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EXISTENCE OF SOLUTIONS TO THIRD-ORDER m-POINT
BOUNDARY-VALUE PROBLEMS

JIAN-PING SUN, HAI-E ZHANG

Abstract. This paper concerns the third-order m-point boundary-value prob-

lem

u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0, a.e. t ∈ (0, 1),

u(0) = u′(0) = 0, u′′(1) =

m−2X
i=1

kiu
′′(ξi),

where f : [0, 1] × R3 → R is Lp-Carathéodory, 1 ≤ p < +∞, 0 = ξ0 < ξ1 <

· · · < ξm−2 < ξm−1 = 1, ki ∈ R (i = 1, 2, . . . , m− 2) and
Pm−2

i=1 ki 6= 1. Some

criteria for the existence of at least one solution are established by using the

well-known Leray-Schauder Continuation Principle.

1. Introduction

Third-order differential equations arise in a variety of areas of applied mathe-
matics and physics, e.g., in the deflection of a curved beam having a constant or
varying cross section, a three layer beam, electromagnetic waves or gravity driven
flows and so on [8].

Recently, third-order two-point or three-point boundary-value problems (BVPs
for short) have received much attention [1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14]. In
particular, for two-point BVPs, Yao and Feng [14] employed the upper and lower
solution method to prove the existence of solutions for the problem

u′′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′(1) = 0.
(1.1)

El-Shahed [6] considered the existence of at least one positive solution for the prob-
lem

u′′′(t) + λa(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, αu′(1) + βu′′(1) = 0
(1.2)

2000 Mathematics Subject Classification. 34B10, 34B15.
Key words and phrases. Third-order m-point boundary-value problem; Carathéodory;
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by using the Guo-Krasnoselskii fixed point theorem. Hopkins and Kosmatov [10]
obtained the existence of at least one solution for the problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), a.e. t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0.
(1.3)

Their main tool was the Leray-Schauder Continuation Principle. For three-point
BVPs, Anderson [1] studied the existence and multiplicity of positive solutions for
the problem

x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3,

x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0
(1.4)

by using the Guo-Krasnoselskii and Leggett-Williams fixed point theorems. Guo,
Sun and Zhao [9] considered the existence of at least one positive solution to the
problem

u′′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η).
(1.5)

The main tool was the Guo-Krasnoselskii fixed point theorem.
Although there are many excellent works on third-order two-point or three-point

BVPs, a little work has been done for more general third-order m-point BVP [4, 5].
Moreover, almost all of the existing literatures assumed that the nonlinear term
was continuous.

Motivated by the above-mentioned works, in this paper we investigate the third-
order m-point BVP

u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0, a.e. t ∈ (0, 1),

u(0) = u′(0) = 0, u′′(1) =
m−2∑
i=1

kiu
′′(ξi).

(1.6)

Throughout this paper, we assume that f : [0, 1] × R3 → R is Lp-Carathéodory,
1 ≤ p < +∞, 0 = ξ0 < ξ1 < · · · < ξm−2 < ξm−1 = 1, ki ∈ R (i = 1, 2, . . . ,m − 2)
and

∑m−2
i=1 ki 6= 1. Firstly, Green’s function for associated linear BVP is con-

structed. Secondly, some useful properties of the Green’s function are obtained.
Finally, existence results of at least one solution for the BVP (1.6) are established
by applying the well-known Leray-Schauder Continuation Principle [15], which we
state here for convenience of the reader.

Theorem 1.1. Let X be a Banach space and T : X → X be a compact map.
Suppose that there exists an R > 0 such that if u = λTu for λ ∈ (0, 1), then
‖u‖ ≤ R. Then T has a fixed point.

In the remainder of this section, we introduce some fundamental definitions.

Definition 1.2. We say that a map f : [0, 1] × Rn → R, (t, x) 7→ f(t, x) is Lp-
Carathéodory, if the following conditions are satisfied:

(1) for each x ∈ Rn, the mapping t 7→ f(t, x) is Lebesgue measurable;
(2) for a.e. t ∈ [0, 1], the mapping x 7→ f(t, x) is continuous on Rn;
(3) for each r > 0, there exists an αr ∈ Lp[0, 1] such that for a.e. t ∈ [0, 1] and

every x with |x| ≤ r, |f(t, x)| ≤ αr(t).
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Let X = C2[0, 1]. For x ∈ X, we use the norm ‖x‖ = max{‖x‖∞, ‖x′‖∞, ‖x′′‖∞},
where ‖x‖∞ = maxt∈[0,1] |x(t)|. We denote the usual Lebesgue norm in Lp[0, 1] by
‖ · ‖p and the space of absolutely continuous functions on the interval [0, 1] by
AC[0, 1]. We also use the Sobolev space

W 3,p[0, 1] =
{
u : [0, 1] → R : u, u′, u′′ ∈ AC[0, 1], u(0) = u′(0) = 0,

u′′(1) =
m−2∑
i=1

kiu
′′(ξi), u′′′ ∈ Lp[0, 1]

}
.

2. Main results

Lemma 2.1. Let y ∈ Lp[0, 1]. Then the BVP

u′′′(t) + y(t) = 0, a.e. t ∈ (0, 1),

u(0) = u′(0) = 0, u′′(1) =
m−2∑
i=1

kiu
′′(ξi)

(2.1)

has a unique solution

u(t) =
∫ 1

0

G0(t, s)y(s)ds,

which satisfies

u′(t) =
∫ 1

0

G1(t, s)y(s)ds, u′′(t) =
∫ 1

0

G2(t, s)y(s)ds,

where, for j = 1, 2, . . . ,m− 1,

G0(t, s) =


Pj−1

i=1 ki

2(1−
Pm−2

i=1 ki)
t2 + ts− 1

2s2, s ≤ t, ξj−1 < s ≤ ξj ,

1−
Pm−2

i=j ki

2(1−
Pm−2

i=1 ki)
t2, s > t, ξj−1 < s ≤ ξj ,

(2.2)

G1(t, s) =


Pj−1

i=1 ki

1−
Pm−2

i=1 ki
t + s, s ≤ t, ξj−1 < s ≤ ξj ,

1−
Pm−2

i=j ki

1−
Pm−2

i=1 ki
t, s > t, ξj−1 < s ≤ ξj ,

(2.3)

G2(t, s) =


Pj−1

i=1 ki

1−
Pm−2

i=1 ki
, s ≤ t, ξj−1 < s ≤ ξj ,

1−
Pm−2

i=j ki

1−
Pm−2

i=1 ki
, s > t, ξj−1 < s ≤ ξj ,

(2.4)

are called Green function. Here, if l′ < l, then we let
∑l′

i=l ki = 0.

Proof. In view of (2.1) and the boundary condition u′′(1) =
∑m−2

i=1 kiu
′′(ξi), we

have

u′′(t) = −
∫ t

0

y(s)ds +
1

1−
∑m−2

i=1 ki

∫ 1

0

y(s)ds− 1
1−

∑m−2
i=1 ki

m−2∑
i=1

ki

∫ ξi

0

y(s)ds.

If 0 ≤ t ≤ ξ1, then

u′′(t) =
∫ ξ1

t

y(s)ds +
m−2∑
j=2

∫ ξj

ξj−1

1−
∑m−2

i=j ki

1−
∑m−2

i=1 ki

y(s)ds +
∫ 1

ξm−2

1
1−

∑m−2
i=1 ki

y(s)ds,
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which together with the boundary conditions u(0) = u′(0) = 0 imply

u′(t) =
∫ t

0

sy(s)ds +
∫ ξ1

t

ty(s)ds +
m−2∑
j=2

∫ ξj

ξj−1

1−
∑m−2

i=j ki

1−
∑m−2

i=1 ki

ty(s)ds

+
∫ 1

ξm−2

1
1−

∑m−2
i=1 ki

ty(s)ds

and

u(t) =
∫ t

0

(ts− 1
2
s2)y(s)ds +

∫ ξ1

t

1
2
t2y(s)ds

+
m−2∑
j=2

ki

∫ ξj

ξj−1

1−
∑m−2

i=j ki

2(1−
∑m−2

i=1 ki)
t2y(s)ds +

∫ 1

ξm−2

1
2(1−

∑m−2
i=1 ki)

t2y(s)ds.

If ξl−1 < t ≤ ξl (l = 2, 3, . . . ,m− 2), then

u′′(t) =
l−1∑
j=2

∫ ξj

ξj−1

∑j−1
i=1 ki

1−
∑m−2

i=1 ki

y(s)ds +
∫ t

ξl−1

∑l−1
i=1 ki

1−
∑m−2

i=1 ki

y(s)ds

+
∫ ξl

t

1−
∑m−2

i=l ki

1−
∑m−2

i=1 ki

y(s)ds +
m−2∑

j=l+1

∫ ξj

ξj−1

1−
∑m−2

i=j ki

1−
∑m−2

i=1 ki

y(s)ds

+
∫ 1

ξm−2

1
1−

∑m−2
i=1 ki

y(s)ds,

which together with the boundary conditions u(0) = u′(0) = 0 imply

u′(t) =
∫ ξ1

0

sy(s)ds +
l−1∑
j=2

∫ ξj

ξj−1

( ∑j−1
i=1 ki

1−
∑m−2

i=1 ki

t + s
)
y(s)ds

+
∫ t

ξl−1

( ∑l−1
i=1 ki

1−
∑m−2

i=1 ki

t + s
)
y(s)ds +

∫ ξl

t

1−
∑m−2

i=l ki

1−
∑m−2

i=1 ki

ty(s)ds

+
m−2∑

j=l+1

∫ ξj

ξj−1

1−
∑m−2

i=j ki

1−
∑m−2

i=1 ki

ty(s)ds +
∫ 1

ξm−2

1
1−

∑m−2
i=1 ki

ty(s)ds

and

u(t)

=
∫ ξ1

0

(ts− 1
2
s2)y(s)ds +

l−1∑
j=2

ki

∫ ξj

ξj−1

( ∑j−1
i=1 ki

2(1−
∑m−2

i=1 ki)
t2 + ts− 1

2
s2

)
y(s)ds

+
∫ t

ξl−1

( ∑l−1
i=1 ki

2(1−
∑m−2

i=1 ki)
t2 + ts− 1

2
s2

)
y(s)ds +

∫ ξl

t

1−
∑m−2

i=l ki

2(1−
∑m−2

i=1 ki)
t2y(s)ds

+
m−2∑

j=l+1

∫ ξj

ξj−1

1−
∑m−2

i=j ki

2(1−
∑m−2

i=1 ki)
t2y(s)ds +

∫ 1

ξm−2

1
2(1−

∑m−2
i=1 ki)

t2y(s)ds.
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Similarly, if ξm−2 < t ≤ 1, then we get

u′′(t) =
m−2∑
j=2

∫ ξj

ξj−1

∑j−1
i=1 ki

1−
∑m−2

i=1 ki

y(s)ds +
∫ t

ξm−2

∑m−2
i=1 ki

1−
∑m−2

i=1 ki

y(s)ds

+
∫ 1

t

1
1−

∑m−2
i=1 ki

y(s)ds,

u′(t) =
∫ ξ1

0

sy(s)ds +
m−2∑
j=2

∫ ξj

ξj−1

( ∑j−1
i=1 ki

1−
∑m−2

i=1 ki

t + s
)
y(s)ds

+
∫ t

ξm−2

( ∑m−2
i=1 ki

1−
∑m−2

i=1 ki

t + s
)
y(s)ds +

∫ 1

t

1
1−

∑m−2
i=1 ki

ty(s)ds

and

u(t)

=
∫ ξ1

0

(ts− 1
2
s2)y(s)ds +

m−2∑
j=2

ki

∫ ξj

ξj−1

( ∑j−1
i=1 ki

2(1−
∑m−2

i=1 ki)
t2 + st− 1

2
s2

)
y(s)ds

+
∫ t

ξm−2

( ∑m−2
i=1 ki

2(1−
∑m−2

i=1 ki)
t2 + st− 1

2
s2

)
y(s)ds +

∫ 1

t

1
2(1−

∑m−2
i=1 ki)

t2y(s)ds.

Summing up, we obtain the relationships:

u(i)(t) =
∫ 1

0

Gi(t, s)y(s)ds, t ∈ [0, 1], i = 0, 1, 2.

�

Lemma 2.2. Let

A0 =
∑m−2

i=1 |ki|+ max
{
|1−

∑m−2
i=1 ki|, 1

}
2|1−

∑m−2
i=1 ki|

, A1 = A2 = 2A0.

Then the Green functions Gi(t, s) (i = 0, 1, 2) satisfy

|Gi(t, s)| ≤ Ai, (t, s) ∈ [0, 1]× [0, 1]. (2.5)

Proof. Since the proof of (2.5) is very similar for i = 0, 1, 2, we only prove the case
when i = 0. In fact, for j = 1, 2, . . . ,m− 1,

|G0(t, s)| ≤



Pj−1
i=1 |ki|

2|1−
Pm−2

i=1 ki|
t2 + |ts− 1

2s2|

≤
Pm−2

i=1 |ki|
2|1−

Pm−2
i=1 ki|

t2 + 1
2 t2 ≤ A0, s ≤ t, ξj−1 < s ≤ ξj ,

1+
Pm−2

i=j |ki|
2|1−

Pm−2
i=1 ki|

t2 ≤ 1+
Pm−2

i=1 |ki|
2|1−

Pm−2
i=1 ki|

t2 ≤ A0, s > t, ξj−1 < s ≤ ξj .

�

Lemma 2.3. Let y ∈ Lp[0, 1]. Then the unique solution of (2.1) satisfies

‖u(i)‖∞ ≤ Ai‖y‖p, i = 0, 1, 2, (2.6)

where Ai (i = 0, 1, 2) is defined as in Lemma 2.2.
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Proof. We divide the proof into two cases: p > 1 and p = 1.
Case 1: p > 1. Let 1

p + 1
q = 1. Then by Hölder’s inequality,

|u(i)(t)| ≤
∫ 1

0

|Gi(t, s)||y(s)|ds ≤ ‖Gi(t, ·)‖q‖y‖p ≤ max
0≤t≤1

‖Gi(t, ·)‖q‖y‖p,

for t ∈ [0, 1], i = 0, 1, 2. In view of Lemma 2.2, we have

‖Gi(t, ·)‖q
q =

∫ 1

0

|Gi(t, s)|qds ≤
∫ 1

0

Aq
i ds = Aq

i , t ∈ [0, 1],

which implies that max0≤t≤1 ‖Gi(t, ·)‖q ≤ Ai. So,

‖u(i)‖∞ ≤ Ai‖y‖p, i = 0, 1, 2.

Case 2: p = 1. By Lemma 2.2, we have

|u(i)(t)| ≤
∫ 1

0

|Gi(t, s)||y(s)|ds ≤ Ai

∫ 1

0

|y(s)|ds = Ai‖y‖1,

for t ∈ [0, 1], i = 0, 1, 2, which shows that

‖u(i)‖∞ ≤ Ai‖y‖1, i = 0, 1, 2.

The proof is complete. �

Now, if we define the integral operator T : X → X by

Tu(t) =
∫ 1

0

G0(t, s)f(s, u(s), u′(s), u′′(s))ds, t ∈ [0, 1],

then it is obvious that if u is a fixed point of T in X, then u is a solution of (1.6).

Lemma 2.4. The mapping T : X → X is compact.

Proof. At first, since T is so-called the Hammerstein operator and f is a Lp-
Carathéodory function, we know that T is continuous.

Now, let D ⊂ X be a bounded set, we will prove that T (D) is relatively compact
in X. Suppose that {wk}∞k=1 ⊂ T (D) is an arbitrary sequence. Then there is
{uk}∞k=1 ⊂ D such that T (uk) = wk. Set

r = sup
u∈D

‖u‖.

Since f : [0, 1]× R3 → R is Lp-Carathéodory, there exists αr ∈ Lp[0, 1] such that

|f(t, uk(t), u′k(t), u′′k(t))| ≤ αr(t), a.e. t ∈ [0, 1], k ∈ N.
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Since the proof is similar for p = 1, we only prove the case when p > 1. First, it
follows from Hölder’s inequality and Lemma 2.2 that

|wk(t)| = |Tuk(t)|

=
∣∣ ∫ 1

0

G0(t, s)f(s, uk(s), u′k(s), u′′k(s))ds
∣∣

≤
∫ 1

0

|G0(t, s)||f(s, uk(s), u′k(s), u′′k(s))|ds

≤
∫ 1

0

|G0(t, s)|αr(s)ds

≤ max
t∈[0,1]

‖G0(t, ·)‖q‖αr‖p

≤ A0‖αr‖p, t ∈ [0, 1],

which implies that {wk}∞k=1 is uniformly bounded. Similarly, we get

|w′
k(t)| = |Tu′k(t)|

=
∣∣ ∫ 1

0

G1(t, s)f(s, uk(s), u′k(s), u′′k(s))ds
∣∣

≤ max
t∈[0,1]

‖G1(t, ·)‖q‖αr‖p

≤ A1‖αr‖p, t ∈ [0, 1],

which shows that {w′
k}∞k=1 is also uniformly bounded. Therefore, {wk}∞k=1 is

equicontinuous. By the Arzela-Ascoli theorem, {wk}∞k=1 has a convergent sub-
sequence. Without loss of generality, we may assume that {wk}∞k=1 converges on
[0, 1].

Next, for all t ∈ [0, 1], we have

|w′′
k(t)| = |Tu′′k(t)|

=
∣∣ ∫ 1

0

G2(t, s)f(s, uk(s), u′k(s), u′′k(s))ds
∣∣

≤ max
t∈[0,1]

‖G2(t, ·)‖q‖αr‖p

≤ A2‖αr‖p,

that is to say, {w′′
k}∞k=1 is uniformly bounded, and so {w′

k}∞k=1 is equicontinuous.
As a result, without loss of generality, we may put that {w′

k}∞k=1 is also convergent.
Finally, for any ε > 0, we can choose δ = εq/‖αr‖q

p such that for any k ∈ N , t1,
t2 ∈ [0, 1] and |t2 − t1| < δ,

|w′′
k(t2)− w′′

k(t1)| = |Tu′′k(t2)− Tu′′k(t1)|

=
∣∣ ∫ t2

t1

f(s, uk(s), u′k(s), u′′k(s))ds
∣∣

≤ |t2 − t1|1/q‖αr‖p < ε,

which shows that {w′′
k}∞k=1 is equicontinuous. Again, by the Arzela-Ascoli theorem,

we know that {w′′
k}∞k=1 has a convergent subsequence. We establish that {wk}∞k=1

has a convergent subsequence in X. �
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Now, we apply the Leray-Schauder Continuation Principle to obtain the existence
of at least one solution for (1.6).

Theorem 2.5. Assume that there exist α0, α1, α2 and δ ∈ Lp[0, 1] such that

|f(t, x0, x1, x2)| ≤
2∑

i=0

αi(t)xi + δ(t), a.e. t ∈ (0, 1) , (2.7)

2∑
i=0

Ai‖αi‖p < 1, (2.8)

where Ai (i = 0, 1, 2) is defined as in Lemma 2.2. Then (1.6) has at least one
solution.

Proof. To complete the proof, it suffices to verify that the set of all possible solutions
of the BVP

u′′′(t) + λf(t, u(t), u′(t), u′′(t)) = 0, a.e. t ∈ (0, 1),

u(0) = u′(0) = 0, u′′(1) =
m−2∑
i=1

kiu
′′(ξi)

(2.9)

is a priori bounded in X by a constant independent of λ ∈ [0, 1].
Suppose that u ∈ W 3,p[0, 1] is a solution of (2.9). Then it follows from (2.7),

Lemma 2.2 and Lemma 2.3 that

‖u′′′‖p = λ‖f(t, u, u′, u′′)‖p

≤ ‖f(t, u, u′, u′′)‖p

≤
2∑

i=0

‖αiu
(i)‖p + ‖δ‖p

≤
2∑

i=0

‖αi‖p‖u(i)‖∞ + ‖δ‖p

≤
2∑

i=0

Ai‖αi‖p‖u′′′‖p + ‖δ‖p,

which implies

‖u′′′‖p ≤
‖δ‖p

1−
∑2

i=0 Ai‖αi‖p

,

and so,

‖u‖ = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞}
≤ max{A0,A1, A2}‖u′′′‖p

≤ A1‖δ‖p

1−
∑2

i=0 Ai‖αi‖p

.

It is now immediate from Theorem 1.1 that T has at least one fixed point, which
is a desired solution of (1.6). �
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