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EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY
ELLIPTIC NONLINEAR SYSTEM IN RV

NGUYEN THANH CHUNG

ABSTRACT. We study the nonuniformly elliptic, nonlinear system
—div(h1(z)Vu) + a(z)u = f(z,u,v) in RV,
—div(h2(z)Vv) + b(z)v = g(x,u,v) in RV,

Under growth and regularity conditions on the nonlinearities f and g, we obtain
weak solutions in a subspace of the Sobolev space H! (]RN,RQ) by applying a
variant of the Mountain Pass Theorem.

1. INTRODUCTION
We study the nonuniformly elliptic, nonlinear system
—div(hi(2)Vu) + a(x)u = f(z,u,v) inRY,
—div(hy(x)Vv) + b(z)v = g(x,u,v) in RY,
where N > 3, h; € LL (RN), hi(z) > 1i =1,2; a,b € C(RY). We assume that

loc

there exist ag, by > 0 such that
a(x) > ag, b(x)>by, VzeRY,
a(x) — oo, b(zr) — o0 as|z| — 0.
System (1.1, with hy(z) = ho(z) = 1, has been studied by Costa [7]. There,
under appropriate growth and regularity conditions on the functions f(z,w,v) and

g(x,u,v), the weak solutions are exactly the critical points of a functional defined
on a Hilbert space of functions u,v in H*(R™). In the scalar case, the problem

—div(|z|*Vu) 4+ b(z)u = f(z,u) in RY,

with N > 3 and a € (0,2), has been studied by Mihailescu and Radulescu [11].
In this situation, the authors overcome the lack of compactness of the problem by
using the the Caffarelli-Kohn-Nirenberg inequality.

In this paper, under condition , we consider which may be a nonuni-
formly elliptic system. We shall reduce to a uniformly elliptic system by using
appropriate weighted Sobolev spaces. Then applying a variant of the Mountain

(1.1)

(1.2)
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pass theorem in [8], we prove the existence of weak solutions of system (|1.1)) in a
subspace of H!(RY,R?).

To prove our main results, we introduce the following some hypotheses:

(H1) There exists a function F(z,w) € C*(RY x R?,R) such that 2£ = f(z,w),
%—f = g(x,w), for all z € RN, w = (u,v) € R2

(H2) f(z,w),g(x,w) € CLRYN xR2 R), f(,0,0) = g(x,0,0) = 0 for all z € RV,
there exists a positive constant 79 such that

IV f(z,w)] + |Vg(z,w)| < molw]”™"
for all z € RN, w = (u,v) € R%.
(H3) There exists a constant p > 2 such that

0 < pF(z,w) <wVFEF(z,w)
for all z € RY and w € R*\{(0,0)}.
Let H'(RY,R?) be the usual Sobolev space under the norm

Jwl = [ (FuP 490 + [ + o, w= (o) € H'RY.R2).

Consider the subspace

E = {(u,v) € H'(RY,R?): /RN(\VU\Q +[Vol® + a(a) ul* + b(x) |v]*)dz < oo}

Then E is a Hilbert space with the norm

lwlf = / (IVul* +Vo? + a(@)[ul® + b(z)|v|*)da.
RN
By (1.2) it is clear that

lwlle > mollw|l g @y g2y, Yw € E,mg >0,

and the embeddings E — H'(RY R?) < LI(RY R?), 2 < ¢ < 2* are continuous.
Moreover, the embedding E < L?(RY,R?) is compact (see [7]). We now introduce
the space

H={(u,v) € E: /RN(hl(x)\Vu\Q + ha(2)|[Vu|* 4+ a(x)|u* + b(z)|v]*)dz < oo}

endowed with the norm

lwll; = /]RN(hl(%‘)IWI2 + ha(2)|Vol? + a(2)|ul* + b(x)|v]*)da.

Remark 1.1. Since hy(z) > 1, ho(z) > 1 for all x € RY we have ||w||g < ||w|g
with Vw € H and C§°(RY,R?) C H.

Proposition 1.2. The set H is a Hilbert space with the inner product

(wy,wq) = / (h1(2)Vui1Vug + ha(2)Vo1 Vog + a(x)ujus + b(z)vivg)de
RN

for all wy = (u1,v1), wa = (ua,v2) € H.
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Proof. Tt suffices to check that any Cauchy sequences {w,,} in H converges to
w € H. Indeed, let {w,} = {(tm,vm)} be a Cauchy sequence in H. Then

lim (h1(2)| Vi, — Vug|* 4+ ho(2)| Vo, — Vug|?) da

m,k—oco JpN

+ lim (a(@)|tm — ug|? + b(2)|vy — vi|*) dz =0

m,k—oo JpN

and {||wpm| g} is bounded.
Moreover, by Remark {wm} is also a Cauchy sequence in E. Hence the
sequence {w,,} converges to w = (u,v) € E; i.e.,

lim (IVtm — Vul?> + | Vo, — Vol?) dz

m—oo [pN

+ lim (a(@)|tm — ul® + b(z)|vy, — v[*) dz = 0.

m—oo JpN

It follows that {Vw,, = (Vtm, Vu,)} converges to Vw = (Vu, Vo) and {wy,}
converges to w in L?2(RN R?). Therefore {Vw,,(r)} converges to {Vw(z)} and
{wm(z)} converges to w(x) for almost everywhere z € RY. Applying Fatou’s
lemma we get

[ @IVl + B @IV + a@)luf + b))

< liminf/ (h1 ()| Vs |* + ho(2)|Vom|? + a(@)|um|? + b(z) [v,]?)de < co.
RN

m—0o0

Hence w = (u,v) € H. Applying again Fatou’s lemma

0< lim (h1(2) |Vt — Vul? + ho(z)| Vg, — Vo|?) da

m—oo [pN

+ lim (a(@)|um — ul® + b(2) vy, — v|*) do

m—oo JpN

k—oo

< lim [liminf/ (h1(2) |V — Vug|® + ha(z) | Vo, — Vog[?) da:]
RN

+ lim [likminf/ (a(2)|um — ug|® + b()|[vm — vk |?) dx} =0.
m— oo —oo  JrN
We conclude that {w,,} converges to w = (u,v) in H. O

Definition 1.3. We say that w = (u,v) € H is a weak solution of system if
/ (h1(2)VuVp + ha(2)VoVi + a(z)up + b(z)vyp)dz
RN

_ /RN(f(x,u,v)@ + g(z, u,v)p)dz =0

for all ® = (p,v) € H.
Our main result is stated as follows.

Theorem 1.4. Assuming (1.2) and (H1)-(H3) are satisfied, the system (1.1) has
at least one non-trivial weak solution in H.
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This theorem will be proved by using variational techniques based on a variant
of the Mountain pass theorem in [§]. Let us define the functional J : H — R given

Tw) =5 [ (@IVaP + ha@I Vol + a@)luf + bo)lof)da
—/ F(x,u,v)dx (1.3)
RN
=T(w) — P(w) forw= (u,v) € H,
where
1 2 2 2 2
T(w) = §/H§N(h1(x)|Vu| + ha(2)|Vo]® + a(z)|ul” + b(z)|v|?)dx, (1.4)
P(w) = /RN F(z,u,v)dx. (1.5)

2. EXISTENCE OF WEAK SOLUTIONS

In general, due to h(z) € Li, . (RY), the functional J may be not belong to C'(H)
(in this work, we do not completely care whether the functional .J belongs to C'(H)
or not). This means that we cannot apply directly the Mountain pass theorem by
Ambrosetti-Rabinowitz (see [4]). In the situation, we recall the following concept
of weakly continuous differentiability. Our approach is based on a weak version of

the Mountain pass theorem by Duc (see [§]).

Definition 2.1. Let J be a functional from a Banach space Y into R. We say that
J is weakly continuously differentiable on Y if and only if the following conditions
are satisfied

(i) J is continuous on Y.
(ii) For any u € Y, there exists a linear map DJ(u) from Y into R such that

lim J(u+tv) — J(u)
t—0 t

= (DJ(u),v), YveY.

(iii) For any v € Y, the map u — (DJ(u),v) is continuous on Y.

We denote by CL(Y) the set of weakly continuously differentiable functionals
on Y. It is clear that C*(Y) C CL(Y), where C(Y) is the set of all continuously
Frechet differentiable functionals on Y. The following proposition concerns the
smoothness of the functional J.

Proposition 2.2. Under the assumptions of Theorem the functional J(w),w €
H given by (1.3)) is weakly continuously differentiable on H and

(DJ(w), @) = / (hi(z)VuVe + hao(2) VoV + a(z)up + b(z)vy)de
RY (2.1)
- [ o+t

for all w = (u,v), &= (p,¢) € H.
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Proof. By conditions (H1)—-(H3) and the embedding H — FE is continuous, it can
be shown (cf. [5, Theorem A.VI]) that the functional P is well-defined and of class
C1(H). Moreover, we have

(DP(w), ) = / (F (0o + 9o, u, o)) da

RN

for all w = (u,v), ® = (p,¥) € H.
Next, we prove that T is continuous on H. Let {w,,} be a sequence converging
to w in H, where w,, = (Um,Vm), m=1,2,..., w = (u,v). Then

lim [h1(2) |V — Vu|* 4+ ha(2) |V, — Vo|?]dz

m—oo pN

+ lim [a(2)[tm — u* + b(z) vy — v|*]dz =0

m—oo JpN
and {||wm, | g} is bounded. Observe further that
|/ hl(x)|Vum|2dac—/ h (z)|Vul*dz|
RN RN

_ \/ b (2) (|t |2 — |Vu|2) ]|
RN

< [ @Il = [Vull(Vu| + [Vul)da
RN

< [ h@)Vum — V||V |da +/ 1 (2)| Vg, — V|| Valde
RN RN

1/2 1/2
< ([ m@Vun - Vupde) ([ m@[Vu, Pz
RN RN

2,.\1/2 2, \'/?
+ ([ m@)|Vu = VaPda) ([ (@) Vultde)
RN RN
< (wnllar + ) = wllr
Similarly, we obtain
| [ ha@Venfdz = [ ha(@)Volde] < (ol + )l ~ wla.
RN RN
| [ a@lunfde = [ ate)luPda] < (ol + ol o = o,
RN RN
| [ d@lende = [ s@oPda] < (lwmll -+ o) wn = wla.
RN RN
From the above inequalities, we obtain
[7wn) = T0)| < Al 1 + ) = wlls =0 a5 m = ox.

Thus T is continuous on H. Next we prove that for all w = (u,v), ® = (p,¢) € H,

(DJ(w), ®) = /RN (h1(z)VuVe + ha(2) VoV + a(z)up + b(x)vy))de.
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Indeed, for any w = (u,v), ® = (p,v) € H, any t € (—1,1)\{0} and z € RY we
have

hi(2)|Vu + tVe|? — hy(2)|Vul? !
0
< 20 () ([Vul + Vo) [Vl
< hy(2)|Vul? + 3hy ()| Ve 2.
Since hy(z)|Vu|?, hi(2)|Ve|? € LYRY), g(z) = hi(2)|Vul|? + 3hi(z)|Vp|? €
L'(RY). Applying Lebesgue’s Dominated convergence theorem we get

2 _ 2
—YJRN RN

Similarly, we have

2 2
i [ P2@IVot VO = ha@)[Vol” 2/ ha(z)VoVipde,  (2.3)
t—0 RN t RN
2 2
i [ C@ut el —a@ful ) 2/ a(z)upde, (2.4)
t—0 RN t RN
b t)2 —b 2
i [ AN EZb@RE o [ ey da, (2.5)
t—0 RN t RN

Combining (2.2))-(2.5)), we deduce that

. T(w+t®) —T(w)
(DT(w). @) = lim ;

= /]RN (h1(2)VuVp + ha(2) VoV + a(z)up + b(z)vy) de.

Thus T is weakly differentiable on H.
Let ® = (¢,v) € H be fixed. We now prove that the map w — (DT(w), ®) is
continuous on H. Let {w,,} be a sequence converging to w in H. We have

S/ hl(z)|Vum—Vu||Vga\dx+/ ha(2)|Von, — Vo||Vi|dz
RN RN

+ [ a@lun ~llelds + [ ba)lom ~ vllvlda,
RN RN
It follows by applying Cauchy’s inequality that
(DT (W), ®) — (DT (w), )| < 4|0t —wllir =0 asm— oo (26
Thus the map w — (DT (w), ®) is continuous on H and we conclude that functional

T is weakly continuously differentiable on H. Finally, J is weakly continuously
differentiable on H. O

Remark 2.3. From Proposition 2.2 we observe that the weak solutions of system
(1.1)) correspond to the critical points of the functional J(w),w € H given by .
Thus our idea is to apply a variant of the Mountain pass theorem in [] for obtaining
non-trivial critical points of J and thus they are also the non-trivial weak solutions

of system (L.1J).

Proposition 2.4. The functional J(w),w € H given by (L.3) satisfies the Palais-
Smale condition.
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Proof. Let {wy, = (tm,vm)} be a sequence in H such that

lim J(wy,)=c¢, lim |[|[DJ(wy)| g =0.

m—0o0

First, we prove that {w,,} is bounded in H. We assume by contradiction that
{wm} is not bounded in H. Then there exists a subsequence {wn,, } of {wy,} such
that |[wp,||n — oo as j — oo. By assumption (H3) it follows that

1
J(Win;) = = (DJ (Wi, ), Win, )
I
= (5 = LY Iy + (2 (DPw ). wn,) — Pluw,))
2 p S e '
Z 'YO”wmj ||%{7

where vg = % — —=. This yields

1
m

1

1
> Yollwm, 15 — ;IIDJ(wmj)IIH*- Wi, |1 (2.7)

1
= llwm, Il (vollwnm, | — ;HDJ(wmj)IIH*)-

Letting j — oo, since ||wp,, ||z — oo, ||DJ(wm,; )|z~ — 0 we deduce that J(w,,) —
00, which is a contradiction. Hence {w,,} is bounded in H.

Since H is a Hilbert space and {w,, } is bounded in H, there exists a subsequence
{Wi,, } of {wy,} weakly converging to w in H. Moreover, since the embedding
H — F is continuous, {wy,, } is weakly convergent to w in E. We shall prove that

T(w) < liminf T'(wp,, ). (2.8)

k—o0

Since the embedding £ — L2?(R™,R?) is compact, {w,, } converges strongly to
w in L2(RN,R?). Therefore, for all @ cC RY, {w,,, } converges strongly to w in
L'(©Q,R?). Besides, for any ® = (¢,1) € E we have

| [ (@(@)m, = 0+ (o) om, — )0 da]
Q
< max (sgp a(x),sgp b(z)) (/Q [tm,, — ul|pldz + /Q |V, — v|\7,/1|dx).
Applying Cauchy inequality we obtain
| [ (@(@)wn, = 0+ b(o)(om, — ) da]
Q

<7 @l 2@y g2y |y, — w2 @y R2),

where 1 = max(supq, a(x), supg b(x)) > 0. Letting k — oo we get

klim (a(2) (Um,, —w)p + b(x) (Vm,, —v)¢) dx = 0. (2.9)
/o
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On the other hand, since w,,, converges weakly to w in E; i.e.,

lim [(Vtm, — V)V + (Vg — Vo)V de

k—o0 RN

+ lim [a(z) (U, — w)p + b(x) (U, —v)¥Y]dz =0

k—oo RN

for all ® = (p,9) € E, by (2.9) and C5°(RY,R?) C H C E we infer that

klim [(Vum, — Vu)Ve + (Y, — Vo)Vl dz = 0,

for all Q CcC R¥. This implies that {Vw,,, } converges weakly to Vw in L!(Q, R?).
Applying [15, Theorem 1.6], we obtain

T(w) < liminf T'(wp,, ).

k—o0

Thus (2.8) is proved. We now prove that
lim (DP(wy,, ), W, —w) = lim VF(z,wm,).(Wn, —w)de=0. (2.10)
k—o0 k—oo JpN

Indeed, by (H2), we have
IVE (2, wm, ) (wm, —w)]
= |f(z, wmy) (W), — v) + 9(@, Wi, ) (U, — V)|
< |V f(@, rwm)|[wm | [tm,, —ul + [Vg(@, O2wm, )| |[wm,|[Vm, —v
< Av|wm, [P [um, — ul + Az|wm, [P [vm, — v
< Asl|wm, [P lwm, —w], 0<61,0<1

where A; (i = 1,2,3) are positive constants.
Set 2% = 1\2/]j27 p1 = ﬁ, P2 = D3 = %. We have p; > 1, 2 < pa,p3 < 2* and

1oy 1
or + 55 T 7; = L. Therefore,

lim VE(z,wn,).(Wn, —w)de < Ag/ |Win, [P Wi, — w]| Wy, |d
k—oo JpN RN

< Agl|wpn, 1757

Wiy = W[ Loz [[wp, || Lrs

On the other hand, using the continuous embeddings H «— E < LI(RY), 2 < ¢ <

2* together with the interpolation inequality (where p% = g + 12:5), it follows that

iy, = wllze2 @) < lwm,, = w52 @n)-lwm, —wll?-

Since the embedding E — L?*(R") is compact we have |Jwy,, —w|[z2@yx) — 0 as

k — oo. Hence ||wy,, — wl|[rr2@vy — 0 as k — oo and (2.10) is proved.
On the other hand, by (2.10) and ([2.1)) it follows

ler&(DT(wmk)7wmk —w) =0.
Hence, by the convex property of the functional T' we deduce that
T(w) — kli}lilo sup T (wpm,, ) = klir{:o inf [T'(w) — T(wpm,,)] (2.11)
> kling(DT(wkaw — Wy, ) = 0. (2.12)
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Relations (2.8) and (2.11)) imply
T(w) = lim T(wpm,). (2.13)

k—o0
Finally, we prove that {w.,, } converges strongly to w in H. Indeed, we assume by
contradiction that {wy,, } is not strongly convergent to w in H. Then there exist
a constant ¢y > 0 and a subsequence {wmkj} of {Wm, } such that ||wmkj —wllg >

€p > 0 for any j =1,2,.... Hence

1 1 Wiy, + W 1 1

5T(Wm,)) + 5T(w) = T(—5——) = Jlwm,, —wl}y = 7. (2.14)

With the same arguments as in the proof of (2.8)), and remark that the sequence
Wy, Fw

{—=3—} converges weakly to w in E, we have

Wyp,, . + W
T(w) < lim infT(#). (2.15)
J—00
Hence letting j — oo, from (2.13]) and (2.14)) we infer that
Wyp,, . + W 1 9
T(w) — liminfT<+) > —€g. (2.16)
Jj—o0

Relations ([2.15) and 1' imply 0 > ie% > 0, which is a contradiction. Therefore,
we conclude that {wy,, } converges strongly to w in H and J satisfies the Palais -
Smale condition on H. O

To apply the Mountain pass theorem we shall prove the following proposition
which shows that the functional J has the Mountain pass geometry.

Proposition 2.5. (i) There exist « > 0 and r > 0 such that J(w) > «, for all
w e H with |w||g =r.
(i) There exists wo € H such that ||wollg > r and J(wy) < 0.

Proof. (i) From (H3), it is easy to see that

F(z,z) > lrrllir} F(z,s).|]z|" >0 VxeRY and |2| > 1,2 € R?, (2.17)
S|l=
0< F(z,2) < |m‘§>§F(x,s).|z\“ Ve e RN and 0 < |2 <1, (2.18)

where max|s—; F(7,s) < C in view of (H2). It follows from (2.18) that
F(z, 2)

EECSNPE

=0 uniformly for = € RV, (2.19)

By using the embeddings H «— E < L?(RY,R?), with simple calculations we infer
from (2.19) that inf),, = J(w) = > 0 for 7 > 0 small enough. This implies (i).
(ii) By (2.17), for each compact set QO C RY there exists ¢ = ¢({2) such that

F(z,z) >¢lz|* forallze,|z| > 1. (2.20)

Let 0 # ® = (p,7) € C'(RY,R?) having compact support, for ¢ > 0 large enough,
from (2.20) we have

1 1
T(®) = L@ - /RN P, t®)dr < 18] - t“E/Q @rdz,  (2.21)

where ¢ = ¢(2), Q = (supp ¢ Usupp¢). Then (2.21) and px > 2 imply (ii). O
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Proof of Theorem[I]}. It is clear that J(0) = 0. Furthermore, the acceptable set
G ={yeC([0,1],H) : v(0) = 0,7(1) = wo},

where wy is given in Proposition is not empty (it is easy to see that the function
~(t) = twy € G). By Propositio and Propositions all assumptions of
the Mountain pass theorem introduced in [§] are satisfied. Therefore there exists
w € H such that

0 < a< J(Ww) =inf{max J(y([0,1])) : v € G}

and (DJ(w),®) =0 for all & € H; i.e., w is a weak solution of system (1.1)). The
solution % is a non-trivial solution by J (@) > « > 0. The proof is complete. (|
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