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PARABOLIC EQUATIONS RELATIVE TO VECTOR FIELDS

THOMAS BIESKE

Abstract. We define two notions of viscosity solutions to parabolic equations

defined using vector fields, depending on whether the test functions concern

only the past or both the past and the future. Using the parabolic maximum
principle for vector fields, we then prove a comparison principle for a class of

parabolic equations and show the sufficiency of considering the test functions

that concern only the past.

1. Vector Fields

In [1], a maximum principle for vector fields is proved and consequently, a com-
parison principle for subelliptic equations is established. Using this point of view,
we prove an analogous comparison principle for a class of parabolic equations in
vector fields. These results are a generalization of the Euclidean results of Juutinen
[4].

To create our vector field environment, we replace the Euclidean vector fields
{∂x1 , ∂x2 , . . . , ∂xn

} in Rn with an arbitrary collection of vector fields or frame

X = {X1, X2, . . . , Xn}
consisting of n linearly independent smooth vector fields with the relation

Xi(x) =
n∑

j=1

aij(x)
∂

∂xj

for some choice of smooth functions aij(x). Denote by A(x) the matrix whose (i, j)-
entry is aij(x). We always assume that det(A(x)) 6= 0 in Rn. We note that if A is
the identity matrix, we recover the Euclidean environment, which was considered
in [4]. We choose a Riemannian metric, denoted 〈·, ·〉, and related norm ‖ ·‖ so that
the frame is orthonormal. The natural gradient is the vector

Xu = (X1(u), X2(u), . . . , Xn(u))

and the natural second derivative is the n × n not necessarily symmetric matrix
X2u with entries Xi(Xj(u)). Because of the lack of symmetry, we introduce the
symmetrized second-order derivative matrix with respect to this frame, given by

(X2u)? =
1
2
(X2u+ (X2u)t).
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Fix a point x ∈ Rn and let ξ = (ξ1, ξ2, . . . , ξn) denote a vector close to zero. We
define the exponential based at x of ξ, denoted by Θx(ξ), as follows: Let γ be the
unique solution to the system of ordinary differential equations

γ′(s) =
n∑

i=1

ξiXi(γ(s))

satisfying the initial condition γ(0) = x. We set Θx(ξ) = γ(1) and note this is
defined in a neighborhood of zero.

2. Parabolic Jets and Viscosity Solutions to Parabolic Equations

In this section, we define and compare various notions of solutions to parabolic
equations. We begin by letting u(x, t) be a function in Rn × [0, T ] for some T > 0
and by denoting the set of n×n symmetric matrices by Sn. We consider parabolic
equations of the form

ut + F (t, x, u,Xu, (X2u)?) = 0 (2.1)

for continuous and proper F : [0, T ] × Rn × R × Rn × Sn → R. Recall that F is
proper means

F (t, x, r, η,X) ≤ F (t, x, s, η, Y )
when r ≤ s and Y ≤ X in the usual ordering of symmetric matrices [3]. We note
that the derivatives Xu and (X2u)? are taken in the space variable x. Examples of
parabolic equations include the parabolic infinite Laplace equation

ut + ∆∞u = ut − 〈(X2u)?Xu,Xu〉 = 0

and the parabolic p-Laplace equation for 2 ≤ p <∞ given by

ut + ∆pu = ut − divX(‖Xu‖p−2Xu) = ut −
n∑

i=1

Xi(‖Xu‖p−2Xiu) = 0

where we observe that for a smooth function f ,

divX f =
n∑

i=1

Xif.

Let O ⊂ Rn be an open set containing the point x0. We define the set OT ≡
O× (0, T ). Following the definition of jets in [1], we can define the parabolic jets of
u(x, t) at the point (x0, t0) ∈ OT by using the appropriate test functions. Namely,
we consider the set Au(x0, t0) by

Au(x0, t0) = {φ ∈ C2(OT ) : u(x, t)− φ(x, t) ≤ u(x0, t0)− φ(x0, t0)}
consisting of all test functions that touch from above. We define the set of all test
functions that touch from below, denoted Bu(x0, t0), by

Bu(x0, t0) = {φ ∈ C2(OT ) : u(x, t)− φ(x, t) ≥ u(x0, t0)− φ(x0, t0)}.
We then have

P 2,+u(x0, t0) = {(φt(x0, t0),Xφ(x0, t0), (X2φ(x0, t0))?) : φ ∈ Au(x0, t0)},
P 2,−u(x0, t0) = {(φt(x0, t0),Xφ(x0, t0), (X2φ(x0, t0))?) : φ ∈ Bu(x0, t0)}.

We call P 2,+u(x0, t0) the parabolic superjet of u at (x0, t0) and P 2,−u(x0, t0)
the parabolic subjet of u at (x0, t0).

Extending [1, Lemma 5], we have the following lemma.
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Lemma 2.1. Let Θx0(ξ) be the exponential map based on the point x0 and let ξ be
an n-dimensional vector. Then P 2,+u(x0, t0) = (a, η,X) ∈ R× Rn × Sn such that

u(Θx0(ξ), t) ≤ u(x0, t0) + a(t− t0) + 〈η, ξ〉+
1
2
〈Xξ, ξ〉+ o(‖ξ‖2)

as ξ → 0. Additionally,

P 2,−u(x0, t0) = −P 2,+(−u)(x0, t0)

or, alternatively, P 2,−u(x0, t0) = (b, ν, Y ) ∈ R× Rn × Sn such that

u(Θx0(ξ), t) ≥ u(x0, t0) + b(t− t0) + 〈ν, ξ〉+
1
2
〈Y ξ, ξ〉+ o(‖ξ‖2)

as ξ → 0.

We also define the set theoretic closure of the superjet, denoted P
2,+
u(x0, t0),

by requiring that (a, η,X) be in P
2,+
u(x0, t0) exactly when there is a sequence

(an, xn, tn, u(xn, tn), ηn, Xn) → (a, x0, t0, u(x0, t0), η,X) with the triple (an, ηn, Xn)
in P 2,+u(xn, tn). A similar definition holds for the closure of the subjet.

We next recall the relationship between these jets and the usual Euclidean jets,
given by the following Lemma.

Lemma 2.2 ([1, Lemma 3]). For smooth functions u we have

Xu(x) = A(x) · ∇u(x),

and for all s ∈ Rn

〈
(
X2u(x)

)∗· s, s〉 = 〈A(x) ·D2u(x) ·At(x)· s, s〉+
n∑

k=1

〈At(x)· s,D
(
At(x)· s

)
k
〉 ∂u
∂xk

(x).

Here ∇u is the usual Euclidean gradient of u, D2u is the Euclidean second-order
derivative matrix of u and D signifies Euclidean differentiation.

We then use these jets to define subsolutions and supersolutions to Equation
(2.1).

Definition 2.3. Let (x0, t0) ∈ OT be as above. The upper semicontinuous function
u is a viscosity subsolution in OT if for all (x0, t0) ∈ OT we have (a, η,X) ∈
P 2,+u(x0, t0) produces

a+ F (t0, x0, u(x0, t0), η,X) ≤ 0. (2.2)

A lower semicontinuous function u is a viscosity supersolution in OT if for all
(x0, t0) ∈ OT we have (b, ν, Y ) ∈ P 2,−u(x0, t0) produces

b+ F (t0, x0, u(x0, t0), ν, Y ) ≥ 0. (2.3)

A continuous function u is a viscosity solution in OT if it is both a viscosity subso-
lution and viscosity supersolution.

We observe that the continuity of the function F allows Equations (2.2) and (2.3)
to hold when (a, η,X) ∈ P 2,+

u(x0, t0) and (b, ν, Y ) ∈ P 2,−
u(x0, t0), respectively.

We also wish to define what [4] refers to as parabolic viscosity solutions. We
first need to consider the sets

A−u(x0, t0) = {φ ∈ C2(OT ) : u(x, t)− φ(x, t) ≤ u(x0, t0)− φ(x0, t0) for t < t0}
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consisting of all functions that touch from above only when t < t0 and the set

B−u(x0, t0) = {φ ∈ C2(OT ) : u(x, t)− φ(x, t) ≥ u(x0, t0)− φ(x0, t0) for t < t0}
consisting of all functions that touch from below only when t < t0. Note that
A−u is larger than Au and B−u is larger than Bu. These larger sets correspond
physically to the past alone playing a role in determining the present.

We then have the following definition.

Definition 2.4. An upper semicontinuous function u on OT is a parabolic viscosity
subsolution in OT if φ ∈ A−u(x0, t0) produces

φt(x0, t0) + F (t0, x0, u(x0, t0),Xφ(x0, t0), (X2φ(x0, t0))?) ≤ 0.

A lower semicontinuous function u on OT is a parabolic viscosity supersolution in
OT if φ ∈ B−u(x0, t0) produces

φt(x0, t0) + F (t0, x0, u(x0, t0),Xφ(x0, t0), (X2φ(x0, t0))?) ≥ 0.

A continuous function is a parabolic viscosity solution if it is both a parabolic
viscosity supersolution and subsolution.

It is easy to see that parabolic viscosity sub (super-) solutions are viscosity sub
(super-) solutions. The reverse implication will be a consequence of the comparison
principle proved in the next section.

3. Comparison Principle

In order to prove our comparison principle, we will need a parabolic maximum
principle in vector fields, analogous to the maximum principle for subelliptic equa-
tions in [1]. The theorem we will prove is based on [3, Thm. 8.2], which details the
Euclidean case. We will denote the Euclidean distance between the points x and y
by |x− y|.

Theorem 3.1. Let u be a viscosity subsolution to Equation (2.1) and v be a vis-
cosity supersolution to Equation (2.1) in the bounded set Ω × (0, T ) where Ω is a
bounded domain. Let τ be a positive real parameter and let ψ(x, y) = |x − y|α for
α > 2 and x, y ∈ Ω. Suppose the local maximum of

Mτ (x, y, t) ≡ u(x, t)− v(y, t)− τψ(x, y)

occurs at the interior point (xτ , yτ , tτ ) of the set Ω×Ω×(0, T ). Then, for each τ > 0,
there are elements (a,Υ+

τ ,X τ ) ∈ P
2,+
u(xτ , tτ ) and (a,Υ−τ ,Yτ ) ∈ P

2,−
v(yτ , tτ ) so

that if
lim

τ→∞
τψ(xτ , yτ ) = 0

then

Υ+
τ −Υ−τ = o(1), (3.1)

X τ − Yτ ≤ o(1) (3.2)

as τ →∞.

Proof. We first need to check that [3, condition 8.5] is satisfied, namely that there
exists an r > 0 so that for each M , there exists a C so that a ≤ C when (a, η,X) ∈
P 2,+

euclu(x, t), |x − xτ | + |t − tτ | < r, and |u(x, t)| + ‖η‖ + ‖X‖ ≤ M with a similar
statement holding for −v. If this condition is not met, then for each r > 0, we have
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an M so that for all C, a > C when (a, η,X) ∈ P 2,+
euclu(x, t). By Lemma 2.2, we

would have jet elements

(a,A(x) · η,X ) ∈ P 2,+u(x, t)

contradicting the fact that u is a subsolution. A similar conclusion is reached for
−v and so we conclude that this condition holds. The result follows by applying
Theorem 8.3 of [3] and proceeding as in the proof of the maximum principle [1]. �

Using this theorem, we now define a class of parabolic equations to which we
shall prove a comparison principle.

Definition 3.2. We say the continuous, proper function

F : [0, T ]× Ω× R× Rn × Sn → R
is admissible if for each t ∈ [0, T ], there is the same function ω : [0,∞] → [0,∞]
with ω(0+) = 0 so that F satisfies

F (t, y, r, ν,Y)− F (t, x, r, η,X ) ≤ ω
(
|x− y|+ ‖ν − η‖+ ‖Y − X‖

)
. (3.3)

We now formulate the comparison principle for the problem.

ut + F (t, x, u,Xu, (X2u)?) = 0 in (0, T )× Ω (E)

u(x, t) = h(x, t) x ∈ ∂Ω, t ∈ [0, T ) (BC)

u(x, 0) = ϕ(x) x ∈ Ω (IC)

(3.4)

Here, ϕ ∈ C(Ω) and h ∈ C(Ω × [0, T )). We also adopt the convention in [3] that
a subsolution u(x, t) to Problem (3.4) is a viscosity subsolution to (E), u(x, t) ≤
h(x, t) on ∂Ω with 0 ≤ t < T and u(x, 0) ≤ ϕ(x) on Ω. Supersolutions and solutions
are defined in an analogous matter.

Theorem 3.3. Let Ω be a bounded domain in Rn. Let F be admissible. If u is a
viscosity subsolution and v a viscosity supersolution to Problem (3.4) then u ≤ v
on Ω× [0, T ).

Proof. Our proof follows [3, Theorem 8.2] and so we discuss only the main parts.
For ε > 0, we substitute ũ = u− ε

T−t for u and prove the theorem for

ut + F (t, x, u,Xu, (X2u)?) ≤ − ε

T 2
< 0 (3.5)

lim
t↑T

u(x, t) = −∞ uniformly on Ω (3.6)

and take limits to obtain the desired result. Assume the maximum occurs at
(x0, t0) ∈ Ω× (0, T ) with

u(x0, t0)− v(x0, t0) = δ > 0.

Let
Mτ = u(xτ , tτ )− v(yτ , tτ )− τψ(xτ , yτ )

with (xτ , yτ , tτ ) the maximum point in Ω×Ω× [0, T ) of u(x, t)− v(y, t)− τψ(x, y).
Using the same proof as in [1, Theorem 1] we conclude that

lim
τ→∞

τψ(xτ , yτ ) = 0.

If tτ = 0, we have

0 < δ ≤Mτ ≤ sup
Ω×Ω

(ϕ(x)− ϕ(y)− τψ(x, y))
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leading to a contradiction for large τ . We therefore conclude tτ > 0 for large τ .
Since u ≤ v on ∂Ω× [0, T ) by Equation (BC) of Problem (3.4), we conclude that for
large τ , we have (xτ , yτ , tτ ) is an interior point. That is, (xτ , yτ , tτ ) ∈ Ω×Ω×(0, T ).
Using Lemma 3.1, we obtain

(a,Υ+
τ ,X τ ) ∈ P 2,+

u(xτ , tτ )

(a,Υ−τ ,Yτ ) ∈ P 2,−
v(yτ , tτ )

satisfying the equations

a+ F (tτ , xτ , u(xτ , tτ ),Υ+
τ ,X τ ) ≤ − ε

T 2

a+ F (tτ , yτ , v(yτ , tτ ),Υ−τ ,Yτ ) ≥ 0.

Using the fact that F is proper, the fact that u(xτ , tτ ) ≥ v(yτ , tτ ) (otherwise
Mτ < 0), we have

0 <
ε

T 2
≤ F (tτ , yτ , v(yτ , tτ ),Υ−τ ,Yτ )− F (tτ , xτ , u(xτ , tτ ),Υ+

τ ,X τ )

≤ ω(|xτ − yτ |+ ‖Υ−τ −Υ+
τ ‖+ ‖Yτ −X τ‖).

We arrive at a contradiction as τ →∞ by invoking Equations (3.1) and (3.2). �

We then have the following corollary, showing the equivalence of parabolic vis-
cosity solutions and viscosity solutions.

Corollary 3.4. For admissible F , we have the parabolic viscosity solutions are
exactly the viscosity solutions.

Proof. We showed above that parabolic viscosity sub(super-)solutions are viscosity
sub(super-)solutions. To prove the converse, we will follow the proof of the sub-
solution case found in [4], highlighting the main details. Assume that u is not a
parabolic viscosity subsolution. Let φ ∈ A−u(x0, t0) have the property that

φt(x0, t0) + F (t0, x0, φ(x0, t0),Xφ(x0, t0), (X2φ(x0, t0))?) ≥ ε > 0

for a small parameter ε. For r > 0 let Sr = Bx0(r) × (t0 − r, t0) be the parabolic
ball and let ∂Sr be its parabolic boundary. Here Bx0(r) is the Euclidean ball of
radius r centered at x0. Then the function

φ̃r(x, t) = φ(x, t) + |t0 − t|8 − r8 + |x− x0|8

is a classical supersolution for sufficiently small r. We then observe that u ≤ φ̃r on
∂Sr but u(x0, t0) > φ̃(x0, t0). Thus, the comparison prinicple, Theorem 3.3, does
not hold. Thus, u is not a viscosity subsolution. The supersolution case is identical
and omitted. �
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