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EXISTENCE OF SOLUTIONS TO THIRD-ORDER m-POINT
BOUNDARY-VALUE PROBLEMS

JIAN-PING SUN, HAI-E ZHANG

ABSTRACT. This paper concerns the third-order m-point boundary-value prob-
lem

u"' () + f(t,u(t), v (t),v”(t)) =0, ae. te(0,1),
m—2
u(0) =u'(0) =0, u”(1)= > kiu"(&),
i=1

where f : [0,1] x R® — R is Lp-Carathéodory, 1 < p < +00, 0 = &9 < &1 <
< Em—2<&m-1=1,k€R(i=1,2,...,m—2) and Z:i;2kz # 1. Some
criteria for the existence of at least one solution are established by using the
well-known Leray-Schauder Continuation Principle.

1. INTRODUCTION

Third-order differential equations arise in a variety of areas of applied mathe-
matics and physics, e.g., in the deflection of a curved beam having a constant or
varying cross section, a three layer beam, electromagnetic waves or gravity driven
flows and so on [§].

Recently, third-order two-point or three-point boundary-value problems (BVPs
for short) have received much attention [T}, 2, [3, [6 [7, @] 10, 11, 12, I3, 14]. In
particular, for two-point BVPs, Yao and Feng [14] employed the upper and lower
solution method to prove the existence of solutions for the problem

o)+ f(tu(t) =0, 0<t<1,

u(0) = u/(0) = ' (1) = 0. (1.1)

El-Shahed [6] considered the existence of at least one positive solution for the prob-

lem
")+ Xa(t) f(u(t) =0, 0<t<l,
)

u” () + A .
w(0) =u/'(0) =0, ou/(1)+ Bu”(1) =0 (1.2)
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by using the Guo-Krasnoselskii fixed point theorem. Hopkins and Kosmatov [10]
obtained the existence of at least one solution for the problem

u(t) = ftu(t), ' (t),u"(t), ae te(0,1),

w(0) = '(0) = u”(1) = 0. (1.3)

Their main tool was the Leray-Schauder Continuation Principle. For three-point
BVPs, Anderson [I] studied the existence and multiplicity of positive solutions for
the problem
2"(t) = f(t,x(t), t <t<ts,
x(t1) =2'(t2) =0, ~ya(ts) + 02" (t3) =0

by using the Guo-Krasnoselskii and Leggett-Williams fixed point theorems. Guo,
Sun and Zhao [9] considered the existence of at least one positive solution to the
problem

(1.4)

u(t) + a(t) f(u(t)) =0, te€(0,1),
w(0) =u'(0) =0, u/'(1) = au(n).

The main tool was the Guo-Krasnoselskii fixed point theorem.

Although there are many excellent works on third-order two-point or three-point
BVPs, a little work has been done for more general third-order m-point BVP [4] [5].
Moreover, almost all of the existing literatures assumed that the nonlinear term
was continuous.

Motivated by the above-mentioned works, in this paper we investigate the third-
order m-point BVP

o () + ft,ut),d (t),u"(t)) =0, ae. te(0,1),

(1.5)

2 1.6
w(0) =4'(0) =0, u"’(1)= Z ko (&;). (1.6)

Throughout this paper, we assume that f : [0,1] x R® — R is L,-Carathéodory,
1<p<+400,0=§ <& < <€qnao<&ma=1LkeR(E=12,...,m—2)
and Z:’;}z k; # 1. Firstly, Green’s function for associated linear BVP is con-
structed. Secondly, some useful properties of the Green’s function are obtained.
Finally, existence results of at least one solution for the BVP (|1.6)) are established
by applying the well-known Leray-Schauder Continuation Principle [15], which we
state here for convenience of the reader.

Theorem 1.1. Let X be a Banach space and T : X — X be a compact map.
Suppose that there exists an R > 0 such that if u = AXTu for A € (0,1), then
lu|| < R. Then T has a fized point.

In the remainder of this section, we introduce some fundamental definitions.
Definition 1.2. We say that a map f : [0,1] x R®™ — R, (t,z) — f(t,2) is L,-
Carathéodory, if the following conditions are satisfied:

(1) for each x € R™, the mapping ¢t — f(t,z) is Lebesgue measurable;

(2) for a.e. t € [0, 1], the mapping x +— f(t, ) is continuous on R";

(3) for each r > 0, there exists an o, € L,[0,1] such that for a.e. ¢ € [0,1] and
every z with |z| <7, [f(t,2)] < a,(t).
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Let X = C?[0,1]. For z € X, we use the norm ||z|| = max{||z||cc; [|Z' |00, [|2” |0 }+
where [|z][co = max;c(o,1) [7(t)|. We denote the usual Lebesgue norm in L, [0, 1] by
Il - |, and the space of absolutely continuous functions on the interval [0,1] by
AC|0, 1]. We also use the Sobolev space

War[0,1] = {u:[0,1] = R:u,u’,u” € AC[0,1], u(0) = u'(0) = 0,
m—2

= Z kiu”(fi), u” € Lp[O, 1]}

i=1

2. MAIN RESULTS
Lemma 2.1. Lety € L,[0,1]. Then the BVP
u"'(t) +y(t) =0, ae te(0,1),

m—2
2.1
u(0) = u/(0) = -k 1)
i=1
has a unique solution
1
u(t) :/ Gol(t,s
0
which satisfies
1
/ Gi(t,s) u’’(t) :/ Ga(t, s)y(s)ds
0
where, for j =1,2,.
J . 2 2
TR Zm Qk)t +ts—3s%, s<t, &1 <s<E,
G()(t,S) = 1— 2731 12/9 5 (22)
mta s>t o1 <s<¢&,
1zzm Tt ts, s<t o <s <&,
Gl(t78) = - 2 s (23)
1— Z:"Jzkt 5>t7 Ej—1<5§£j7
%m zv'k , s<t, &1 <s <,
Gg(t,S) = 1-yme 2 L (2'4)
ﬁ, 5>ta gj—1<5§€ja
i=1 i

are called Green function. Here, if I’ <, then we let Ei,:l ki = 0.

Proof. In view of (2.1) and the boundary condition v’ (1) = 221_12 ki (&), we

have
t 1 1

u"t:f/ysderi/ysds /

()= | ks + s | w(e)ds — s mZ

If 0 <t <&, then
m2k

o= [ ) y(s)ds+§ / M [ Vs + / 1 my@ms,

m—2 =1 7
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which together with the boundary conditions u(0) = «’(0) = 0 imply

1
1
+ ———ty(s)ds
AT

m—2

=1 ?
and
t &1 1
u(t) z/ (ts — 752)y(3)d8—|—/ —t?y(s)ds
0 2 ¢ 2
m—2 &; 1— ”1_2 kz 1 1
+ kl/ sz]_2 tzy(s)ds+/ — tzy(s)ds
j=2 g1 2(1 21:1 ki) mez 2(1 = Zi:l ki)

-1 &) J k: t l471k'
u”(t)zz %y(s)dé’—i—/ 12# (s)ds

pr— Yy
j=27&-1 1- Zi:l i &1 L — 21712 ki
&17 m72k & 1_ m ,ka
+/ 27 s)ds + Z / ————y(s)ds
t 1-— Zz_l kz j=l+1 kz
! 1
+/ ———5—y(s)ds,
e 1= gy

which together with the boundary conditions u(0) = u'(0) = 0 imply

u/(t):/oélsy(s)ds—i—lz:/@ 1_ Tinik kt+s)y( 5)ds

K2

t -1 & m—2
=1 13 ,
+/ (721:7}1 ; t+s) (s)ds+/ 72512 klty(s)ds
fl 1 1_2 kz t ]‘_Zi:l ]{1
t s s+/ — = ty(s)ds
j= l+1 kz Em_2 1 — Zi:l ks
and
u(t)
& -1 £ Zggl k
= (ts — =s*)y(s)ds + ki/ =L % pts— =57 )y(s)ds
/0 Jz:; &1 (2(1 - 22112 k;) 2 )
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Similarly, if £,,—o <t <1, then we get

& t m—2 L
/ Z y(s)ds+/ Zl;}nfgy(s)ds
-1 41— z 1 ki m—2 1*Zz’=1 ki

1
+ ———y(s)ds,
/t 1—2’.”;21@‘1}()

1=

Yy ki
and
u(t)
&1 m—2 9] 23_‘71 k. 1
= (ts — fs s)ds + ki / ($_Zt2 + st — *82>y(8)d8
/0 jz; g1 ~2(1— ZZLZ ki) 2
t m—2 1
ki 1 1
-I-/ (ZZ:—th + st — 732>y(s)ds +/ ——————t?y(s)ds.
m—z 2(1 *Zi=1 k;) 2 ¢t 2(1 *Zizl ki)
Summing up, we obtain the relationships:
1
)(t) :/ Gi(t,s)y(s)ds, t€[0,1],7=0,1,2.
0
O
Lemma 2.2. Let
m—2 m—2
k| + 1->""ki|, 1
AO — Zz—l | | maX{| meZZ_l | }7 Al — A2 — 2A0
2|1 - Zi:l kil
Then the Green functions G;(t,s) (i =0,1,2) satisfy
Gi(t,s)| < Ai, (L) €[0,1] x [0,1]. (2.5)

Proof. Since the proof of (2.5)) is very similar for i = 0, 1,2, we only prove the case
when i = 0. In fact, for j =1,2,...,m — 1,

i—1
ici M2 4 jps — 12

-3 kil
Golt, 5)| < { < gt 17 + §i2 < Ay, s<t & 1<s<E,
21|Y—Z£é*|kk‘|t = 21;22;:"%212'1“# SAo, s> G <ssg
(Il
Lemma 2.3. Lety € L,[0,1]. Then the unique solution of satisfies
[uloe < Asllyllp, i=0,1,2, (2.6)

where A; (i =0,1,2) is defined as in Lemma .
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Proof. We divide the proof into two cases: p > 1 and p = 1.
Case 1: p > 1. Let % + % = 1. Then by Holder’s inequality,

1
ul(1)] < / |Gi(t, s)lly(s)lds < |Gi(t, lallylly < max Gt )qllyllp,
0 sSts

for t € [0,1], i =0,1,2. In view of Lemma [2.2] we have

1 1
Gty = [ Gt sds < [ atas—az, te o)
0 0
which implies that maxo<;<1 [|Gi(t,)|lq < A4;. So,
Hu(i)”oo < Ai”y”:m 1=0,1,2.

Case 2: p=1. By Lemma [2.2] we have

1 1
WWMSAWMﬂM®WS&AW®W:&Mh
for t € [0,1], ¢ = 0,1, 2, which shows that
[u oo < Aillylli, i=0,1,2.

The proof is complete. (Il

Now, if we define the integral operator 7' : X — X by

Tu(t):/o Golt, s)f (s, uls), ' (), (s))ds, € [0,1],

then it is obvious that if u is a fixed point of 7" in X, then u is a solution of (L.6]).
Lemma 2.4. The mapping T : X — X is compact.
Proof. At first, since T is so-called the Hammerstein operator and f is a L,-
Carathéodory function, we know that 7" is continuous.

Now, let D C X be a bounded set, we will prove that T'(D) is relatively compact

in X. Suppose that {wg}32, C T(D) is an arbitrary sequence. Then there is
{ur}p2, C D such that T'(uy) = wy. Set

r = sup |jull.
ueD
Since f: [0,1] x R® — R is L,-Carathéodory, there exists ;. € L,[0,1] such that

(s uk (), up (8), ug ()] < ar(t), ae. t€[0,1], keN.
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Since the proof is similar for p = 1, we only prove the case when p > 1. First, it
follows from Hélder’s inequality and Lemma [2.2] that

lwi ()] = [Tu (1)]

= | [ Golt. ) (svuelo). i 5). o))t
1
< / (Golt, )1 (5, un(s), ul (5), ul(5))|ds

/|Gots|a, s)ds

max [|Go(t, )¢/l ||

te[o 1]

€ [0, 1],
which implies that {wy}72, is uniformly bounded. Similarly, we get

|wi, ()] = [Tuy, (1)

| / Gi(t, 5) F (5, un(s), uf (s), ul (5))ds]

tren[aaﬁ(] 1G1(t, )l gllevr Il

< A1||a7‘||1?7 te [07 ”’

IN

which shows that {w,}?2, is also uniformly bounded. Therefore, {wy}32; is
equicontinuous. By the Arzela-Ascoli theorem, {wy}?2, has a convergent sub-
sequence. Without loss of generality, we may assume that {wy}72, converges on
[0, 1].

Next, for all ¢t € [0,1], we have

|wil(t)] = | T (1)

1
= |/0 Gg(t,s)f(s,uk(s),u;(s),ug(s))ds|

< Golt, -
> tgl[g‘ﬁ] G2(t, )”q”ar”p
< A2||04T||p7

that is to say, {w} }?, is uniformly bounded, and so {w} }?2, is equicontinuous.
As a result, without loss of generality, we may put that {w; }7°, is also convergent.

Finally, for any € > 0, we can choose § = ¢?/||a,||4 such that for any k € N, 14,
to € [0, ].} and ‘tg — t1| < (5,

lwy (t2) — wy (t1)] = |Tuj(t2) — Tuy(t1)]
—| / (s ur(s), (), ull(5))ds|

< t2 =tV ol <,

which shows that {wj} }32, is equicontinuous. Again, by the Arzela-Ascoli theorem,
we know that {w} }32, has a convergent subsequence. We establish that {w}32,
has a convergent subsequence in X. (I
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Now, we apply the Leray-Schauder Continuation Principle to obtain the existence
of at least one solution for (1.6]).

Theorem 2.5. Assume that there exist ag, a1, 0 and 6 € L,[0,1] such that

2
[t o, 21, 2)| <D ai(t)a; +6(t), ae t€(0,1), (2.7)
=0
2
> A, < 1, (2.8)
1=0

where A; (i = 0,1,2) is defined as in Lemma[2.3. Then (1.6) has at least one
solution.

Proof. To complete the proof, it suffices to verify that the set of all possible solutions
of the BVP

is a priori bounded in X by a constant independent of A € [0, 1].
Suppose that u € W?3P[0,1] is a solution of (2.9). Then it follows from (2.7),
Lemma 2.2] and Lemma 23] that

lu™ lp = AlLS (s us ', a) p

< s u,u)lp

2
<3 Jlawu® ], + 1511,

=0

2
< D llaillpllu® oo + (18115
i=0
2

<3 Adllasllplla [, + 11311,

i=0
which implies
191
1= Y0 Al

[u"llp <

and so,

[Jull = max{[Jufl oo, [l lloo, 1u”[loc }
< max{Ao Ay, A} [[u"|;
o Aol
1= Aillaillp
It is now immediate from Theorem that T has at least one fixed point, which
is a desired solution of (|1.6)). O
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