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REMARK ON THE SPATIAL REGULARITY FOR THE
NAVIER-STOKES EQUATIONS

CHENG HE

Abstract. Let u be a Leray-Hopf weak solution to the Navier-Stokes equa-
tions. We will show that the set of possible singular points of the vector field

resulting from integrating the velocity u with respect to time has Hausdorff

dimension zero.

1. Introduction

Let us consider the viscous incompressible fluid flow moving within a region Ω
of the three dimensional space R3, which can be described by the Navier-Stokes
equations

∂tu− ν∆u + (u · ∇)u = −∇π, in Ω× (0,∞),

∇ · u = 0, in Ω× (0,∞)
(1.1) e1.1

with the homogeneous boundary condition

u = 0 on ∂Ω× (0,∞) (1.2) e1.2

when the boundary is not empty, and the initial condition

u(x, 0) = u0(x) in Ω. (1.3) e1.3

Here u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) denotes the unknown velocity vector
field, and π = π(x, t) denotes the scalar pressure; ν is the viscosity; and u0(x) is
the initial velocity vector field. For simplicity, the viscosity ν is normalized to 1.

For the initial value problem and the initial boundary value problem to the
Navier-Stokes equations, the existence of a class of global weak solutions was shown
by Leray and Hopf in their pioneering works [8] and [7] a long time ago. Since then,
much effort has been made to try to establish uniqueness and regularity of weak
solutions. However, these two remarkable questions remain open. It is still not
known whether or not a weak solution can develop singularities at finite time, even
for sufficiently smooth initial data. A lot of attention has been turned to the study
of partial regularity of weak solutions to the Navier-Stokes equations. The first
analysis about the possible singular set was done by Leray.

Following Caffarelli, Kohn and Nirenberg [1], a point (x, t) (or t) is called a
singular point of a weak solution u to the Navier-Stokes equations if and only if u is
not essentially bounded in any neighborhood of (x, t) (or t). Leray [8] showed that
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the singularities, if exist, can occur at most on a set of t with Lebesgue measure
zero.

Scheffer [12]-[16] began the development of the analysis about the set of possible
singular points, and established various partial regularity results for a class of weak
solutions. Scheffer’s results showed that the set of possible time singular points
of the weak solution has 1/2-dimensional Hausdorff measure zero, and that the
set of possible space-time singular points of the weak solution has 5/3-dimensional
Hausdorff measure zero. See also [2, 18]. Later, Caffarelli, Kohn and Nirenberg [1]
improved Scheffer’s results and showed that the set of possible space-time singular
points of a class of special weak solutions, named as suitable weak solutions, has
one-dimensional Hausdorff measure zero. Note that suitable weak solutions differ
essentially from the usual weak solutions in the sense that they should satisfy a
generalized energy inequality. A simplified proof of the main results of [1] was
presented in [9]; see also [19, 5, 10].

It is well-known that there exists a large time T such that after the time T the
weak solution is smooth and the interval (0, T ) can be expressed as ∪i∈I(ai, bi)∪T ,
where the set I is at most a countable set, (ai, bi) with i ∈ I are disjoint open
intervals in (0, T ), the set T has 1/2-dimensional Hausdorff measure zero, and u
belongs to C∞ for (x, t) ∈ Ω×(a, b) for each interval (a, b) whose closure is contained
in some of the intervals (ai, bi) (cf. Fioas and Temam [2], Heywood [6], Leray [8],
Scheffer [12], sohr and W. von Wahl [18], Miyakawa and Sohr [11]).

Applying their own local regularity theory, Caffarelli, Kohn and Nirenberg [1]
showed that the suitable weak solution is regular in the region {(x, t) : |x|2t >
k} if the initial velocity u0 ∈ L2(R3) and |x|1/2u0 ∈ L2(R3), or in the region
{(x, t) : t > 0, |x| > R′} for some R′ > R if the initial velocity u0 ∈ L2(R3) and∫
|x|>R

|∇u0|2dx < ∞. Similar results has been obtained by Maremonti [10] in the
case of an exterior domain. To the best of our knowledge, up to now, the set of
possible singular points is still not fully understood.

In this paper, we try to estimate the Hausdorff dimension of the set of possible
spatial singular points of weak solutions in some sense. As is well-known, the set
of possible time singular points of a class of weak solutions has 1/2-dimensional
Hausdorff measure zero ( see [2, 3, 8, 12, 17]). As for the set of possible spatial-
time singular points, it is known that the 1-dimensional Hausdorff measure vanishes
(cf. [1, 5, 9, 10, 20]). However, as far as we know, no such results are available for
the set of possible spatial singular points.

It is difficult to study directly the set of possible spatial singular points of the
weak solutions. So we will study the partial regularity of the weak solution by
integrating the solution in time. For this purpose, let u be a weak solution to the
Navier-Stokes equations (1.1) and define U(x) =

∫ T

0
u(x, s)ds for some T > 0. By

the definition of weak solutions, U(x) =
∫ T

0
u(x, s)ds is well-defined in the sense of

Bochner (See below). Then following ideas in [2], we will show that the set of points
at any neighborhood of which U is essentially unbounded has Hausdorff dimension
zero. This implies the corresponding estimate of the Hausdorff dimension of the
set of possible spatial singular points of the weak solution u in some sense.

We conclude this introduction by introducing some function spaces used in this
paper. Let Lp(Ω), 1 ≤ p ≤ ∞, represent the usual Lesbegue space of scalar
functions as well as that of vector-valued functions with norm denoted by ‖ · ‖p.
Let C∞

0,σ(Ω) denote the set of all C∞ vector functions with compact support in Ω
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such that div φ = 0. Let Lp(0, T ;X), 1 ≤ p ≤ ∞, be the set of function f(t) defined
on (0, T ) with values in X such that

∫ T

0
‖f(t)‖p

Xdt < ∞ for a given Banach space
X with norm ‖ · ‖X .

2. Main Results

In this article, we only consider four types of the domains: (1) R3, (2) a bounded
domain in R3, (3) a half-space in R3

+, and (4) an exterior domain in R3.
We will consider the Leray-Hopf weak solutions defined as follows:
Definition. A Leray-Hopf weak solution of the system (1.1)-(1.3) in Q∞ ≡

Ω× (0,∞) is a vector field u : Q∞ → R3 such that

u ∈ L∞(0,∞;L2
σ(Ω)) and ∇u ∈ L2(0,∞;L2(Ω)), (2.1) e2.1∫

Q∞

(
u · ∂tw + u⊗ u : ∇w −∇u : ∇w

)
dx dt = 0 (2.2) e2.2

for any w ∈ C∞
0,σ(Q∞) and any t ∈ [0,∞), u satisfies the energy inequality

‖u(t)‖2
2 + 2

∫ t

0

‖∇u(τ)‖2
2dτ ≤ ‖u0‖2

2, (2.3) e2.3

and u takes the initial value in the sense that

‖u(·, t)− u0(·)‖2 → 0 as t → 0. (2.4) e2.4

It is well-known now that Leray [8] and Hopf [7] constructed a global Leray-Hopf
weak solution . Here we intend to study the spatial partial regularity of the Leray-
Hopf weak solution, in some sense. In fact, we are interested in the estimate of the
Hausdorff dimension of the set of possible singular points of the vector resulting
from integrating the velocity u with respect to time. For simplicity, assume that
u0 ∈ C∞

0,σ(Ω). The argument can be applied to general initial data u0.
First we introduce the following result which was obtained by Giga and Sohr [4].

lem2.1 Lemma 2.1. Let u0 ∈ C∞
0,σ(Ω). Then there exists a weak solution (u, π) such that

u ∈ L∞(0,∞;L2(Ω)), ∇u ∈ L2(0,∞;L2(Ω)), (2.5) e2.5

∂tu, ∂2
xu, ∇π ∈ Lp(0,∞;Lq(Ω)) (2.6) e2.6

for any 1 < p, q < ∞ with 1/p + 3/2q = 2. Also u satisfies the energy inequality

‖u(t)‖2
2 + 2

∫ t

0

‖∇u(τ)‖2
2dτ ≤ ‖u0‖2

2. (2.7) e2.7

So π can be chosen such that

∇u, π ∈ Lp(0,∞;Lq∗(Ω)),
1
q∗

=
1
q
− 1

3
. (2.8) e2.8

As stated in the introduction, there is a time T such that, after T , a Leray-Hopf
weak solution u is smooth. For this T > 0, it is easy to see that

U(x) :=
∫ T

0

u(x, t)dt, Π(x) :=
∫ T

0

π(x, t)dt

are well-defined in Lq∗(Ω). Then (U,Π) satisfies the equations

−∆U = f, f = u0 − u(T )−
∫ T

0

(u · ∇u)(t)dt−∇Π. (2.9) e2.9
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Define

Ω0 =:
{
x ∈ Ω : U(x) is essentially unbounded in any neighborhood of x

}
.

Now our main result can be stated as follows:

thmA Theorem 2.2. Let u0 ∈ C∞
0,σ(Ω). Then Ω0 has Hausdorff dimension zero.

To prove our main theorem, we need the following lemma established by Foias
and Temam [2].

lem3.1 Lemma 2.3 ([2, Lemma 4.2]). For a > 0 and f ∈ L1(Rn), let Λa(f) be the set of
x ∈ Rn such that there exists mx with∫

|y−x|≤2−m

|f(y)|dy ≤ 2−am for all m ≥ mx.

Then Rn \ Λa(f) has Hausdorff dimension less than or equal to a.
Plase see addendum

Proof of Theorem 2.2. We will follow the ideas in [2]. Since U ∈ Lq∗(Ω),

U(x) =
1
4π

∫
R3

1
|x− y|

f(y)dy =: U0 when ∂Ω = ∅, (2.10) e3.1

and

U(x) = W (x) +
1
4π

∫
Ω

1
|x− y|

f(y)dy when ∂Ω 6= ∅ with a harmonic function W .

(2.11) e3.2

It is well-known that the function W is smooth in the interior of Ω and is bounded
in the subdomain with positive distance away from the boundary. Extend f to the
outside of Ω by zero. So we only consider the partial regularity of U0. For any
x0 ∈ R3, we have

1
r3

∫
|x−x0|≤r

|U0(y)|dy ≤ 1
4π

1
r3

∫
|x−x0|≤r

∫
R3

1
|x− y|

|f(y)|dydx

≤ 1
4π

∫
R3

1
|x0 − x|

· 1
r3

∫
|x−y|≤r

|f(y)|dydx

≤ 1
4π

∫
R3

1
|x0 − x|

f∗(x)dx

(2.12) e3.3

with

f∗(x) = sup
r

1
r3

∫
|x−y|≤r

|f(y)|dy.

By (2.6), we know that f ∈ Lq(R3) for any 1 < q < 3/2. So it follows from the
inequality on maximal functions that f∗ ∈ Lq(R3). Let

Mj =
{
x ∈ R3 : |x− x0| ≤ 2−j

}
.
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For any x0 ∈ R3, we have

1
r3

∫
|x−x0|≤r

|U0(x)|dx

≤ 1
4π

∫
R3

1
|x0 − x|

f∗(x)dx

≤ 1
4π

∫
R3\M1

1
|x0 − x|

f∗(x)dx +
∞∑
1

1
4π

∫
Mj\Mj+1

1
|x0 − x|

f∗(x)dx

≤ C‖f∗‖q

( ∫
R3\M1

1

|x− x0|
q

q−1
dx

)1− 1
q

+ C
∞∑
1

( ∫
Mj\Mj+1

1

|x− x0|
q

q−1
dx

)1− 1
q
( ∫

Mj

|f∗(x)|qdx
) 1

q

≤ C + C

∞∑
1

2j−3j(1− 1
q ) ·

( ∫
Mj

|f∗(x)|qdx
) 1

q

.

(2.13) e3.4

It is obvious that |f∗|q ∈ L1(R3). Let Λa(f∗) be the set of these x0 ∈ R3 such that
there exists jx0 with ∫

|x0−x|≤2−j

|f∗(x)|qdx ≤ 2−aj

for all j ≥ jx0 . Thus, for any x0 ∈ Λa(f∗), (2.13) gives us

1
r3

∫
|x−x0|≤r

|U0(x)|dx ≤ C + C
∞∑
1

2j−3j(1− 1
q ) · 2−

aj
q ≤ C1 (2.14) e3.5

provided that a > 3− 2q. Note that the constant C1 is independent of x0. Let

U0 =
3

4πr3

∫
|x−x0|≤r

U0(x)dx

denote the average of U0 in the ball centered at x0 with radius r. Then, by (2.14),
we have

1
r3

∫
|x−x0|≤r

∣∣U0(x)− U0

∣∣dx ≤ 2
r3

∫
|x−x0|≤r

∣∣U0(x)
∣∣dx ≤ 2C1

provided that a > 3− 2q. This implies

sup
x0∈Λa(f∗), r>0

1
r3

∫
|x−x0|≤r

∣∣U0(x)− U0

∣∣dx ≤ 2C1 (2.15) e3.6

provided that a > 3− 2q.
Then, for any x0 ∈ Λa(f∗) with a > 3− 2q, (2.15) tells us that

|U0(x0)| < ∞.

Therefore,
Ω0 =

{
x ∈ R3 : |U0(x)| = ∞

}
⊂ R3 \ Λa(f∗).

Applying Lemma 2.3, we deduce that the Hausdorff dimension of Ω0 is less or
equal to a. Letting a → 3− 2q, we deduce that the Hausdorff dimension of Ω0 does
not exceed 3 − 2q. Since q ∈ (1, 3/2) is arbitrary, we deduce that the Hausdorff
dimension of Ω0 is zero. This completes the proof �
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Addendum posted on September 30, 2008

Following a suggestion from the anonymous refeee (to whom the author wants
to express his gratitude), the proof of the main theorem is rewritten as follows:
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Proof of Theorem 2.2. We will follow the ideas in [2]. Since U ∈ Lq∗(Ω),

U(x) =
1
4π

∫
R3

1
|x− y|

f(y)dy =: U0 when ∂Ω = ∅, (2.16) e4.10

and

U(x) = W (x) +
1
4π

∫
Ω

1
|x− y|

f(y)dy when ∂Ω 6= ∅ with a harmonic function W .

(2.17) e4.11

It is well-known that the function W is smooth in the interior of Ω and is bounded
in the subdomain with positive distance away from the boundary. Extend f to the
outside of Ω by zero. So we only consider the partial regularity of U0. For any
x0 ∈ R3, we have

1
r3

∫
|x−x0|≤r

|U0(y)|dy ≤ 1
4π

1
r3

∫
|x−x0|≤r

∫
R3

1
|x− y|

|f(y)|dy dx

≤ 1
4π

∫
R3

1
|x0 − x|

· 1
r3

∫
|x−y|≤r

|f(y)|dy dx

≤ 1
4π

∫
R3

1
|x0 − x|

f∗(x)dx := F (x0)

(2.18) e4.12

with

f∗(x) = sup
r

1
r3

∫
|x−y|≤r

|f(y)|dy.

By (2.6), we know that f ∈ Lq(R3) for any 1 < q < 3/2. So it follows from the
inequality on maximal functions that f∗ ∈ Lq(R3). Since U0(x) is continuous in x,
from (2.18), we deduce that

|U(x0)| ≤ F (x0) ∀x0 ∈ R3.

Let
Mj =

{
x ∈ R3 : |x− x0| ≤ 2−j

}
.

For each x0 ∈ R3,

F (x0) =
1
4π

∫
R3

1
|x0 − x|

f∗(x)dx

≤ 1
4π

∫
R3\M1

1
|x0 − x|

f∗(x)dx +
∞∑
1

1
4π

∫
Mj\Mj+1

1
|x0 − x|

f∗(x)dx

≤ C‖f∗‖q

( ∫
R3\M1

1

|x− x0|
q

q−1
dx

)1− 1
q

+ C
∞∑
1

( ∫
Mj\Mj+1

1

|x− x0|
q

q−1
dx

)1− 1
q
( ∫

Mj

|f∗(x)|qdx
)1/q

≤ C + C
∞∑
1

2j−3j(1− 1
q )

( ∫
Mj

|f∗(x)|qdx
)1/q

.

(2.19) e4.13

It is obvious that |f∗|q ∈ L1(R3). Let Λa(f∗) be the set of these x0 ∈ R3 such that
there exists jx0 with ∫

|x0−x|≤2−j

|f∗(x)|qdx ≤ 2−aj
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for all j ≥ jx0 . Thus, for each x0 ∈ Λa(f∗), (2.19) gives us

|F (x0)| ≤ C + C

jx0−1∑
1

2j−3j(1− 1
q )

( ∫
Mj

|f∗(x)|qdx
) 1

q

+ C
∞∑
jx0

2j−3j(1− 1
q )2−

aj
q

≤ C1(x0)
(2.20) e4.14

provided that a > 3− 2q. Then, for each x0 ∈ Λa(f∗) with a > 3− 2q, (2.20) tells
us that

|U0(x0)| ≤ F (x0) ≤ C1(x0) < ∞.

It is obvious that

Ω0 =
{
x ∈ R3 : |U0(x)| = ∞

}
⊂ R3 \ Λa(f∗).

Applying Lemma 2.3, we deduce that the Hausdorff dimension of Ω0 is less or
equal to a. Letting a → 3− 2q, we deduce that the Hausdorff dimension of Ω0 does
not exceed 3 − 2q. Since q ∈ (1, 3/2) is arbitrary, we deduce that the Hausdorff
dimension of Ω0 is zero. This completes the proof �
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