤ (1− η)I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
.

Since y0(1) = αy0(η), one has

(
1
α
− 1)y0(1) ≤ (1− η)I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
,

which yields

y0(1) ≤ α

1− α
(1− η)I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
.

Then (5.7) implies

y0(0) ≤ y0(1) + I−1( sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε))

=
1− αη

1− α
I−1( sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)).
(5.8)

Now (5.6) and (5.8) guarantees

R1 = max{max
t∈[0,1]

|y0(t)|, max
t∈[0,1]

(1− t)|y′0(t)|}

≤ 1− αη

1− α
I−1

(
sup

c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)

which implies
R1

1−αη
1−α I−1(supc0≤r≤R1

h(r)
∫ 1

0
a(s)Φ(s)ds + I(ε))

≤ 1.

This contradicts (5.2). Thus (5.3) is true.
From Lemma 2.1, for each n ∈ N0, we have

i(An,Ω1 ∩ P, P ) = 1, n ∈ N0. (5.9)

Suppose there is a x0 ∈ ∂Ω2 ∩ P such that Anx0 ≤ x0. Then ‖x0‖q = R2. Also
Lemma 2.3 implies

min
t∈[0,1]

x0(t) ≥
α(1− η)
1− αη

max
t∈[0,1]

|x0(t)| =
α(1− η)
1− αη

‖x0‖q =
α(1− η)
1− αη

R2 > R′.

Then, we have

x0(0) ≥ (Ax0)(0)

=
1

1− α

∫ 1

0

∫ s

0

a(τ)f(τ,max{c0, x0(τ)},−|x′0(τ)| − 1
n

) dτ ds

− α

1− α

∫ η

0

∫ s

0

a(τ)f(τ,max{c0, x0(τ)},−|x′0(τ)| − 1
n

) dτ ds

≥
∫ 3/4

1/4

(1− s)a(s)f(τ,max{c0, x0(s)},−|x′0(s)| −
1
n

)ds

≥
∫ 3/4

1/4

(1− s)a(s)N ∗max{c0, x0(s)}ds
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≥
∫ 3/4

1/4

(1− s)a(s)dsN ∗ α(1− η)
1− αη

R2

> ‖x0‖q,

which is a contradiction. Thus, (5.4) is true. Then Lemma 2.2 implies

i(An,Ω2 ∩ P, P ) = 0, n ∈ N0. (5.10)

From (5.9) and (5.10), we have

i(An, (Ω2 − Ω1) ∩ P, P ) = −1, n ∈ N0. (5.11)

By (5.9), (5.11), there is a x1,n ∈ Ω1 ∩ P and another x2,n ∈ Ω2 ∩ P such that

Anx1,n = x1,n, Anx2,n = x2,n, n ∈ N0.

Now we consider {x1,n}n∈N0 and {x2,n}n∈N0 . By Lemma 2.4, we have x1,n(t) ≥ c0

and x2,n ≥ c0.
We consider {x1,n}n∈N0 . Obviously maxt∈[0,1] |x1,n(t)| ≤ R1 for all n ∈ N0 and

maxt∈[0,1](1−t)|x′1,n(t)| ≤ R1 for all n ∈ N0. Also |x′1,n(t)| ≤ 1
1−tR1 for all t ∈ [0, 1)

and n ∈ N0. Hence, the functions belonging to {x1,n} are uniformly bounded on
[0, 1].

Since x1,n(t) satisfies

x′′1,n(t) + a(t)f(t, max{c0, x1,n(t)}, x′1,n(t)− 1
n

) = 0, 0 < t < 1,

x′1,n(0) = 0, x1,n(1) = αx1,n(η).

A similar argument to that used to show (5.6) yields that

−x′1,n(t) ≤ I−1
(

sup
c0≤r≤R1

h(r)
∫ 1

0

a(s)Φ(s)ds + I(ε)
)
, t ∈ (0, 1),

which implies that the functions belonging to {x′1,n} are uniformly bounded on
[0, 1] and so the functions belonging to {x1,n} are equicontinuous on [0, 1].

A similar argument to that to used to show (4.15) yields the functions belonging
to {x′1,n} are equicontinuous on [0, 1].

Consequently, the Arzela-Ascoli Theorem guarantees that {x1,n(t)} and {x′1,n(t)}
are relatively compact in C[0, 1]; i.e., there is a function x1,0 ∈ C1[0, 1], and a sub-
sequence {x1,nj

} of {x1,n} such that

lim
j→+∞

max
t∈[0,1]

|x1,nj
(t)− x1,0(t)| = 0, lim

j→+∞
max

t∈[0,1]
|x′1,nj

(t)− x′1,0(t)| = 0.

Similar reasoning as in the proof of Theorem 4.1 establishes that x1,0 is a positive
solution to (1.1) and (1.2).

Similarly, there is a convergent subsequence {x2,nk
} of {x2,n} such that

lim
k→+∞

|x2,nk
(t)− x2,0(t)| = 0, lim

k→+∞
|x′2,nj

(t)− x′2,0(t)| = 0

and x2,0 satisfies (1.1)-(1.2).
Since ‖x1,0‖q = maxt∈[0,1] |x1,0(t)| ≤ R1 and ‖x2,0‖q = maxt∈[0,1] |x2,0(t)| ≥ R1,

a similar argument to that used to show (5.3) yields that x1,0, x2,0 6∈ P ∩ ∂Ω1; i.e.,

‖x1,0‖q = max
t∈[0,1]

|x1,0(t)| < R1, ‖x2,0‖q = max
t∈[0,1]

|x2,0(t)| > R1.

Consequently, x1,0 and x2,0 are different positive solutions to (1.1)-(1.2). �
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Example 5.2. Consider the three-point boundary value problems

y′′ + α(1− t)a[1 + (−y′)e + (−y′)−a][1 + yb + y−d] = 0, t ∈ (0, 1),

y′(0) = 0, y(1) =
1
2
y(

1
2
)

where 1 ≥ e ≥ 0, a > 0, b ≥ 0, d > 0 and α > 0. Then there is a α0 > 0 such
that (5.11)-(5.2) has at least two positive solutions y1,0, y2,0 ∈ C[0, 1] ∩ C2(0, 1)
with y1,0(t) > 0, y2,0(t) > 0 on [0, 1] and y′1,0(t) < 0, y′2,0(t) < 0 on (0,1) for all
0 < α ≤ α0.

Let a(t) ≡ µ, Φ(t) = (1−t)a for all t ∈ [0, 1], h(x) = 1+xb +x−d for x ∈ (0,+∞)
and g(z) = 1 + ze + z−a for z ∈ (0,+∞). From the proof of Lemma 2.4, we
have c0 = 1

2 min{ 1
3 , 1

a+1 ( 1
2 −

1
a+2 ( 1

2 )a+2)}, and then α(1 − t)a[1 + yb + y−d] ≤
α(1− t)a[1+ yb + c0

−d] for all y ∈ [c0,+∞). Let I(z) =
∫ z

0
1

1+re+r−a dr. Thus there
exists an α0 such that

I( 1
3 )

α 1
a+1 supc0≤r≤1 h(r)

> 1, ∀α ∈ (0, α0]

and then

sup
c0≤c<+∞

c

3I−1(supc0≤r≤c h(r)
∫ 1

0
a(s)Φ(s)ds)

> 1.

Hence, the conditions (P1), (P2) and (P3) hold. Thus Theorem 5.1 guarantees that
(5.2)-(5.2) has at least two positive solutions.
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