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EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY
ELLIPTIC NONLINEAR SYSTEM IN RN

NGUYEN THANH CHUNG

Abstract. We study the nonuniformly elliptic, nonlinear system

− div(h1(x)∇u) + a(x)u = f(x, u, v) in RN ,

− div(h2(x)∇v) + b(x)v = g(x, u, v) in RN .

Under growth and regularity conditions on the nonlinearities f and g, we obtain

weak solutions in a subspace of the Sobolev space H1(RN , R2) by applying a

variant of the Mountain Pass Theorem.

1. Introduction

We study the nonuniformly elliptic, nonlinear system

−div(h1(x)∇u) + a(x)u = f(x, u, v) in RN ,

−div(h2(x)∇v) + b(x)v = g(x, u, v) in RN ,
(1.1)

where N ≥ 3, hi ∈ L1
loc(RN ), hi(x) ≥ 1 i = 1, 2; a, b ∈ C(RN ). We assume that

there exist a0, b0 > 0 such that

a(x) ≥ a0, b(x) ≥ b0, ∀x ∈ RN ,

a(x) →∞, b(x) →∞ as |x| → ∞.
(1.2)

System (1.1), with h1(x) = h2(x) = 1, has been studied by Costa [7]. There,
under appropriate growth and regularity conditions on the functions f(x, u, v) and
g(x, u, v), the weak solutions are exactly the critical points of a functional defined
on a Hilbert space of functions u, v in H1(RN ). In the scalar case, the problem

−div(|x|α∇u) + b(x)u = f(x, u) in RN ,

with N ≥ 3 and α ∈ (0, 2), has been studied by Mihăilescu and Rădulescu [11].
In this situation, the authors overcome the lack of compactness of the problem by
using the the Caffarelli-Kohn-Nirenberg inequality.

In this paper, under condition (1.2), we consider (1.1) which may be a nonuni-
formly elliptic system. We shall reduce (1.1) to a uniformly elliptic system by using
appropriate weighted Sobolev spaces. Then applying a variant of the Mountain
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pass theorem in [8], we prove the existence of weak solutions of system (1.1) in a
subspace of H1(RN ,R2).

To prove our main results, we introduce the following some hypotheses:

(H1) There exists a function F (x,w) ∈ C1(RN ×R2,R) such that ∂F
∂u = f(x,w),

∂F
∂v = g(x,w), for all x ∈ RN , w = (u, v) ∈ R2.

(H2) f(x,w), g(x,w) ∈ C1(RN×R2,R), f(x, 0, 0) = g(x, 0, 0) = 0 for all x ∈ RN ,
there exists a positive constant τ0 such that

|∇f(x,w)|+ |∇g(x,w)| ≤ τ0|w|p−1

for all x ∈ RN , w = (u, v) ∈ R2.
(H3) There exists a constant µ > 2 such that

0 < µF (x,w) ≤ w∇F (x,w)

for all x ∈ RN and w ∈ R2\{(0, 0)}.
Let H1(RN ,R2) be the usual Sobolev space under the norm

‖w‖2 =
∫

RN

(|∇u|2 + |∇v|2 + |u|2 + |v|2)dx, w = (u, v) ∈ H1(RN ,R2) .

Consider the subspace

E = {(u, v) ∈ H1(RN ,R2) :
∫

RN

(|∇u|2 + |∇v|2 + a(x)|u|2 + b(x)|v|2)dx <∞}.

Then E is a Hilbert space with the norm

‖w‖2
E =

∫
RN

(|∇u|2 + |∇v|2 + a(x)|u|2 + b(x)|v|2)dx.

By (1.2) it is clear that

‖w‖E ≥ m0‖w‖H1(RN ,R2), ∀w ∈ E,m0 > 0,

and the embeddings E ↪→ H1(RN ,R2) ↪→ Lq(RN ,R2), 2 ≤ q ≤ 2∗ are continuous.
Moreover, the embedding E ↪→ L2(RN ,R2) is compact (see [7]). We now introduce
the space

H = {(u, v) ∈ E :
∫

RN

(h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2)dx <∞}

endowed with the norm

‖w‖2
H =

∫
RN

(h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2)dx.

Remark 1.1. Since h1(x) ≥ 1, h2(x) ≥ 1 for all x ∈ RN we have ‖w‖E ≤ ‖w‖H

with ∀w ∈ H and C∞0 (RN ,R2) ⊂ H.

Proposition 1.2. The set H is a Hilbert space with the inner product

〈w1, w2〉 =
∫

RN

(h1(x)∇u1∇u2 + h2(x)∇v1∇v2 + a(x)u1u2 + b(x)v1v2)dx

for all w1 = (u1, v1), w2 = (u2, v2) ∈ H.
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Proof. It suffices to check that any Cauchy sequences {wm} in H converges to
w ∈ H. Indeed, let {wm} = {(um, vm)} be a Cauchy sequence in H. Then

lim
m,k→∞

∫
RN

(
h1(x)|∇um −∇uk|2 + h2(x)|∇vm −∇vk|2

)
dx

+ lim
m,k→∞

∫
RN

(
a(x)|um − uk|2 + b(x)|vm − vk|2

)
dx = 0

and {‖wm‖H} is bounded.
Moreover, by Remark 1.1, {wm} is also a Cauchy sequence in E. Hence the

sequence {wm} converges to w = (u, v) ∈ E; i.e.,

lim
m→∞

∫
RN

(
|∇um −∇u|2 + |∇vm −∇v|2

)
dx

+ lim
m→∞

∫
RN

(
a(x)|um − u|2 + b(x)|vm − v|2

)
dx = 0.

It follows that {∇wm = (∇um,∇vm)} converges to ∇w = (∇u,∇v) and {wm}
converges to w in L2(RN ,R2). Therefore {∇wm(x)} converges to {∇w(x)} and
{wm(x)} converges to w(x) for almost everywhere x ∈ RN . Applying Fatou’s
lemma we get∫

RN

(h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2)dx

≤ lim inf
m→∞

∫
RN

(h1(x)|∇um|2 + h2(x)|∇vm|2 + a(x)|um|2 + b(x)|vm|2)dx <∞.

Hence w = (u, v) ∈ H. Applying again Fatou’s lemma

0 ≤ lim
m→∞

∫
RN

(
h1(x)|∇um −∇u|2 + h2(x)|∇vm −∇v|2

)
dx

+ lim
m→∞

∫
RN

(
a(x)|um − u|2 + b(x)|vm − v|2

)
dx

≤ lim
m→∞

[
lim inf
k→∞

∫
RN

(
h1(x)|∇um −∇uk|2 + h2(x)|∇vm −∇vk|2

)
dx

]
+ lim

m→∞

[
lim inf
k→∞

∫
RN

(
a(x)|um − uk|2 + b(x)|vm − vk|2

)
dx

]
= 0.

We conclude that {wm} converges to w = (u, v) in H. �

Definition 1.3. We say that w = (u, v) ∈ H is a weak solution of system (1.1) if∫
RN

(h1(x)∇u∇ϕ+ h2(x)∇v∇ψ + a(x)uϕ+ b(x)vψ)dx

−
∫

RN

(f(x, u, v)ϕ+ g(x, u, v)ψ)dx = 0

for all Φ = (ϕ,ψ) ∈ H.

Our main result is stated as follows.

Theorem 1.4. Assuming (1.2) and (H1)–(H3) are satisfied, the system (1.1) has
at least one non-trivial weak solution in H.
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This theorem will be proved by using variational techniques based on a variant
of the Mountain pass theorem in [8]. Let us define the functional J : H → R given
by

J(w) =
1
2

∫
RN

(h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2)dx

−
∫

RN

F (x, u, v)dx

= T (w)− P (w) for w = (u, v) ∈ H,

(1.3)

where

T (w) =
1
2

∫
RN

(h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2)dx, (1.4)

P (w) =
∫

RN

F (x, u, v)dx. (1.5)

2. Existence of weak solutions

In general, due to h(x) ∈ L1
loc(RN ), the functional J may be not belong to C1(H)

(in this work, we do not completely care whether the functional J belongs to C1(H)
or not). This means that we cannot apply directly the Mountain pass theorem by
Ambrosetti-Rabinowitz (see [4]). In the situation, we recall the following concept
of weakly continuous differentiability. Our approach is based on a weak version of
the Mountain pass theorem by Duc (see [8]).

Definition 2.1. Let J be a functional from a Banach space Y into R. We say that
J is weakly continuously differentiable on Y if and only if the following conditions
are satisfied

(i) J is continuous on Y .
(ii) For any u ∈ Y , there exists a linear map DJ(u) from Y into R such that

lim
t→0

J(u+ tv)− J(u)
t

= 〈DJ(u), v〉, ∀v ∈ Y.

(iii) For any v ∈ Y , the map u 7→ 〈DJ(u), v〉 is continuous on Y .

We denote by C1
w(Y ) the set of weakly continuously differentiable functionals

on Y . It is clear that C1(Y ) ⊂ C1
w(Y ), where C1(Y ) is the set of all continuously

Frechet differentiable functionals on Y . The following proposition concerns the
smoothness of the functional J .

Proposition 2.2. Under the assumptions of Theorem 1.4, the functional J(w), w ∈
H given by (1.3) is weakly continuously differentiable on H and

〈DJ(w),Φ〉 =
∫

RN

(h1(x)∇u∇ϕ+ h2(x)∇v∇ψ + a(x)uϕ+ b(x)vψ)dx

−
∫

RN

(f(x, u, v)ϕ+ g(x, u, v)ψ)dx
(2.1)

for all w = (u, v), Φ = (ϕ,ψ) ∈ H.
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Proof. By conditions (H1)–(H3) and the embedding H ↪→ E is continuous, it can
be shown (cf. [5, Theorem A.VI]) that the functional P is well-defined and of class
C1(H). Moreover, we have

〈DP (w),Φ〉 =
∫

RN

(f(x, u, v)ϕ+ g(x, u, v)ψ)dx

for all w = (u, v), Φ = (ϕ,ψ) ∈ H.
Next, we prove that T is continuous on H. Let {wm} be a sequence converging

to w in H, where wm = (um, vm), m = 1, 2, . . . , w = (u, v). Then

lim
m→∞

∫
RN

[h1(x)|∇um −∇u|2 + h2(x)|∇vm −∇v|2]dx

+ lim
m→∞

∫
RN

[a(x)|um − u|2 + b(x)|vm − v|2]dx = 0

and {‖wm‖H} is bounded. Observe further that

∣∣ ∫
RN

h1(x)|∇um|2dx−
∫

RN

h1(x)|∇u|2dx
∣∣

=
∣∣ ∫

RN

h1(x)(|∇um|2 − |∇u|2)dx
∣∣

≤
∫

RN

h1(x)||∇um| − |∇u||(|∇um|+ |∇u|)dx

≤
∫

RN

h1(x)|∇um −∇u||∇um|dx+
∫

RN

h1(x)|∇um −∇u||∇u|dx

≤
( ∫

RN

h1(x)|∇um −∇u|2dx
)1/2( ∫

RN

h1(x)|∇um|2dx
)1/2

+
( ∫

RN

h1(x)|∇um −∇u|2dx
)1/2

( ∫
RN

h1(x)|∇u|2dx
)1/2

≤ (‖wm‖H + ‖w‖H)‖wm − w‖H .

Similarly, we obtain∣∣ ∫
RN

h2(x)|∇vm|2dx−
∫

RN

h2(x)|∇v|2dx
∣∣ ≤ (‖wm‖H + ‖w‖H)‖wm − w‖H ,∣∣ ∫

RN

a(x)|um|2dx−
∫

RN

a(x)|u|2dx
∣∣ ≤ (‖wm‖H + ‖w‖H)‖wm − w‖H ,∣∣ ∫

RN

b(x)|vm|2dx−
∫

RN

b(x)|v|2dx
∣∣ ≤ (‖wm‖H + ‖w‖H)‖wm − w‖H .

From the above inequalities, we obtain

|T (wm)− T (w)| ≤ 4(‖wm‖H + ‖w‖H)‖wm − w‖H → 0 as m→∞.

Thus T is continuous on H. Next we prove that for all w = (u, v), Φ = (ϕ,ψ) ∈ H,

〈DJ(w),Φ〉 =
∫

RN

(h1(x)∇u∇ϕ+ h2(x)∇v∇ψ + a(x)uϕ+ b(x)vψ)dx.
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Indeed, for any w = (u, v), Φ = (ϕ,ψ) ∈ H, any t ∈ (−1, 1)\{0} and x ∈ RN we
have ∣∣h1(x)|∇u+ t∇ϕ|2 − h1(x)|∇u|2

t

∣∣ =
∣∣2 ∫ 1

0

h1(x)(∇u+ st∇ϕ)∇ϕds
∣∣

≤ 2h1(x)(|∇u|+ |∇ϕ|)|∇ϕ|
≤ h1(x)|∇u|2 + 3h1(x)|∇ϕ|2.

Since h1(x)|∇u|2, h1(x)|∇ϕ|2 ∈ L1(RN ), g(x) = h1(x)|∇u|2 + 3h1(x)|∇ϕ|2 ∈
L1(RN ). Applying Lebesgue’s Dominated convergence theorem we get

lim
t→0

∫
RN

h1(x)|∇u+ t∇ϕ|2 − h1(x)|∇u|2

t
dx = 2

∫
RN

h1(x)∇u∇ϕdx. (2.2)

Similarly, we have

lim
t→0

∫
RN

h2(x)|∇v + t∇ψ|2 − h2(x)|∇v|2

t
dx = 2

∫
RN

h2(x)∇v∇ψdx, (2.3)

lim
t→0

∫
RN

a(x)|u+ tϕ|2 − a(x)|u|2

t
dx = 2

∫
RN

a(x)uϕdx, (2.4)

lim
t→0

∫
RN

b(x)|v + tψ|2 − b(x)|v|2

t
dx = 2

∫
RN

b(x)vψ dx. (2.5)

Combining (2.2)-(2.5), we deduce that

〈DT (w),Φ〉 = lim
t→0

T (w + tΦ)− T (w)
t

=
∫

RN

(h1(x)∇u∇ϕ+ h2(x)∇v∇ψ + a(x)uϕ+ b(x)vψ) dx.

Thus T is weakly differentiable on H.
Let Φ = (ϕ,ψ) ∈ H be fixed. We now prove that the map w 7→ 〈DT (w),Φ〉 is

continuous on H. Let {wm} be a sequence converging to w in H. We have∣∣〈DT (wm),Φ〉 − 〈DT (w),Φ〉
∣∣

≤
∫

RN

h1(x)|∇um −∇u||∇ϕ|dx+
∫

RN

h2(x)|∇vm −∇v||∇ψ|dx

+
∫

RN

a(x)|um − u||ϕ|dx+
∫

RN

b(x)|vm − v||ψ|dx.

It follows by applying Cauchy’s inequality that

|〈DT (wm),Φ〉 − 〈DT (w),Φ〉| ≤ 4‖Φ‖H‖wm − w‖H → 0 as m→∞. (2.6)

Thus the map w 7→ 〈DT (w),Φ〉 is continuous on H and we conclude that functional
T is weakly continuously differentiable on H. Finally, J is weakly continuously
differentiable on H. �

Remark 2.3. From Proposition 2.2 we observe that the weak solutions of system
(1.1) correspond to the critical points of the functional J(w), w ∈ H given by (1.3).
Thus our idea is to apply a variant of the Mountain pass theorem in [8] for obtaining
non-trivial critical points of J and thus they are also the non-trivial weak solutions
of system (1.1).

Proposition 2.4. The functional J(w), w ∈ H given by (1.3) satisfies the Palais-
Smale condition.
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Proof. Let {wm = (um, vm)} be a sequence in H such that

lim
m→∞

J(wm) = c, lim
m→∞

‖DJ(wm)‖H∗ = 0.

First, we prove that {wm} is bounded in H. We assume by contradiction that
{wm} is not bounded in H. Then there exists a subsequence {wmj

} of {wm} such
that ‖wmj

‖H →∞ as j →∞. By assumption (H3) it follows that

J(wmj
)− 1

µ
〈DJ(wmj

), wmj
〉

=
(1
2
− 1
µ

)
‖wmj‖2

H +
( 1
µ
〈DP (wmj ), wmj 〉 − P (wmj )

)
≥ γ0‖wmj

‖2
H ,

where γ0 = 1
2 −

1
µ . This yields

J(wmj
) ≥ γ0‖wmj

‖2
H +

1
µ
〈DJ(wmj

), wmj
〉

≥ γ0‖wmj‖2
H − 1

µ
‖DJ(wmj )‖H∗ .‖wmj‖H

= ‖wmj
‖H

(
γ0‖wmj

‖H − 1
µ
‖DJ(wmj

)‖H∗
)
.

(2.7)

Letting j →∞, since ‖wmj
‖H →∞, ‖DJ(wmj

)‖H∗ → 0 we deduce that J(wmj
) →

∞, which is a contradiction. Hence {wm} is bounded in H.
Since H is a Hilbert space and {wm} is bounded in H, there exists a subsequence

{wmk
} of {wm} weakly converging to w in H. Moreover, since the embedding

H ↪→ E is continuous, {wmk
} is weakly convergent to w in E. We shall prove that

T (w) ≤ lim inf
k→∞

T (wmk
). (2.8)

Since the embedding E ↪→ L2(RN ,R2) is compact, {wmk
} converges strongly to

w in L2(RN ,R2). Therefore, for all Ω ⊂⊂ RN , {wmk
} converges strongly to w in

L1(Ω,R2). Besides, for any Φ = (ϕ,ψ) ∈ E we have∣∣ ∫
Ω

(a(x)(umk
− u)ϕ+ b(x)(vmk

− v)ψ) dx
∣∣

≤ max
(

sup
Ω
a(x), sup

Ω
b(x)

)( ∫
Ω

|umk
− u||ϕ|dx+

∫
Ω

|vmk
− v||ψ|dx

)
.

Applying Cauchy inequality we obtain∣∣ ∫
Ω

(a(x)(umk
− u)ϕ+ b(x)(vmk

− v)ψ) dx
∣∣

≤ γ1‖Φ‖L2(RN ,R2)‖wmk
− w‖L2(RN ,R2),

where γ1 = max(supΩ a(x), supΩ b(x)) > 0. Letting k →∞ we get

lim
k→∞

∫
Ω

(a(x)(umk
− u)ϕ+ b(x)(vmk

− v)ψ) dx = 0. (2.9)
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On the other hand, since wmk
converges weakly to w in E; i.e.,

lim
k→∞

∫
RN

[(∇umk
−∇u)∇ϕ+ (∇vmk

−∇v)∇ψ] dx

+ lim
k→∞

∫
RN

[a(x)(umk
− u)ϕ+ b(x)(vmk

− v)ψ] dx = 0

for all Φ = (ϕ,ψ) ∈ E, by (2.9) and C∞0 (RN ,R2) ⊂ H ⊂ E we infer that

lim
k→∞

∫
Ω

[(∇umk
−∇u)∇ϕ+ (∇vmk

−∇v)∇ψ] dx = 0,

for all Ω ⊂⊂ RN . This implies that {∇wmk
} converges weakly to ∇w in L1(Ω,R2).

Applying [15, Theorem 1.6], we obtain

T (w) ≤ lim inf
k→∞

T (wmk
).

Thus (2.8) is proved. We now prove that

lim
k→∞

〈DP (wmk
), wmk

− w〉 = lim
k→∞

∫
RN

∇F (x,wmk
).(wmk

− w)dx = 0. (2.10)

Indeed, by (H2), we have

|∇F (x,wmk
)(wmk

− w)|
= |f(x,wmk

)(umk
− u) + g(x,wmk

)(vmk
− v)|

≤ |∇f(x, θ1wmk
)||wmk

||umk
− u|+ |∇g(x, θ2wmk

)||wmk
||vmk

− v|
≤ A1|wmk

|p|umk
− u|+A2|wmk

|p|vmk
− v|

≤ A3|wmk
|p|wmk

− w|, 0 < θ1, θ2 < 1

where Ai (i = 1, 2, 3) are positive constants.
Set 2∗ = 2N

N−2 , p1 = 2∗

p−1 , p2 = p3 = 2p1
p1−1 . We have p1 > 1, 2 < p2, p3 < 2∗ and

1
p1

+ 1
p2

+ 1
p3

= 1. Therefore,

lim
k→∞

∫
RN

∇F (x,wmk
).(wmk

− w)dx ≤ A3

∫
RN

|wmk
|p−1|wmk

− w||wmk
|dx

≤ A3‖wmk
‖p−1

L2∗ ‖wmk
− w‖Lp2‖wmk

‖Lp3 .

On the other hand, using the continuous embeddings H ↪→ E ↪→ Lq(RN ), 2 ≤ q ≤
2∗ together with the interpolation inequality (where 1

p2
= δ

2 + 1−δ
2∗ ), it follows that

‖wmk
− w‖Lp2 (RN ) ≤ ‖wmk

− w‖δ
L2(RN ).‖wmk

− w‖1−δ
L2∗ .

Since the embedding E ↪→ L2(RN ) is compact we have ‖wmk
− w‖L2(RN ) → 0 as

k →∞. Hence ‖wmk
− w‖Lp2 (RN ) → 0 as k →∞ and (2.10) is proved.

On the other hand, by (2.10) and (2.1) it follows

lim
k→∞

〈DT (wmk
), wmk

− w〉 = 0.

Hence, by the convex property of the functional T we deduce that

T (w)− lim
k→∞

supT (wmk
) = lim

k→∞
inf [T (w)− T (wmk

)] (2.11)

≥ lim
k→∞

〈DT (wmk
), w − wmk

〉 = 0. (2.12)
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Relations (2.8) and (2.11) imply

T (w) = lim
k→∞

T (wmk
). (2.13)

Finally, we prove that {wmk
} converges strongly to w in H. Indeed, we assume by

contradiction that {wmk
} is not strongly convergent to w in H. Then there exist

a constant ε0 > 0 and a subsequence {wmkj
} of {wmk

} such that ‖wmkj
− w‖H ≥

ε0 > 0 for any j = 1, 2, . . . . Hence

1
2
T (wmkj

) +
1
2
T (w)− T

(wmkj
+ w

2

)
=

1
4
‖wmkj

− w‖2
H ≥ 1

4
ε20. (2.14)

With the same arguments as in the proof of (2.8), and remark that the sequence

{
wmkj

+w

2 } converges weakly to w in E, we have

T (w) ≤ lim inf
j→∞

T
(wmkj

+ w

2

)
. (2.15)

Hence letting j →∞, from (2.13) and (2.14) we infer that

T (w)− lim inf
j→∞

T
(wmkj

+ w

2

)
≥ 1

4
ε20. (2.16)

Relations (2.15) and (2.16) imply 0 ≥ 1
4ε

2
0 > 0, which is a contradiction. Therefore,

we conclude that {wmk
} converges strongly to w in H and J satisfies the Palais -

Smale condition on H. �

To apply the Mountain pass theorem we shall prove the following proposition
which shows that the functional J has the Mountain pass geometry.

Proposition 2.5. (i) There exist α > 0 and r > 0 such that J(w) ≥ α, for all
w ∈ H with ‖w‖H = r.

(ii) There exists w0 ∈ H such that ‖w0‖H > r and J(w0) < 0.

Proof. (i) From (H3), it is easy to see that

F (x, z) ≥ min
|s|=1

F (x, s).|z|µ > 0 ∀x ∈ RN and |z| ≥ 1, z ∈ R2, (2.17)

0 < F (x, z) ≤ max
|s|=1

F (x, s).|z|µ ∀x ∈ RN and 0 < |z| ≤ 1, (2.18)

where max|s|=1 F (x, s) ≤ C in view of (H2). It follows from (2.18) that

lim
|z|→0

F (x, z)
|z|2

= 0 uniformly for x ∈ RN . (2.19)

By using the embeddings H ↪→ E ↪→ L2(RN ,R2), with simple calculations we infer
from (2.19) that inf‖w‖H=r J(w) = α > 0 for r > 0 small enough. This implies (i).

(ii) By (2.17), for each compact set Ω ⊂ RN there exists c = c(Ω) such that

F (x, z) ≥ c|z|µ for all x ∈ Ω, |z| ≥ 1. (2.20)

Let 0 6= Φ = (ϕ,ψ) ∈ C1(RN ,R2) having compact support, for t > 0 large enough,
from (2.20) we have

J(tΦ) =
1
2
t2‖Φ‖2

H −
∫

RN

F (x, tΦ)dx ≤ 1
2
t2‖Φ‖2

H − tµc

∫
Ω

|Φ|µdx, (2.21)

where c = c(Ω), Ω = (suppϕ ∪ suppψ). Then (2.21) and µ > 2 imply (ii). �
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Proof of Theorem 1.4. It is clear that J(0) = 0. Furthermore, the acceptable set

G = {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = w0},
where w0 is given in Proposition 2.5, is not empty (it is easy to see that the function
γ(t) = tω0 ∈ G). By Proposition 1.2 and Propositions 2.2-2.5, all assumptions of
the Mountain pass theorem introduced in [8] are satisfied. Therefore there exists
ŵ ∈ H such that

0 < α ≤ J(ŵ) = inf{max J(γ([0, 1])) : γ ∈ G}
and 〈DJ(ŵ),Φ〉 = 0 for all Φ ∈ H; i.e., ŵ is a weak solution of system (1.1). The
solution ŵ is a non-trivial solution by J(ŵ) ≥ α > 0. The proof is complete. �
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