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AN APPLICATION OF A GLOBAL BIFURCATION THEOREM
TO THE EXISTENCE OF SOLUTIONS FOR INTEGRAL

INCLUSIONS

STANIS LAW DOMACHOWSKI

Abstract. We prove the existence of solutions to Hammerstein integral in-
clusions of weakly completely continuous type. As a consequence we obtain an

existence theorem for differential inclusions, with Sturm-Liouville boundary
conditions,

u′′(t) ∈ −F (t, u(t), u′(t)) for a.e. t ∈ (a, b)

l(u) = 0.

1. Introduction

The purpose of this paper is to prove existence theorems for the integral inclusion
of weakly completely continuous type

u(t) ∈
∫ b

a

K(t, s)F (s, u(s))ds for all t ∈ [a, b].

Integral equations (inclusions) have been studied by many authors; see, for example
[17], where the nonlinear alternative for multi-valued mappings is used for obtaining
existence results for Volterra and Hammerstein type equations. Our approach is
rather different and is based on a global bifurcation theorem for convex-valued
completely continuous mappings; see [7, Theorem 1].

This paper will be divided into four sections. In the second section we will
introduce a class of integral inclusions of weakly completely continuous type, and
next we will state the main theorem. In the third section we will prove an existence
theorem using a global bifurcation theorem for convex-valued completely continuous
mappings [7, Theorem 1]. In this part we will assume that a multi-valued mapping
F : [a, b] × Rk → cl(Rk) satisfies appropriate conditions close to zero and infinity.
The fourth part contains some applications of the results given in the second section,
and selectors theorems. As consequences we will obtain existence theorems for
integral inclusions and for boundary value problems for differential inclusions.

In this paper we will use the following notation. Let E be a real Banach space.
By cl(E) we will denote the family of all non-empty, closed and bounded subsets
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of E. By cf(E) we will denote the family of all non-empty, closed, bounded and
convex subsets of E. For two sets A,B ∈ cl(E) we will denote by D(A,B) the
Hausdorff distance between A and B. In particular we put |A| = D(A, {0}).

Let E1, E2 be two Banach spaces and X ⊆ E1. A multi-valued mapping ϕ : X →
cl(E2) has a closed graph provided for all sequences {xn} ⊂ X and {yn} ⊂ E2 the
conditions xn → x, yn → y and yn ∈ ϕ(xn) for every n ∈ N imply y ∈ ϕ(x).

We call a multi-valued mapping ϕ : X → cl(E2) completely continuous if ϕ has
a closed graph and for any bounded subset A ⊆ X the set ϕ(A) =

⋃
x∈A ϕ(x) is a

relatively compact subset of E2.
A multi-valued mapping ϕ : X → cl(E2) has a strongly-weakly (s-w) closed

graph provided for all sequences {xn} ⊂ X and {yn} ⊂ E2 the conditions xn → x,
yn ⇀ y and yn ∈ ϕ(xn) for every n ∈ N imply y ∈ ϕ(x) (yn ⇀ y denotes weak
convergence).

We call a multi-valued mapping ϕ : X → cl(E2) weakly completely continuous
if ϕ has a strongly-weakly closed graph and for any bounded subset A ⊆ X the set
ϕ(A) = ∪x∈Aϕ(x) is a relatively weakly compact subset of E2.

We will also need the following notations. For x = (x1, . . . , xk) ∈ Rk we call
x non-negative (and write x ≥ 0) when xi ≥ 0 for i = 1, . . . , k. Let ‖ · ‖0 be
the supremum norm in C[a, b] and ‖ · ‖k be the norm in C([a, b], Rk) given by
‖u‖k =

∑k
i=1 ‖ui‖0 for u = (u1, . . . , uk) ∈ C([a, b], Rk). For v ∈ C([a, b], Rk) we

say v ≥ 0 if and only if v(t) ≥ 0 for every t ∈ [a, b]. For u, v ∈ C([a, b], Rk) we
write 〈u, v〉 =

∫ b

a

∑k
i=1 ui(t)vi(t)dt. Let the mapping p : Rk → Rk be given by

p(x1, . . . , xk) = (|x1|, . . . , |xk|).

2. Integral inclusions of weakly completely continuous type

In what follows we consider the integral inclusions of weakly completely contin-
uous type,

u(t) ∈
∫ b

a

K(t, s)F (s, u(s))ds, t ∈ [a, b], (2.1)

where the kernel K : [a, b]2 → R satisfies the following conditions:

K(t, s) = K(s, t), ∀t, s ∈ [a, b] (2.2)

K(t, ·) ∈ L∞((a, b), R); ∀t ∈ [a, b] (2.3)

K(t)(s) = K(t, s) is continuous, K : [a, b] → L∞((a, b), R) (2.4)

v ≥ 0 implies
∫ b

a

K(t, s)v(s)ds ≥ 0, ∀v ∈ C([a, b], Rk); (2.5)

the set of eigenvalues of v(t) = λ
∫ b

a
K(t, s)v(s)ds corresponding to non-negative

eigenvectors is nonempty and is finite. Let us denote this set by

Λ = {µ1 . . . , µN}, with µ1 < µ2 < · · · < µN ; (2.6)

the multi-valued mapping F : [a, b] × Rk → cl(Rk) satisfies the condition: There
exists a multi-valued mapping ϕ : C([a, b], Rk) → cf(L1((a, b), Rk)) with a s-w
closed graph such that

ϕ(v) ⊆ {w ∈ L1((a, b), Rk) : w(t) ∈ F (t, v(t)) a.e. on [a, b]} (2.7)

for each v ∈ C([a, b], Rk).
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Recall that a multi-valued mapping F : [a, b]×Rk → cl(Rk) is integrably bounded
if: For each R > 0 there exists a function mR ∈ L1((a, b), R) such that

|F (t, x)| ≤ mR(t) for a.e. t ∈ [a, b] and every x ∈ Rk with |x| ≤ R. (2.8)

A solution of the integral inclusion (2.1) is a continuous function u : [a, b] → Rk

which satisfies (2.1).

Theorem 2.1. Let K : [a, b]2 → R satisfies (2.2)–(2.6) and let a multi-valued
mapping F : [a, b] × Rk → cl(Rk) satisfies (2.7), (2.8) and for every ε > 0 there
exists δ > 0 such that

D(F (t, x), {m1p(x)}) ≤ ε|x| for t ∈ [a, b] |x| ≤ δ; (2.9)

for every ε > 0 there exists R0 > 0 such that

D(F (t, x), {m2p(x)}) ≤ ε|x| for t ∈ [a, b] |x| ≥ R0; (2.10)

with constants m1,m2 such that m1 > max Λ and m2 < min Λ. Then there exists
at least one non-trivial solution of integral inclusion (2.1).

3. Proof of Theorem 2.1

We need some notation. Let Ψ : (0,∞) × C([a, b], Rk) → cf(C([a, b], Rk)) be
a completely continuous mapping such that 0 ∈ Ψ(λ, 0) for all λ ∈ (0,∞). Let
f : (0,∞)× C([a, b], Rk) → cf(C([a, b], Rk)) be given by

f(λ, u) = u−Ψ(λ, u). (3.1)

We call (µ, 0) ∈ (0,∞)×C([a, b], Rk) a bifurcation point of f if for each neighbour-
hood U of (µ, 0) in (0,∞) × C([a, b], Rk) there exists a point (λ, u) ∈ U such that
u 6= 0 and 0 ∈ f(λ, u). Let us denote the set of all bifurcation points of f by Bf .
Let Rf ⊂ (0,∞)× C([a, b], Rk) be the closure (in (0,∞)× C([a, b], Rk)) of the set
of non-trivial solutions of the inclusion 0 ∈ f(λ, u).

Let V be a bounded open subset of a Banach space E and let the multi-valued
mapping g : V → cf(E) be given by g(x) = x − G(x), where G : V → cf(E) is
a completely continuous multi-valued mapping such that, for x ∈ ∂V , the relation
x 6∈ ∂V holds. It is well known that in such situation we may define the Laray-
Schauder degree deg(g, V, 0) [2, 4, 12, 14, 16].

For each λ satisfying (λ, 0) 6∈ Bf there exists r0 > 0, such that 0 6∈ f(λ, u) for
‖u‖k = r ∈ (0, r0], so the value deg(f(λ, ·), B(0, r), 0) is defined. Assume that for
an interval [c, d] ⊂ (0,∞) there exists δ > 0 such, that(

([c− δ, c) ∪ (d, d + δ])× {0}
)
∩ Bf = ∅.

Then we may define the bifurcation index s[f, c, d] of the mapping f , with respect
to the interval [c, d] as

s[f, c, d] = lim
λ→d+

deg(f(λ, ·), B(0, r), 0)− lim
λ→c−

deg(f(λ, ·), B(0, r), 0),

where r = r(λ) > 0 is small enough.
The main tool used in this section is Theorem 3.1 below. It is a global bifurcation

result for convex-valued completely continuous mappings being a consequence of
the generalized of the Rabinovitz global bifurcation alternative (see [5, 22]).
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Theorem 3.1 ([7]). Let f : (0,∞) × C([a, b], Rk) → cf(C([a, b], Rk)) be given
by (3.1), and assume that there exists an interval [c, d] ⊂ (0,∞) such that Bf ⊂
[c, d]× {0} and s[f, c, d] 6= 0. Then there exists a non-compact component C ⊂ Rf

satisfying C ∩ Bf 6= ∅.

In what follows we will use the integral operator S : L1((a, b), Rk) → C([a, b], Rk)
given by

S(u)(t) =
∫ b

a

K(t, s)u(s)ds (3.2)

where K is as above.

Remark 3.2. Let us observe that the operator S is well-defined and S is completely
continuous.

Proposition 3.3. Let ϕ : E1 → cl(E2) be a weakly completely continuous multi-
valued mapping and let T : E → E1 be a continuous linear mapping, and let
S : E2 → E3 be a continuous linear mapping such that for every bounded subset
B of E1, Sϕ(B) is a compact subset of a Banach space E3. Then the composition
S ◦ ϕ ◦ T : E → cl(E3) is completely continuous.

Now we prove the main result.

Proof of Theorem 2.1. By (2.7) and (2.8) there exists a weakly completely contin-
uous multi-valued mapping ϕ : C([a, b], Rk) → cf(L1((a, b), Rk)) such that

ϕ(u) ⊆ {w ∈ L1((a, b), Rk) : w(t) ∈ F (t, u(t)) a.e. on[a, b]} (3.3)

for each u ∈ C([a, b], Rk). It follows from Remark 1 and Proposition 3.3 that
the multi-valued mapping S ◦ ϕ : C([a, b], Rk) → cf(C([a, b], Rk)) is completely
continuous. Let f : (0,∞)×C([a, b], Rk) → cf(C([a, b], Rk)) be given by the formula

f(λ, u) = u− λSϕ(u).

Let us observe that if 0 ∈ f(1, u) then u is the solution of integral inclusion (2.1). So
it is enough to show that there exists u ∈ C([a, b], Rk), u 6= 0 such that 0 ∈ f(1, u).
To prove this we apply Theorem 3.1.

The proof will be given in three steps.
Step 1. We show that Bf ⊆ {( µi

m1
, 0); i = 1, . . . , N}. Let (λ0, 0) ∈ Bf , and let

{(λn, un)} ⊂ (0, +∞)× C([a, b], Rk) be the sequence of non-trivial solutions of the
inclusion

un ∈ λnSϕ(un)
such that λn → λ0 ∈ (0, +∞) and un → 0. Let the mapping P : C([a, b], Rk) →
L1((a, b), Rk) be given by P (u)(t) = p(u(t)). So we have

un ∈ λnSϕ(un)−m1λnSP (un) + m1λnSP (un).

Let us denote vn = un

‖un‖k
. Then we have

vn ∈ λnS(
ϕ(un)−m1P (un)

‖un‖k
) + λnm1SP (vn).

By (2.9), we have |ϕ(un)−m1P (un)
‖un‖k

| → 0. Since the sequence {λnm1P (vn)} is
bounded, there exists a subsequence of {vn} convergent to v0 in C([a, b], Rk), where
‖v0‖k = 1. So letting n → +∞ we get

v0 = λ0m1SP (v0).
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Because P (v0) ≥ 0 then by (2.5) SP (v0) ≥ 0 and v0 ≥ 0. Hence P (v0) = v0 and
v0 = λ0m1S(v0). Then by (2.6) λ0 = µi

m1
for some i ∈ {1, . . . , N} that implies

Bf ⊆ {( µi

m1
, 0); i = 1, . . . , N}.

Step 2. We show that s[f, µ1
m1

, µN

m1
] = −1. For this purpose let us observe first

that for λ 6∈ { λ
m1

: λ ∈ Λ} there exists r > 0 such that by (2.9) the mapping
f(λ, ·) : B(0, r) → cf(C([a, b], Rk)) is homotopic to the mapping f0(λ, ·) : B(0, r) →
C([a, b], Rk) given by

f0(λ, u) = u− λm1SP (u).

Moreover for λ ∈ (0, µ1
m1

) the mapping f0(λ, ·) : B(0, r) → C([a, b], Rk) is homotopic
to the identity mapping i : B(0, r) → cf(C([a, b], Rk)), let the homotopy be given
by h(τ, u) = u− λτm1SP (u). Similarly to what we showed in Step 1 of this proof
we conclude that the homotopy h has no non-trivial zeros. Hence by homotopy
property of topological degree we have deg(f0(λ, ·), B(0, r), 0) = 1. Assume now
that λ ∈ (µN

m1
, +∞). Choose any i ∈ {1, . . . , N} and denote by uµi

a continuous
non-trivial function such that uµi

= µiS(uµi
) and uµi

≥ 0. We will show that
the mapping f0(λ, ·) : B(0, r) → C([a, b], Rk) may be joined by homotopy with the
mapping f1 : B(0, r) → C([a, b], Rk) given by f1(u) = f0(λ, u)− uµi

. A homotopy
h1 : [0, 1] × B(0, r) → C([a, b], Rk) is given by h1(τ, u) = f0(λ, u) − τuµi

. Assume
now that h1(τ, u) = 0 for some u, ‖u‖k ≤ r and τ ∈ (0, 1]. Hence

u = λm1SP (u) + τµiS(uµi) = S(λm1P (u) + τµiuµi).

Since λm1P (u) + τµiuµi
≥ 0 by (2.5) we have u ≥ 0. So that,

u = S(λm1u) + τuµi
,

and by (2.2),

〈u, uµi
〉 = 〈S(λm1u) + τuµi

, uµi
〉

= λm1〈S(u), uµi
〉+ τ〈uµi

, uµi
〉

= λm1〈u, S(uµi)〉+ τ〈uµi , uµi〉

=
λm1

µi
〈u, uµi〉+ τ〈uµi , uµi〉.

Then
µi − λm1

µi
〈u, uµi〉 = τ〈uµi , uµi〉 > 0,

and we obtain µi > λm1, because u ≥ 0 and uµi
≥ 0. This contradicts the

assumption λ > µi

m1
. Since m1λ 6∈ Λ, we have h1(0, ·) = f0(λ, u) = 0 ⇒ u = 0.

Hence the homoptopy h1 has no non-trivial zeroes, also h(1, ·) has no zeroes at all
that is why deg(f0(λ, ·), B(0, r), 0) = 0.
Step 3. Let us observe that by Theorem 3.1 there exists a non-compact component
C ⊂ Rf satisfying C ∩ Bf 6= ∅. We are going to show that there exist λ > 1 and
u 6= 0 such that (λ, u) ∈ C. Since the set C is not compact there exists a sequence
{(λn, un)} ⊂ C such that either λn → 0 or λn → +∞ or else ‖un‖k → +∞.

First let us assume that λn → 0 and {‖un‖k} is bounded. In this case, the
relation un ∈ λnSϕ(un) holds and consequently un → 0. As we showed in Step 1
un → 0 and λn → λ0 implies λ0 ∈

{
λ

m1
: λ ∈ Λ

}
, that contradicts λn → 0.
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Now let us consider the case ‖un‖k → +∞ and λn → λ0 ≤ 1. We can see that

un ∈ λnSϕ(un)−m2λnSP (un) + m2λnSP (un),

vn ∈ λnS(
ϕ(un)−m2P (un)

‖un‖k
) + λnm2SP (vn),

where vn = un

‖un‖k
.

By (2.8) and (2.10) similarly to what we showed in Step 1 of this proof there
exists v0 with ‖v0‖k = 1 such that

v0 = λ0m2SP (v0).

Since P (v0) ≥ 0 then SP (v0) ≥ 0 and v0 ≥ 0. Hence P (v0) = v0 and

v0 = λ0m2S(v0)

then by (2.6) λ0 = µi

m2
for some i ∈ {1, . . . , N} that contradicts λ0 ≤ 1.

Finally let us assume that λn → +∞. In this situation there exist λn > 1 and
un 6= 0 with (λn, un) ∈ C. Since C ∩ Bf 6= ∅ and by our assumptions µi

m1
< 1 for

i = 1, . . . , N then there exist λ < 1 and u such that (λ, u) ∈ C. By connectedness
of C there exists u with (1, u) ∈ C. For such solution of inclusion 0 ∈ f(1, u) there
must be u 6= 0, because (1, 0) 6∈ Rf ( (1, 0) 6∈ Bf ). So the proof is complete. �

4. Examples

In the first part of this section we study a class of multi-valued mappings which
admit a convex-valued weakly completely continuous selectors. The problem con-
cerning the existence of a continuous selector and a weakly completely continuous
selector have been studied by many authors for; see for example: Antosiwicz and
Cellina [1],  Lojasiewicz [15], Plís [18], Pruszko [19, 20], Fryszkowski [10], Bressan
and Colombo [3], Frigon and Granas [9].

In what follows we will consider integrably bounded multi-valued mappings F :
[a, b]× Rk → cl(Rn) satisfying one of the following properties:

F : [a, b]× Rk → cl(Rn) is L ⊗B measurable

F (t, ·) : Rk → cl(Rn) is l.s.c. for a.e. t ∈ [a, b].
(4.1)

Let us recall that A ⊆ [a, b]×Rk is L⊗B measurable if A belongs to the σ-algebra
generated by all sets of the form N × B where N is Lebesgue measurable in [a, b]
and B is Borel measurable in Rk.

F (·, x) : [a, b] → cl(Rn) is measurable for all x ∈ Rk

F (t, ·) : Rk → cl(Rn) is continuous for a.e. t ∈ [a, b].
(4.2)

F : [a, b]× Rk → cl(Rn) is l.s.c. (4.3)

F (·, x) : [a, b] → cf(Rn) is measurable for all x ∈ Rk

F (t, ·) : Rk → cf(Rn) is u.s.c. for a.e. t ∈ [a, b].
(4.4)

Now we state without proof the following Proposition. Next applying Theorem 2.1,
we obtain the existence of solutions of integral inclusions.
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Proposition 4.1 ([1, 3, 9, 10, 15, 18, 19, 20]). If F : [a, b]×Rk → cl(Rn) is an inte-
grably bounded multi-valued mapping satisfying one of the conditions (4.1) , (4.2),
(4.3) or (4.4) then the Nemytskii operator F : C([a, b], Rk) → cl(L1((a, b), Rn)),
associated with F , admits a convex-valued weakly completely continuous selector.

Theorem 4.2. Let K : [a, b]2 → R satisfy (2.2)–(2.6) and let F : [a, b] × Rk →
cl(Rk) be an integrably bounded multi-valued mapping such that one of the hypothe-
ses (4.1), (4.2), (4.3) or (4.4) holds. If, moreover F satisfies (2.9) and (2.10) with
constants m1,m2 such that m1 > max Λ and m2 < min Λ, then there exists at least
one non-trivial solution of integral inclusion (2.1).

Now we prove an existence result for differential inclusions with Sturm–Liouville
boundary conditions

u′′(t) ∈ −F (t, u(t), u′(t)) for a.e. t ∈ (a, b)

l(u) = 0,
(4.5)

where F : [a, b]× R× R → cl(R) is a multi-valued mapping and l : C1([a, b], R) →
R× R is given by

l(u) =
(
u(a) sin α− u′(a) cos α, u(b) sin β + u′(b) cos β

)
,

and α, β ∈ [0, π
2 ], α2 + β2 > 0. It is well known (cf. [6, 13]) that with the boundary

value problem
u′′(t) = h(t) for a.e. t ∈ (a, b)

l(u) = 0,
(4.6)

we may associate a continuous integral operator S : L1((a, b), R) → C1([a, b], R),
given by

S(u)(t) =
∫ b

a

−K(t, s)u(s)ds (4.7)

where K is Green’s function for (4.6). Let us observe that S(−h) = u if and only
if u ∈ C1([a, b], R), u′ : [a, b] → R is absolutely continuous and u is a solution of
(4.6). Let us recall that if h ≤ 0, h ∈ C([a, b], Rk) and u ∈ C2([a, b], R) satisfies
(4.6) then u ≥ 0 (cf. [21]). It is well known (cf. [6, 13]) that there exists exactly
one eigenvalue µ ∈ R of the linear eigenvalue problem

u′′(t) + λu(t) = 0 for t ∈ (a, b)

l(u) = 0
(4.8)

an eigenvector vµ, such that vµ(t) > 0 for t ∈ (a, b) and then µ > 0. Hence the set of
eigenvalues of the integral operator S for which there exists non-negative eigenvector
is equal to Λ = {µ−1}. We will also need the linear continuous operator T :
C1([a, b], R) → C([a, b], R×R) given by T (u)(t) = (u(t), u′(t)) for t ∈ [a, b]. In what
follows we will use the following existence theorem which is some modification of
Theorem 2.1 for the integro-differential inclusions of weakly completely continuous
type

u(t) ∈
∫ b

a

−K(t, s)F (s, u(s), u′(s))ds for all t ∈ [a, b]. (4.9)
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Theorem 4.3. Let K : [a, b]2 → R be Green’s function for (4.6) and let a multi-
valued mapping F : [a, b]×R×R → cl(R) satisfies (2.7), (2.8) and for every ε > 0
there exists δ > 0 such that

D(F (t, x, y), {m1p(x)}) ≤ ε(|x|+ |y|) for t ∈ [a, b] and |x|+ |y| ≤ δ; (4.10)

for every ε > 0 there exists R0 > 0 such that

D(F (t, x, y), {m2p(x)}) ≤ ε(|x|+ |y|) for t ∈ [a, b] and |x|+ |y| ≥ R0; (4.11)

with constants m1,m2 such that m2 < µ < m1. Then there exists at least one
non-trivial solution of integral inclusion (4.9).

Proof. Let f : (0, +∞)×C1([a, b], R) → cf(C1([a, b], R)) be a multi-valued mapping
defined by

f(λ, u) = u− λSϕT (u),
where ϕ : C([a, b], R × R) → cf(L1(a, b)) is a weakly completely continuous multi-
valued mapping such that

ϕ(u, v) ⊆ {w ∈ L1(a, b) : w(t) ∈ F (t, u(t), v(t)) a.e. on [a, b]}.

Let the mapping S : L1((a, b), R) → C1([a, b], R) be as in (4.7). By Proposition 3.3
and the well known properties of Green’s function, we see that the multi-valued
mapping SϕT : C1([a, b], R) → cf(C1([a, b], R)) is completely continuous. Essen-
tially the same reasoning as in Theorem 2.1 proves this theorem. �

Now from Theorem 4.3 and Proposition 4.1 we obtain an existence Theorem for
differential inclusions with Sturm-Liouville conditions.

Theorem 4.4. Let F : [a, b]× Rk → cl(Rk) be an integrably bounded multi-valued
mapping such that one of the hypotheses (4.1), (4.2), (4.3) or (4.4) holds. If,
moreover F satisfies (4.10) and (4.11) with constants m1,m2 such that m2 < µ <
m1. Then there exists at least one non-trivial solution of boundary value problem
(4.5).
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